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FT-BLAS: A Fault Tolerant High Performance
BLAS Implementation on x86 CPUs
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Bryan M. Wong, Christian R. Shelton, and Zizhong Chen

Abstract—Basic Linear Algebra Subprograms (BLAS) serve as a foundational library for scientific computing and machine learning. In
this paper, we present a new BLAS implementation, FT-BLAS, that provides performance comparable to or faster than state-of-the-art
BLAS libraries, while being capable of tolerating soft errors on-the-fly. At the algorithmic level, we propose a hybrid strategy to
incorporate fault-tolerant functionality. For memory-bound Level-1 and Level-2 BLAS routines, we duplicate computing instructions and
re-use data at the register level to avoid memory overhead when validating the runtime correctness. Here we novelly propose to utilize
mask registers on AVX512-enabled processors and SIMD registers on AVX2-enabled processors to store intermediate comparison
results. For compute-bound Level-3 BLAS routines, we fuse memory-intensive operations such as checksum encoding and verification
into the GEMM assembly kernels to optimize the memory footprint. We also design cache-friendly parallel algorithms for our
fault-tolerant library. Through a series of architectural-aware optimizations, we manage to maintain the fault-tolerant overhead at a
negligible order (<3%). Experimental results obtained on widely-used processors such as Intel Skylake, Intel Cascade Lake, and AMD
Zen2 demonstrate that FT-BLAS offers high reliability and high performance – faster than Intel MKL, OpenBLAS, and BLIS by up to
3.50%, 22.14%, and 21.70%, respectively, for both serial and parallel routines spanning all three levels of BLAS we benchmarked,
even under hundreds of errors injected per minute.

Index Terms—BLAS, SIMD, Assembly Optimization, Dual Modular Redundancy, Algorithm-Based Fault Tolerance, AVX-512, AVX2,
OpenMP, Parallel Algorithm
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1 INTRODUCTION

Due to common performance-enhancing technologies such
as shrinking transistor width, higher circuit density, and
lower near-threshold voltage operations, processor chips are
more susceptible to transient faults than ever before [1], [2],
[3]. Transient faults can alter a signal transfer or corrupt
the bits within stored values instead of causing permanent
physical damage [4], [5]. As a consequence, reliability has
been identified by the U.S. Department of Energy as one of
the major challenges for exascale computing [6].

The academic and industry communities have observed
significant effects of transient faults since the first transient
error and resulting soft data corruption was observed by
Intel Corporation in 1978 [7]. Sun Microsystems reported
in 2000 that server crashes caused by cosmic ray strikes
on unprotected caches were responsible for the outages of
random customer sites including America Online, eBay, and
others [8]. In 2003, Virginia Tech demolished the newly-built
Big Mac cluster of 1100 Apple Power Mac G5 computers
into individual components and sold them online because
the cluster was not protected by error correcting code (ECC)
and fell prey to cosmic ray-induced partial strikes, causing
repeated crashes and rendering it unusable [9]. Transient
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faults can still threaten system reliability even if a cluster
is protected by ECC: Oliveira et al. simulated an exascale
machine with 190,000 cutting-edge Xeon Phi processors,
which could still experience daily transient errors under
ECC protection [10]. Not only being reported in simula-
tions, Google experienced transient faults in a real-world
production environment that provided incorrect results [11].
To mitigate the negative impact of transient faults on large-
scale infrastructure services, Meta also started their internal
investigation to address this issue in 2018 [12].

Transient faults can be grouped into two categories ac-
cording to the outcome. If an affected application crashes
when a transient fault occurs, it is a fail-stop error. If the af-
fected application continues but produces incorrect results,
it is called a fail-continue error. Fail-stop errors can often
be protected by checkpoint/restart mechanisms (C/R) [13],
[14], [15], [16] and algorithmic approaches [17], [18], [19].
Fail-continue errors are often more dangerous because they
can corrupt application states without any warning from
the system and lead to incorrect computing results [20],
[21], [22], [23], [24], which can be catastrophic under safety-
critical scenarios [25]. In this paper, we restrict our scope
to fail-continue errors from computing logic units (e.g.,
1+1=3), assuming fail-stop errors are protected by check-
point/restart and memory errors are protected by ECC. In
what follows, we will use soft errors to denote such fail-
continue errors from computing logic units.

Dual modular redundancy (DMR) is an approach to
handle soft errors. Typically assisted by compilers, DMR
duplicates computing instructions and inserts check instruc-
tions into the original programs [26], [27], [28], [29], [30].
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DMR is very general and can be applied to any application,
but it introduces a high overhead especially for computing-
bound applications because it duplicates all computations.
To reduce fault tolerance overhead, algorithm-based fault
tolerance (ABFT) schemes have been developed for many
applications in recent years. Huang and Abraham proposed
the first ABFT scheme for matrix-matrix multiplication [31].
Sloan et al. proposed an algorithmic scheme to protect
conjugate gradient algorithms for sparse linear systems
[32]. Sao and Vuduc explored a self-stabilizing FT scheme
for iterative methods [33]. Di and Cappello proposed an
adaptive impact-driven FT approach to correct errors for
a series of real-world HPC applications [34]. Chien at al.
proposed the Global View Resilience system, a library that
enables applications to add resilience efficiently [35]. Many
other FT schemes have been developed for widely-used
algorithms such as sorting [36], fast Fourier transforms
(FFT) [37], [38], [39], iterative solvers [40], [41], [42], and
convolutional neural networks [43]. Recently, the interplay
among resilience, power, and performance has been studied
[44], [45], [46], revealing the strong correlation among these
key factors in HPC.

Although numerous efforts have been made to protect
scientific applications from soft errors, most routines in the
Basic Linear Algebra Subprograms (BLAS) library remain
unprotected. The BLAS library is a core linear algebra
library fundamental to a broad range of applications, in-
cluding weather forecasting [47], deep learning [14], [16],
and computational chemistry simulations [48]. Because of
this pervasive usage, academic institutions and hardware
vendors provide a variety of BLAS libraries such as Intel
MKL [49], AMD ACML, IBM ESSL, ATLAS [50], BLIS [51],
and OpenBLAS [52] to pursue extreme performance on a
variety of hardware platforms. BLAS routines are orga-
nized into three levels: Level-1 (vector/vector), Level-2 (ma-
trix/vector), and Level-3 (matrix/matrix). [53]. Except for
the general matrix-matrix multiplication (GEMM) routine,
which has been extensively studied [31], [54], [55], [56], [57],
minimal research has concentrated on protecting the rest of
the BLAS routines.

For the general matrix-matrix multiplication routine,
several fault tolerance schemes have been proposed to
tolerate soft errors with low overhead [31], [54], [55], [57].
The schemes in [31] and [55] are much more efficient than
DMR. However, these two schemes are offline schemes that
cannot correct errors in the middle of a computation in
a timely manner. In [54], Wu et al. implemented a fault-
tolerant GEMM that corrects soft errors online. However,
built on third-party BLAS libraries, this ABFT scheme be-
comes less efficient when using AVX-512-enabled processors
because the current gap between computation and memory
transfer speed becomes so large that the added memory-
bound ABFT checksum computation is no longer negligible
relative to the original computing-bound GEMM routine. In
[57], Smith et al. proposed a fused ABFT scheme for BLIS
GEMM at the assembly level to reduce the overhead for
checksum calculations. An in-memory checkpoint/rollback
scheme was used to correct multiple simultaneous errors
online. Although this scheme provides wider error cover-
age, it presents a moderate overhead “in the range of 10%”
[57].

When projecting a BLAS implementation to real-world
deployment, enabling support for parallel multi-core sys-
tems, as well as for a variety of mainstream micro-
architectures, such as AVX-512 and AVX2 extensions, can
both be crucial. Compared with AVX-512-enabled proces-
sors, an AVX2-enabled-only processor exposes halved vec-
torized registers to a user and, consequently, significantly
higher register pressure when designing performance-
oriented fault-tolerant algorithms. In addition to providing
delicate assembly-level optimizations on computing ker-
nels, one should propose a cache-friendly design for parallel
Level-3 BLAS routines [58].

In this paper, we develop FT-BLAS—the first BLAS im-
plementation that not only corrects soft errors online, but
also provides at least comparable performance to modern
state-of-the-art BLAS libraries such as Intel MKL, Open-
BLAS, and BLIS. Our FT-BLAS provides superior perfor-
mance and maintains negligible overhead on both AVX-
512 and AVX-2-enabled x86 processors with multi-thread
support. FT-BLAS not only protects the GEMM general
matrix-matrix multiplication routine but also protects other
Level-1, Level-2, and Level-3 routines. BLAS routines are
widely used in many applications from a variety of fields;
therefore, improvements to the BLAS library will benefit
not only a large number of users but also a broad cross-
section of research areas. The main contributions of this
paper include:

• We develop a new implementation of BLAS using AVX-
512 assembly instructions that achieves comparable or
better performance than the latest versions of OpenBLAS,
BLIS, and MKL on AVX-512-enabled processors such as
Intel Skylake and Cascade Lake.

• We benchmark our hand-tuned BLAS implementation
on an Intel Skylake processor and find that it is faster
than the open-source OpenBLAS and BLIS libraries by
3.85%-22.19% for DSCAL, DNRM2, DGEMV, DTRSV, and
DTRSM, and comparable performance (±1.0%) for the re-
maining selected routines. Compared to the closed-source
Intel MKL, our implementation is faster by 3.33%-8.06%
for DGEMM, DSYMM, DTRMM, DTRSM, and DTRSV,
with comparable performance in the remaining bench-
marks.

• We build FT-BLAS, the first fault-tolerant BLAS library,
on our new BLAS implementation by leveraging the
hybrid features of BLAS: adopting a DMR strategy for
memory-bound Level-1 and Level-2 BLAS routines and
ABFT for computing-bound Level-3 BLAS routines. Our
fault-tolerant mechanism is capable of not only detecting
but also correcting soft errors online during computation.
Through a series of low-level optimizations, we manage
to achieve a negligible (0.35%-3.10%) overhead.

• We provide multi-thread AVX-512-enabled implemen-
tations for BLAS routines (DDOT, DNRM2, DGEMV,
DGEMM) and benchmark their parallel performance on
an Intel Cascade Lake processor. Experimental results val-
idate that our fault-tolerant designs maintain a negligible
overhead (0.16%-3.53%), and the performance with the FT
capability remains comparable to or faster than reference
libraries.

• We extend FT-BLAS with AVX2-instruction support.
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We benchmark four representative routines (DNRM2,
DGEMV, DTRSV, and DGEMM) on an AMD R7 3700X
processor. Experimental results validate that FT-BLAS
maintains its high performance and low overhead on this
AVX2-enabled AMD processor.

• We evaluate the performance of FT-BLAS under error
injection on Intel Skylake, Intel Cascade Lake, and AMD
Zen2 processors. Experimental results demonstrate FT-
BLAS maintains a negligible performance overhead under
hundreds of errors injected per minute while outper-
forming state-of-the-art BLAS implementations such as
OpenBLAS, BLIS, and Intel MKL by up to 22.14%, 21.70%,
and 3.50% respectively—all of which cannot tolerate any
errors.

The rest of the paper is organized as follows: We intro-
duce background and related works in Section II and then
describe how we achieve higher performance than state-of-
the-art BLAS libraries in Section III. Section IV and Section
V present the design and optimization of our fault-tolerant
schemes. Evaluation results are given in Section VI. We
present our conclusions and future work in Section VII.

2 RELATED WORK AND BACKGROUND

2.1 Algorithm-Based Fault Tolerance

Algorithmic approaches to soft error protection for
computing-intensive or iterative applications have achieved
great success [37], [40], [56], [57], [59], [60], [61], [62],
[63], [64], [65], ever since the first algorithmic fault toler-
ance scheme for matrix/matrix multiplication in 1984 [31].
The basic idea is that for a matrix-matrix multiplication
C = A · B, we first encode matrices into checksum forms.

Denoting e=[1, 1, . . . , 1]T , we have A
encode−−−−→ Ac :=

[
A

eTA

]
and B

encode−−−−→ Br :=
[
B Be

]
. With Ac and Br encoded,

we automatically have:

Cf = Ac ·Br =

[
C Ce

eTC

]
=

[
C Cr

Cc

]
.

The correctness of the multiplication can be verified by
checking the matrix C against Cr and Cc. Any disagree-
ments, that is, if the difference exceeds the round-off thresh-
old, indicate errors occurred during the computation. The
cost of checksum encoding and verification is O(n2), negli-
gible compared to the O(n3) of matrix multiplication algo-
rithms and thus ensures lightweight soft error detection for
matrix multiplication. For any arbitrary matrix multiplica-
tion algorithm, correctness can be verified at the end of the
computation (offline) via the checksum relationship.

The previous ABFT scheme can be extended to outer-
product matrix-matrix multiplication and the checksum
relationship can be maintained during the middle of the
computation:

Cf =
∑
s

Ac(:, s) ·Br(s, :) =
∑
s

[
Cs Cse

eTCs

]
,

where s is the step size of the outer-product update on
matrix C , and Cs represents the result of each step of the
outer-product multiplication Ac(:, s) · Br(s, :). Noting this
outer-product extension, Chen et al. proposed correcting

errors for GEMM online with a double-checksum scheme
[56]. The offline version of the double-checksum scheme
can only correct a single error in a full execution, while the
online version, which corrects a single error for each step of
the outer-product update, is able to handle multiple errors
for the whole program. A checkpoint-rollback technique
can also be added to overcome a many-error scenario. In
[57], once errors, regardless of how many, are detected via
the checksum relationship, the program restores from a
recent checkpoint to correct the error. A typical solution to
mitigate the memory cost is to fuse the memory footprint
with compute kernels [66], [67], [68]. In this paper, we
target a more lightweight error model and correct one error
in each verification interval using online ABFT without
checkpoint/rollback by adopting the kernel-fusion strategy
for the sake of performance.

2.2 Duplication-Based Fault Tolerance
Known as dual modular redundancy (DMR), duplication-
based fault tolerance is rooted in compiler-assisted ap-
proaches and has been widely studied [26], [27], [28], [29],
[30]. Classified by the Sphere of Replication (SoR), that is,
the logical domain of redundant execution [69], previous
duplication-based fault-tolerant work can be grouped into
one of three cases:
• Thread Level Duplication (TLD). This approach dupli-

cates the entire processor and memory system: Everything
is loaded twice, computed twice, and two copies are
stored [26], [27].

• TLD with ECC assumption (TLD+ECC). In this approach,
operands are loaded twice but from the same memory
address. All other instructions are still duplicated. [28].

• DMR only for computing errors. Only the computing
instructions are duplicated and verified to prevent a faulty
result from being written back to memory [29], [30].

Different SoRs target different protection purposes and error
models. TLD and TLD+ECC lead to the worst performance
and memory overheads, but provide the best fault coverage
without requiring any other fault-tolerance support such
as checkpoint/restarting. Duplicating only the computing
instructions shrinks the SoR to soft errors but almost halves
the performance loss compared with TLD. We adopt the
third SoR, duplication and verification of computing in-
structions only, in this work.

Since compiler front ends never intrude into the as-
sembly kernels of performance-oriented BLAS libraries, in
the few cases that can be found in the compiler literature
relating to soft error resilience in BLAS routines [30], the
performance is never compared against OpenBLAS or Intel
MKL, but only to LAPACK [70], a reference implementation
of BLAS with much slower performance on modern proces-
sors. In this work, we manually insert FT instructions into
self-implemented assembly computing kernels for Level-1
and Level-2 BLAS and then hand-tune them for highest
performance.

3 OPTIMIZING LEVEL-1, LEVEL-2, AND LEVEL-3
BLAS ROUTINES

Before adding FT capabilities to BLAS, we first create a new
library that provides comparable or better performance to
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modern state-of-the-art BLAS libraries. We introduce the
target instruction set of our work, as well as a sketch of
the overall software organization. We then dive into our
detailed optimization strategies for the assembly kernel to
illustrate how we push our performance from the cur-
rent state-of-the-art closer to the limits of the hardware.
To simplify the presentation, we only present the results
for double-precision routines, while all other data types,
such as single-precision or complex floating point numbers,
share the same optimization techniques as that of double-
precision inputs.

3.1 Optimizing Level-1 BLAS

Level-1 BLAS contains a collection of memory-bound vec-
tor/vector dense linear algebra operations, such as vector
dot products and vector scaling.

3.1.1 Opportunities to Optimize Level-1 BLAS

Software strategies to optimize serial Level-1 BLAS vec-
tor routines are typically no more than exploiting data-
level parallelism using vectorized instructions: processing
multiple packed data via a single instruction, loop un-
rolling to benefit pipelining and exploit instruction-level
parallelism, and inserting prefetching instructions. In con-
trast to computing-bound Level-3 BLAS routines, where
performance can reach about 90% of the theoretical limit,
sequential memory-bound routines usually reach 60%-80%
saturation because throughput is not high enough to hide
memory latency. This fluctuating saturation range makes
the experimental determination of underperforming rou-
tines difficult. We therefore survey open-source BLAS li-
brary Level-1 routines source code with regard to three
key optimization aspects: single-instruction multiple-data
(SIMD) instruction set support, loop unrolling, and software
prefetching. We include double-precision routines in Table 1
for analytical reference.

As seen in Table 1, all Level-1 OpenBLAS routines have
been implemented with support for loop unrolling. We also
observe the interesting fact that software prefetching, an
optimization strategy as powerful as increasing SIMD width
for Level-1 routines, is only adopted in legacy implemen-
tations of x86 kernels in OpenBLAS. Based on the results
of this optimization survey, we optimize two representative
routines: we upgrade DNRM2 with AVX-512 support and
enable prefetching for DSCAL. In the evaluation section,
we show that the performance of our AVX-512-enabled
DNRM2 with software prefetching surpasses OpenBLAS
DNRM2 (SSE+prefetching) by 17.89%, while our DSCAL
with data prefetch enabled via prefetcht0 obtains a 3.85%
performance improvement over OpenBLAS DSCAL (AVX-
512 with no prefetch).

TABLE 1
Survey of Selected OpenBLAS Level-1 Routines

AVX-512/AVX2 DDOT, DSCAL, DAXPY, DROT
AVX or earlier DNRM2, DCOPY, DROTM, IDAMAX, DSWAP

Loop Unrolling all routines
Prefetching DNRM2, DCOPY, DROTM, IDAMAX, DSWAP

3.2 Optimizing Level-2 BLAS

Level-2 BLAS performs various types of memory-bound
matrix/vector operations. In contrast to Level-1 BLAS,
which never re-uses data, register-level data re-use emerges
in Level-2 BLAS. We choose the two most typical routines,
DGEMV and DTRSV, as examples to explain the theoretical
underpinnings of our Level-2 BLAS optimization strategies.

3.2.1 Optimizing DGEMV

DGEMV, double-precision matrix/vector multiplication,
computes y = αop(A)x + βy, where A is an m × n matrix
and op(A) can be A, AH , or AT . The cost of vector scaling
βy and α·(Ax) is negligible compared with A·x; therefore, it
suffices for us to consider β = 1, and α = 1, and restrict our
discussion to the case y = Ax+y, where A is an n×n square
matrix. The naive implementation can be summarized as
yi =

∑n
j Aijxj + yi. Since DGEMV is a memory-bound

application, the most efficient optimization strategy is to
reduce unnecessary memory transfers. It is clear that the
previous naive implementation requires n2 loads for A and
x and n2 loads + stores for y since both x and y sit inside
two layers of for loop. No memory transfer operations can
be eliminated on matrix A because each element must be
accessed at least one time. We must focus on register-level
re-use for vectors x and y to optimize DGEMV. We notice
that index variable i in A(i, j) is partially independent of
the index j of the j-loop, and we can unroll the i-loop Ri

times to exploit loading xj into registers for re-use. Now
each load of xj is reused Ri times within a single register, so
the total load operations for x improves from n2 to n2/Ri.
In practice, Ri is typically between 2-6, because accessing
too many discontinuous memory addresses increases the
likelihood of translation lookaside buffer (TLB) and row
buffer thrashing. We adopt Ri=4 because the longest SIMD
ALU instruction (VFMA) latency in this loop is 4 cycles [71].

DGEMV

For 𝑖𝑖 = 0; 𝑖𝑖 < 𝑛𝑛; 𝑖𝑖 += 4
// set 𝑣𝑣𝑣𝑣0,𝑣𝑣𝑣𝑣1, 𝑣𝑣𝑣𝑣2, 𝑣𝑣𝑣𝑣3 as all-0s
For 𝑗𝑗 = 0; 𝑗𝑗 < 𝑛𝑛; 𝑗𝑗 += 8

𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗 ← {𝑟𝑟𝑗𝑗… 𝑟𝑟𝑗𝑗+7}

𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖0 ← {𝐴𝐴𝑖𝑖,𝑗𝑗…𝐴𝐴𝑖𝑖,𝑗𝑗+7}

𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖1 ← {𝐴𝐴𝑖𝑖+1,𝑗𝑗…𝐴𝐴𝑖𝑖+1,𝑗𝑗+7}

𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖2 ← {𝐴𝐴𝑖𝑖+2,𝑗𝑗…𝐴𝐴𝑖𝑖+2,𝑗𝑗+7}

𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖3 ← {𝐴𝐴𝑖𝑖+3,𝑗𝑗…𝐴𝐴𝑖𝑖+3,𝑗𝑗+7}

vr0 ← 𝑣𝑣𝑣𝑣0 + 𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖0 ∗ 𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗
vr1 ← 𝑣𝑣𝑣𝑣1 + 𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖1 ∗ 𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗
vr2 ← 𝑣𝑣𝑣𝑣2 + 𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖2 ∗ 𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗
vr3 ← 𝑣𝑣𝑣𝑣3 + 𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖3 ∗ 𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗

End For
// horizontally reduce 𝑣𝑣𝑣𝑣{0,1,2,3}
// to scalars 𝑣𝑣{0,1,2,3}
yi ← 𝑦𝑦𝑖𝑖 + 𝑣𝑣0, yi+1← 𝑦𝑦𝑖𝑖+1 + 𝑣𝑣1
yi+2 ← 𝑦𝑦𝑖𝑖+2 + 𝑣𝑣2
yi+3 ← 𝑦𝑦𝑖𝑖+3 + 𝑣𝑣3

End For

SIMD 
assembly 
computing 
kernel

For 𝑖𝑖 = 0; 𝑖𝑖 < 𝑛𝑛; 𝑖𝑖 += 𝐵𝐵
𝑖𝑖𝑖𝑖 = 𝑖𝑖+𝐵𝐵−1;
// call DGEMV (Level-2 BLAS)
𝑟𝑟(𝑖𝑖: 𝑖𝑖𝑖𝑖)−= 𝐴𝐴 𝑖𝑖: 𝑖𝑖𝑖𝑖, 1:𝑖𝑖−1 ∗ 𝑟𝑟(1: 𝑖𝑖−1)
For 𝑖𝑖𝑖𝑖 = 𝑖𝑖; 𝑖𝑖 < 𝑖𝑖𝑖𝑖−1; 𝑖𝑖𝑖𝑖++

// move 𝑝𝑝𝑝𝑝𝑣𝑣_𝐴𝐴 to 𝐴𝐴’s 𝑖𝑖𝑖𝑖𝑡𝑡𝑡 row
𝑝𝑝𝑝𝑝𝑣𝑣_𝐴𝐴 = &𝐴𝐴 𝑖𝑖𝑖𝑖, 0 ;
// call DDOT (Level-1 BLAS)

𝑝𝑝𝑡𝑡𝑝𝑝 = ∑𝑡𝑡=𝑖𝑖
𝑡𝑡≤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑣𝑣_𝐴𝐴 𝑝𝑝 ∗ 𝑟𝑟(𝑝𝑝);

// set the diagonal index 𝑖𝑖𝑑𝑑
𝑖𝑖𝑑𝑑 = 𝑖𝑖𝑖𝑖 + 1;
𝑟𝑟 𝑖𝑖𝑑𝑑 −= 𝑝𝑝𝑡𝑡𝑝𝑝;
𝑟𝑟 𝑖𝑖𝑑𝑑 = 𝑟𝑟 𝑖𝑖𝑑𝑑 / 𝐴𝐴 𝑖𝑖𝑑𝑑, 𝑖𝑖𝑑𝑑 ;

End For
End For

DTRSV

Compute the
diagonal BxB
block via Level-1 
BLAS

Cast the majority
of computation 
to Level-2 BLAS

Fig. 1. Optimization schemes of DGEMV and DTRSV.

Unrolling the inner loop (j-loop) improves nothing in
terms of load/store numbers but will benefit a SIMD imple-
mentation (vectorization). Because both an AVX-512 SIMD
register and a cache line of the Skylake microarchitecture
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accommodate 8 doubles, we unroll the j-loop 8 times. Be-
fore entering the j-loop, four SIMD registers vr{0,1,2,3} are
initialized to zero. Within the innermost loop body, each x
element is still reused Ri times (shown as 4 in Figure 1). We
load 8 consecutive x elements into a single SIMD AVX-512
register vrxj , load the corresponding A elements into SIMD
registers vrAi∗, and conduct vectorized fused multiplica-
tion/addition operations to update vr∗. After exiting the j-
loop, vectorized registers vr∗ holding temporary results are
reduced horizontally to scalar registers, added onto the cor-
responding yi, and stored back to memory. Some previous
literature [52], [53] suggests blocking for cache level re-use
of vector elements. However, this may break the continuous
access of the matrix elements, which is the main workload
of the DGEMV computation. Hence, we do not adopt a
cache blocking strategy in our DGEMV implementation:
experimental results validating our DGEMV obtain a 7.13%
performance improvement over OpenBLAS.

3.2.2 Optimizing DTRSV
Double-precision triangular matrix/vector solver (DTRSV)
solves x = op(A)−1x, where A is an n×n matrix, op(A) can
be A, AH , or AT , and either the lower or upper triangular
part of the matrix is used for computation due to symmetry.
We restrict our discussion to x = A−1x using the lower
triangular part of A. Since Level-2 BLAS routines are more
computationally intensive than Level-1 BLAS routines, we
introduce a paneling strategy for DTRSV to cast the majority
of the computations — (n2−nB)/2 elements — to the more
computationally-intensive Level-2 BLAS routine DGEMV.
The minor B × B diagonal section is handled with the
less computationally-intensive Level-1 BLAS routine DDOT.
Given that DGEMV is more efficient, adopting a smaller
block size B is preferable since it allows more computations
to be handled by DGEMV. Considering the practical imple-
mentation of DGEMV, where we unroll the j-loop 4 times for
register re-use (shown in Figure 1), the minimal, and also the
optimal, block size B should then be 4. In fact, OpenBLAS
adopts block size B = 64 for DTRSV [72], resulting in more
computations handled by the less efficient diagonal routine;
this is the major reason our performance exceeds that of
OpenBLAS by 11.17%.

It is worth mentioning that our high-performance im-
plementation design for memory-bound routines at best
ensures contiguous memory access for matrices and vectors.
Therefore, we provide distinct kernels for different matrix
layouts (column-major and row-major) of the Level-2 BLAS
routines for optimal performance. To simplify the presenta-
tion, we always benchmark column-major storage matrices
in this paper, and the actual efficiency and performance will
not conceptually vary for other layouts.

3.3 Optimizing Level-3 BLAS
3.3.1 Overview of Level-3 BLAS
Level-3 BLAS routines are matrix/matrix operations, such
as dense matrix/matrix multiplication and triangular matrix
solvers, where extreme cache and register level data reuse
can be exploited to push the performance to the peak com-
putation capability. We choose two representative routines,
DGEMM and DTRSM to illustrate our implementation and
optimization strategies for Level-3 BLAS.

3.3.2 Implementation of DGEMM

We adopt packing and cache-blocking frames similar to
OpenBLAS and BLIS. The outermost three layers of the for
loop are partitioned to allow submatrices of A and B to
reside in specific cache layers. The step sizes of these three
for loops, MC , NC , and KC , define the size and shape of
the macro kernel, which are determined by the size of each
layer of the cache. A macro kernel updates an MC × NC

submatrix of C by iterating over A (MR ×KC) multiplying
B (KC × NR) in micro kernels. Since our implementation
contains no major update on the latest version of OpenBLAS
other than selecting different micro-kernel parameters MR

and NR, nor on the performance (< ±0.5%), we do not
present a detailed discussion of the DGEMM implementa-
tion here but instead refer readers to [51] for more details.

3.3.3 Optimizing DTRSM

DTRSM, a double-precision triangular matrix/matrix solver,
solves B = α · op(A)−1B or B = αB · op(A)−1, where α is
a double-precision scalar, A is an n×n matrix, op(A) can be
A, AH , or AT , and either the lower or upper triangular part
of the matrix is used for computation due to symmetry. We
restrict our discussion to B = A−1B in the presentation of
our optimization strategy. We adopt the same cache blocking
and packing scheme as DGEMM, but with the packing
routine for A and the macro kernel slightly modified. For
DTRSM, the packing routine for matrix A not only packs
the matrix panels into continuous memory buffers to reduce
TLB misses but also stores the reciprocal of the diagonal
elements during the packing to avoid expensive division
operations in the performance-sensitive computing kernels.
When the Ablock to feed into the macro kernel is on the
diagonal, macro_kernel_trsm is called to solve Bblock :=
Ã−1 · B̃, where Ã and B̃ are packed matrices. Otherwise,
the corresponding Bblock is updated by calculating Bblock -
= Ã·B̃, using the highly-optimized GEMM macro kernel. We
see that the performance of the overall routine is affected by
both macro kernels, and to ensure overall high performance,
we must ensure the TRSM kernel is near-optimal as well.

Inside macro_kernel_trsm, the Bblock is calculated by
updating a small MR ×NR Bsub block each time. The Bsub

block is calculated by Bsub -= Ãcurr · B̃block until Acurr

reaches the diagonal block. Temporary computing results
are held in registers instead of being saved to memory
during computation. When Acurr is on the diagonal, we
solve Bsub := Ã−1

curr · B̃block using an AVX-512-enabled
assembly kernel. It should be noted that the packed buffer
B̃ needs to be updated during the solve because DTRSM is
an in-place update and the corresponding elements of the
buffer should be updated during computation. Our highly-
optimized TRSM macro kernel grants us a 22.19% overall
performance gain on DTRSM over OpenBLAS, where the
TRSM macro kernel is an under-optimized prototype.

Different from the memory-bound Level-1 and Level-
2 BLAS routines, we do not need to explicitly provide
a distinct kernel for different storage layouts for Level-3
BLAS routines. Instead, we only need to provide a different
packing routine that stores the needed data in a proper
area that maximizes kernel efficiency. In short, the storage
layout only changes the packing rather than the assembly
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for 𝑗𝑗 = 0; 𝑗𝑗 < 𝑁𝑁; 𝑗𝑗 += 𝑁𝑁𝐶𝐶
𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑁𝑁-𝑗𝑗>𝑁𝑁𝐶𝐶)?𝑁𝑁𝐶𝐶 :𝑁𝑁- 𝑗𝑗;
for 𝑝𝑝 = 0; 𝑝𝑝 < 𝐾𝐾; 𝑝𝑝 += 𝐾𝐾𝐶𝐶
𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐾𝐾-𝑝𝑝>𝐾𝐾𝐶𝐶)?𝐾𝐾𝐶𝐶:𝐾𝐾-𝑝𝑝;
pack 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) → �𝐵𝐵
for 𝑖𝑖 = 0; 𝑖𝑖 < 𝑀𝑀; 𝑖𝑖 += 𝑀𝑀𝐶𝐶

𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑀𝑀-𝑖𝑖>𝑀𝑀𝐶𝐶)?𝑀𝑀𝐶𝐶:𝑀𝑀- 𝑖𝑖;
pack* 𝐴𝐴(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1) → �̃�𝐴
// 𝐵𝐵_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏=𝐵𝐵(𝑝𝑝:𝑝𝑝+p_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) 
if (A_block is diagonal block) call macro_kernel_trsm
else call macro_kernel_gemm //𝐵𝐵_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏-= �̃�𝐴 * �𝐵𝐵

macro_kernel_trsmLayout of TRSM routine

// to solve 𝐵𝐵_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 := inv(�̃�𝐴 ) * �𝐵𝐵;
for 𝑗𝑗𝑗𝑗 = 𝑗𝑗; 𝑗𝑗𝑗𝑗 < 𝑗𝑗 + 𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖; 𝑗𝑗𝑗𝑗 += 𝑁𝑁𝑅𝑅

for 𝑖𝑖𝑖𝑖 = 𝑖𝑖; 𝑖𝑖𝑖𝑖 < 𝑖𝑖 + 𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖; 𝑖𝑖𝑖𝑖 += 𝑀𝑀𝑅𝑅
�𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =�̃�𝐴(𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑀𝑀𝑐𝑐-1, 0:𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖-1)
clear registers 𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏 to 0.
𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏 -= �𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 * �𝐵𝐵(0:𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖-1, 𝑗𝑗𝑗𝑗:𝑗𝑗𝑗𝑗+𝑁𝑁𝑅𝑅-1)
�𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=�̃�𝐴(𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑀𝑀𝑐𝑐-1, 𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖)

solve 𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏= �𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
−1

* �𝐵𝐵(𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗:𝑗𝑗𝑗𝑗+𝑁𝑁𝑅𝑅-1)
update �𝐵𝐵(𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑀𝑀𝑐𝑐-1,𝑗𝑗𝑗𝑗:𝑗𝑗𝑗𝑗+𝑁𝑁𝑅𝑅-1) ← 𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏;
store 𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏 → 𝐵𝐵(𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑀𝑀𝑅𝑅-1, 𝑗𝑗𝑗𝑗:𝑗𝑗𝑗𝑗+𝑁𝑁𝑅𝑅-1); 
𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 += 𝑀𝑀𝑅𝑅;

macro_kernel_trsmmacro_kernel_trsm

Fig. 2. DTRSM optimization layout.

computing kernels, and also to simplify the presentation,
we present the performance of Level-3 BLAS also for all-
column-major layouts.

4 OPTIMIZING FAULT TOLERANT LEVEL-1 AND
LEVEL-2 BLAS
We first outline our assembly code syntax and duplication
scheme. We then show our step-wise assembly optimization
of DMR decreases fault tolerance overhead from 50.8% in
the scalar version to our 0.35% overhead. After the optimiza-
tion, the performance of both our FT and non-FT versions
surpass both current state-of-the-art BLAS implementations.

4.1 Assembly Syntax and Duplication Scheme
In this paper, all assembly examples follow AT&T syntax;
that is, the destination register is in the right-most po-
sition. We adopt the most common duplication scheme,
DMR [26], [28], [29]. Our chosen sphere of reduction dic-
tates that we duplicate and verify computing instructions
instead of memory instructions. More specifically, in our
case, most ALU operations are floating point operations.
Integer addition/subtraction are used to check whether the
loop terminates. We only use two integer registers (%0, %1)
throughout our assembly kernels.

4.2 Scalar DMR versus Vectorized DMR
We use DSCAL, one of the most important routines in Level-
1 BLAS, to show how even though DMR is slow, it can
actually be fast. DSCAL computes x := α · x, where x is
a vector containing n DPs. DP represents a double-precision
data type, so α is also DP.

4.2.1 Scalar scheme
The scalar implementation of DSCAL performs a load
(movsd), multiplication (mulsd), and then a store (movsd)
operation on scalar elements. The scalar α is invariant
within the loop body, so we load it before entering the loop.
The array index (stored in register %0) to access array ele-
ments is incremented by $1 before starting the next iteration.
Meanwhile, register %1 (initialized by the array length n) is
decremented by one to test whether the loop terminates.
Once register %1 reaches zero, the EFLAG ZF is set to
1, branch instruction jnz will not be taken, and the loop
terminates. Because scalar multiplication mulsd only sup-
ports a two-operand syntax—that is, mulsd, src, dest
multiplies values from two operands and stores the result
in the dest register—the value in the dest register will be
overwritten when the computation finishes. Therefore, we
should back up a copy of the loaded value of x[i] into an

unused register for use in our duplication to avoid an extra
load from memory. After both the original and duplicated
computations finish, we check for correctness and set the
EFLAGs via ucomsid. If two computing results (xmm1 and
xmm2) are different, the EFLAG is set as ZF=1, and the
branch jne ERROR_HANDLER will redirect the control flow
to activate a resolving procedure, a self-implemented error
handling assembly code. When the correctness of comput-
ing is confirmed or an erroneous result is recovered by the
error handler, the result α · x[i] is stored in memory.

4.2.2 AVX-512 vectorized scheme
Our AVX-512 vectorized duplication scheme differs from
the scalar version in two ways. First, vectorized multipli-
cation supports a three-operand syntax, so source operand
registers are still live after computing, and an in-register
backup is no longer needed. Second, a comparison between
SIMD registers cannot set EFLAGs directly. Therefore, we
set EFLAGs indirectly: The comparison result is first stored
in an opmask register k0, and k0 is then tested against
another pre-initialized opmask register k1 to set EFLAGs. If
two 512-bit SIMD registers with 8 packed DPs are confirmed
equal, opmask register k0, updated by vpcmpegd, will be
eight consecutive ‘1’s corresponding to the eight DPs in
the comparison. If one (or more) DP(s) from two source
operands in comparison are different, the corresponding
bit(s) of the opmask register is set to 0, indicating the
erroneous position. We test the comparison result opmask,
k0, with another opmask, k1, pre-initialized to 00000000
via kortestw. EFLAG is set to CF=0 first and updated
to CF=1 only if the results of OR-ing both source registers
(k0, k1) are all ‘1’s. Any detected errors will leave CF=0,
and the control flow is branched to the error handler by jnc.

4.2.3 Performance gain due to vectorization
Our vectorized FT enlarges the verification interval com-
pared to the scalar implementation: The scalar scheme gives
a computing/comparison+branch ratio of 1:1, while the vec-
torized scheme expands this ratio to 8:1, which significantly
ameliorates the data hazards introduced by duplication and
verification. Our experimental results confirm that vector-
ization improves the overhead from 50.8% in the scalar
scheme to 5.2% in the vectorized version.

4.3 Adding More Standard Optimizations
The peak single-core performance of an Intel processor that
supports AVX-512 instructions is 30-120 GFLOPS, whereas
the performance of DSCAL is less than 2 GFLOPS. Since
CPU utilization is severely bounded by memory through-
put, the inserted FT instructions, which do not introduce ex-
tra memory queries, should ideally bring a near-zero over-
head if computations and memory transfers are perfectly
overlapped. This underutilization of CPU performance mo-
tivated us to explore optimization strategies to further bring
the current 5% overhead to a negligible level.

4.3.1 Step 1: Loop unrolling
Loop unrolling is a basic optimization strategy for loop-
based programs. However, it can only reduce a few branch
and add/sub integer instructions in practice because CPUs
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TABLE 2
DSCAL assembly kernel: scalar and vectorized fault tolerance schemes. %0: the index to access array elements, initialized to 0. %1: the counter

to test whether the loop terminates, initialized to n. %2: the address of scalar α. %3: the starting address of vector x.

Original Scalar Instructions Scalar FT Instructions Original Vectorized Instructions Vectorized FT Instructions
movsd (%2), xmm0 movsd (%2), xmm0 vbroadcastsd (%2), zmm0 vbroadcastsd (%2), zmm0
Loop: Loop: kxnorw, k1, k1, k1

movsd (%3, %0, 8), xmm1 Loop: Loop:
movsd xmm1, xmm2 vmovupd (%3, %0, 8), zmm1 vmovupd (%3, %0, 8), zmm1

mulsd xmm0, xmm1 mulsd xmm0, xmm1 vmulpd zmm0, zmm1, zmm2 vmulpd zmm0, zmm1, zmm2
mulsd xmm0, xmm2 vmulpd zmm0, zmm1, zmm3
ucomisd xmm1, xmm2 vpcmpeqd zmm2, zmm3, k0
jne ERROR HANDLER kortestw k0, k1

movsd xmm1, (%3, %0, 8) movsd xmm1, (%3, %0, 8) jnc ERROR HANDLER
add $1, %0; sub $1, %1 add $1, %0; sub $1, %1 vmovupd zmm2, (%3, %0, 8) vmovupd zmm2, (%3, %0, 8)
jnz Loop jnz Loop add $8, %0; sub $8, %1 add $8, %0; sub $8, %1

jnz Loop jnz Loop

automatically predict branches and unroll loops via spec-
ulative execution. Possible data hazards caused by spec-
ulative execution can be ameliorated by out-of-order ex-
ecution mechanisms in hardware. Our experiments show
that the performance of both our FT and non-FT versions
only slightly improves after unrolling the loop 4 times: the
overhead decreases from 5.2% to 4.9%.

4.3.2 Step 2: Adding comparison reduction
Inspired by the previous ten-fold improvement on over-
head due to the enlargement of the verification interval,
this optimization is naturally focused on the reduction of
branch instructions for comparison and diverging to the
error handler by leveraging features of the AVX-512 in-
struction set. Intermediate comparison results are stored in
opmask registers and a correct comparison result is stored
as “11111111” in an opmask register. Therefore, we can
propagate the comparison results via kandw k1, k2, k3,
AND-ing the two intermediate comparison results (k1,k2),
and storing into the third opmask register k3. The AND
operation ensures that any detected incorrectness marked
by “0” in source opmask registers will pollute bit(s) in
the destination register during reduction and will be kept.
Instead of inserting a branch to the error handler for each
comparison, only one branch instruction is needed for every
4 comparisons in a loop iteration. This enlargement of the
verification interval further decreases the overhead from
4.9% to 2.7%.

4.4 Optimizations Underrepresented in Main Libraries
At this point, we still have not reached optimality. We
review possible performance concerns left from the previous
step:
• Data hazards. A read-after-write hazard is a true data

dependency, and severely impacts this version of the code.
• Structural hazards. Four consecutive store instructions all

demand specific AVX-512 units, but there are only two
in SkylakeX processors; the instructions stall until the
hardware becomes available.

Although out-of-order execution performed by a CPU can
avoid unnecessary stalls in the pipeline stage, it consumes
hardware resources and those resources are not unlimited.
Therefore, we optimize instruction scheduling manually,
assuming no hardware optimizations.

4.4.1 Heuristic software pipelining
We perform software pipelining to reschedule the instruc-
tions across the boundary of basic blocks to reduce struc-
tural and data hazards. Unfortunately, finding an optimal
software pipelining scheme is NP-complete [73]. To simplify
the issue, we design the software pipelining heuristically
by not considering the actual latency of each type of in-
struction. To scale eight consecutive elements that can be
packed and processed in a AVX-512 SIMD register, we
should first load them from memory (L), multiply with the
scalar (M1), duplicate multiplication for verification (M2),
compare between the original and duplicated results (C),
and store back to memory (S) if correct. Stacking these five
stages within the loop body causes a severe dependency
chain because they all work on the same data stream. To deal
with this issue, we first write down the required five stages
for a single iteration (L, M1, M2, C, and S) vertically and
issue horizontally with a one-cycle latency for two adjacent
instruction streams.
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C
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C
BS
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M1
M2
C
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to be 
verified in
next 
iteration

Fig. 3. Software pipelining design. Each letter represents a vectorized
instruction. L: Load; M1: Mul; M2: Duplicated Mul; C: Vectorized Com-
parison; S: Store; BS: Checkpoint original value before scaling into an
unused register then Store the computing result back to memory; R:
Restore from a checkpoint register.

4.4.2 Verification reduction and in-register check-pointing
Since the loop is still unrolled four times, comparison results
can be reduced via kandw between opmask registers. The
next loop iteration will start to execute only if the loop does
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not terminate and the correctness of the current iteration
is verified. With cross-boundary scheduling, we compute
for iterations 2, 3, 4, and 5 but verify iterations 1, 2, 3,
and 4. The comparison result of the fifth iteration is only
stored and then verified in the next iteration or in the
epilogue. Because the memory is updated before the com-
puting results are verified, we checkpoint original elements
loaded from memory in an unused register. This operation
coalesces the “in-register checkpoint” (B) followed by a store
(S) and is denoted by BS when designing our software
pipelining. Once an error is detected in the loop body
and the recovery procedure is activated, the error handler
restarts the computation from a couple of prologue-like
instructions where the load is substituted with recovery
from the backup registers. The corruption is recovered by
a third calculation with duplication so the results must be
verified again. If the disagreement still exists, the program
is terminated and signals that it is unable to recover. If the
recovered computing results reach consensus, the control
flow returns back to the end of the corrupted loop iteration
and continues as normal.

4.4.3 Effectiveness of scheduling
Experimental benchmarks report the latencies of vmulpd,
vcmpeqpd, and vmovpd (both store and load) are 4, 3, and
3 cycles (under a cache hit), respectively [71]. After schedul-
ing, operands are consumed after 3 instructions; before our
scheduling, these operands were consumed immediately by
the following instruction. For structural hazards, according
to the Intel official development manual [74], two adjacent
vectorized multiplications (M2, M1) can be executed by
Port 0 and Port 1, and Port 5 accommodates the following
comparison (C) simultaneously. Therefore, three consecutive
ALU operations C,M2, and M1 within the loop body pro-
duce no structural hazard concerns. Additionally, Skylake
processors can execute two memory operations at the same
time so the structural hazard concerns on load and store
are also eliminated. Therefore, we confirm that our heuristic
scheduling strategy on DSCAL effectively ameliorates the
hazards introduced by fault tolerance. We optimize the non-
FT version using the same method and compare it with
our FT version. Our experimental result demonstrates that
software pipelining improves FT overhead from 2.7% to
0.67%.

4.4.4 Adding software prefetching
Prefetching data into the cache before it is needed can lower
cache miss rates and hide memory latency. Dense linear
algebra operations demonstrate high regularity in their
memory access patterns, enabling performance improve-
ment via accurate cache prefetching. We can send a prefetch
signal before data is needed by a proper prefetch distance.
When the data is actually needed, it has been prefetched
into the cache instead of waiting for the approximately 100
ns required to load it from DRAM. Accurate prefetching
distance is important. If data is prefetched too early or too
late, the cache is polluted and performance can degenerate.
Here we select the prefetch distance to be 1024 bits: We
prefetch 128 elements in advance into the L1 cache using the
prefetcht0 instruction. Instead of prefetching for all load
operations, we only prefetch half of them in the loop body to

avoid conflicts with hardware prefetching. Prefetching im-
proves the performance of both our non-FT and FT versions
by ∼ 4%, and the overhead further decreases from 0.67% to
0.36%. Given the target processor is equipped with DDR4
main memory at 2666 MHz, the theoretical performance of
the memory-bound DSCAL routine is 2.666 GHz * 8 Byte *
(1 FLOP / 8 Byte) = 2.666 GFLOPS. The best variant of our
DSCAL implementation, which is at ∼1.55 GFLOPS, already
reaches 0.58% of the peak memory bandwidth.

4.5 Enabling parallel support using OpenMP
As discussed in Section 4.4, the redundant computation
and verification instructions for the FT functionality lead
to extra structural and data dependencies, which is the
major reason for the fault-tolerant overhead for memory-
bound routines. Therefore, we propose delicate assembly-
level optimizations to alleviate the overhead. On a multi-
core system, the massive parallelism introduced by enabling
multithreading naturally reduces the cost of FT.

Most Level-1 and Level-2 BLAS routines require little
communication or synchronization among threads, so one
can promptly enable the parallel support for these routines
by partitioning input vectors and/or input matrices when
mapping workloads to physical cores. According to our
evaluation, our DMR-based fault-tolerant BLAS implemen-
tations maintain negligible overhead after being threaded
on Intel Cascade Lake processors.

4.6 Extending to AVX2-enabled CPUs
In an AVX2-enabled processor, there are 16 256-bit SIMD
registers (ymm0 - ymm15), which can store 4 packed DPs,
namely 4 lanes. Compared with AVX-512-enabled Intel
processors, an AVX2-enabled microarchitecture possesses a
shorter SIMD width and fewer SIMD registers. Since the
AVX2 instruction set does not support opmask registers,
we substitute the ymm registers for the opmask registers in
AVX512 in select cases — to store intermediate comparison
results for reduction.

TABLE 3
Code snippet of the AVX2 fault tolerant code. FT-related instructions

are marked in red.

Original Computation AVX2 Protected Computation
mov $15, r14d

vfmadd231pd ymm0, ymm1, ymm2 vfmadd231pd ymm0, ymm1, ymm2
vfmadd231pd ymm0, ymm1, ymm3
vpcmpeqd ymm2, ymm3, ymm4
vmovskpd ymm4, r10d
cmp r14d, r10d
jne ERROR HANDLER

Table 3 shows the code snippet of computation, duplica-
tion, and comparison using AVX2 instructions. We duplicate
the original SIMD computation instruction and perform a
lane-by-lane comparison between the duplicated and origi-
nal computational results using vpcmpeqd. The comparison
result is stored in the SIMD register ymm4, which is further
extracted and stored in the 32-bit general-purpose register
r10d. If all the four DPs (lanes) of the two 256-bit SIMD
registers are confirmed equal, the r10d register will be 4
consecutive ’1’s. Otherwise, a mismatch at any specific lane



9

will set its corresponding bit in r10d to ’0’. We test r10d by
comparing against r14d, which is pre-initialized to ’1111’.
Any detected errors will redirect the control flow to the error
handler by jne. When the loop body is unrolled, and there
are multiple comparisons in an iteration, we store intermedi-
ate comparison results in different general-purpose registers
such as r11d, r12d, and r13d. These intermediate results,
similar to when adopting opmask registers in AVX-512, can
be reduced by and to reduce the verification interval as well
as the FT overhead.

5 OPTIMIZING FAULT TOLERANT LEVEL-3 BLAS
Since Level-3 BLAS routines are computing-bound routines,
adopting the same DMR strategy as Level-1 and Level-2
BLAS, which doubles the computing instructions, will con-
sequently double the performance overhead. Considering
the limited registers in a single core, DMR will also increase
the register pressure in the computing kernels, which will
further hinder the performance. Therefore, we adopt the
classic checksum-based ABFT scheme for our fault-tolerant
functionality, introducing O(n2) computational overhead
over the original O(n3) computation.

5.1 First trial: building online ABFT on a third-party
library
Building ABFT on a third-party library is not a new topic
[54]. As shown in the left side of Figure 4, we first encode
checksums for matrices A, B, and C before starting matrix
multiplication. The checksums Cc and Cr are updated asyn-
chronously using a rank-k outer-product update of matrix
C with a step size k=Kc. In every completed rank-k update,
we verify the checksum relationship by first computing the
reference row checksum Cr

ref according to the current ma-
trix C and comparing it against Cf . If an error is detected,
we continue to compute the reference column checksum
Cc

ref and compare it against Cc to locate the erroneous row
index ierr of C . If there is no error detected when comparing
the row checksum vectors, we do not need to verify the
column checksum vectors.

The total cost of the ABFT overhead consists of the
initial checksum encoding, online checksum updating, and
reference checksum computing–all of which are matrix-
vector multiplications (DGEMV). Tenc includes the costs of
encoding for four checksums (Cc,Cr ,Ar , and Bc). Tupdate

includes the cost of updating on two checksums (Cc and
Cr). Denoting the time of an n×n DGEMV as tmv , the total
cost of ABFT Tovhd is

Tovhd = Tenc+Tupdate+
K

Kc
·(TCr

ref
+TCc

ref
) = (6+

2K

Kc
)tmv.

We further denote the performance of DGEMV and
DGEMM as Pmv and Pmm, both in units of GFLOPS. Con-
sequently, the total execution times of n × n DGEMM and
DGEMV are TGEMM=2e−9n3/Pm and tmv=2e−9n2/Pmv .
Therefore, we have

Tovhd

TGEMM
=

(6 + 2K
Kc )tmv

2e−9n3/Pmm
=

(6 + 2K
Kc )Pmm

n · Pmv
.

As shown in the above derivation, the real influence of
ABFT is not simply a O(1/n) computationally negligible

contribution to the baseline but is dependent on the rel-
ative performance between the memory-speed-determined
Pmv and computing-capability-determined Pmm as well. On
non-AVX-512-enabled CPUs, Pmm/Pmv ranges from 5 to
20, while on AVX-512-enabled CPUs, this ratio can be as
large as 35, exaggerating the overhead up to 7-fold over
old processors. The ABFT overhead reported for an older
CPU [54] is around 2%, while the overhead on an AVX-512-
enabled processor, measured by our benchmark in Section
VI, is 15.27% — much larger than on old processors.

scale 𝐶𝐶 to β ⋅ 𝐶𝐶;
compute 𝐶𝐶𝑐𝑐 = 𝐶𝐶𝐶𝐶, 𝐶𝐶𝑟𝑟= 𝐶𝐶𝑇𝑇𝐶𝐶;
encode 𝐴𝐴𝑟𝑟 = 𝐶𝐶𝑇𝑇𝐴𝐴;
for 𝑝𝑝 = 0; 𝑝𝑝 < 𝐾𝐾; 𝑝𝑝 += 𝐾𝐾𝐶𝐶
𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐾𝐾-𝑝𝑝>𝐾𝐾𝐶𝐶)?𝐾𝐾𝐶𝐶 :𝐾𝐾-𝑝𝑝;
for 𝑗𝑗 = 0; 𝑗𝑗 < 𝑁𝑁; 𝑗𝑗 += 𝑁𝑁𝐶𝐶
𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑁𝑁-𝑗𝑗>𝑁𝑁𝐶𝐶 )?𝑁𝑁𝐶𝐶 :𝑁𝑁- 𝑗𝑗;
pack 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) → �𝐵𝐵
compute 𝐵𝐵𝑐𝑐 = 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) ⋅ 𝐶𝐶
update 𝐶𝐶𝑟𝑟(𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) += 𝐴𝐴𝑟𝑟 ⋅ 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1)
for 𝑖𝑖 = 0; 𝑖𝑖 < 𝑀𝑀; 𝑖𝑖 += 𝑀𝑀𝐶𝐶

𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑀𝑀-𝑖𝑖>𝑀𝑀𝐶𝐶)?𝑀𝑀𝐶𝐶 :𝑀𝑀- 𝑖𝑖;
pack 𝐴𝐴(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1) → �̃�𝐴
update 𝐶𝐶𝑐𝑐(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1) += 𝐴𝐴(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1) ⋅ 𝐵𝐵𝑐𝑐

𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏=𝐶𝐶(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) 
call macro_kernel_gemm for two purposes:
1. 𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏+= �̃�𝐴 * �𝐵𝐵, 
2. 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟 (𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1)+=𝐶𝐶𝑇𝑇𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏;𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐 (𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1)+= 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 ⋅ 𝐶𝐶

p-loop: verify {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟 , 𝐶𝐶𝑟𝑟} and {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

𝑐𝑐 , 𝐶𝐶𝑐𝑐}; correct error if necessary;

macro_kernel_trsm ABFT-GEMM with kernel fusionABFT-GEMM baseline

// call DGEMV for encoding
compute 𝐶𝐶𝑐𝑐 = 𝐶𝐶𝐶𝐶, 𝐶𝐶𝑟𝑟= 𝐶𝐶𝑇𝑇𝐶𝐶;
encode 𝐴𝐴𝑟𝑟 = 𝐶𝐶𝑇𝑇𝐴𝐴; 𝐵𝐵𝑐𝑐 = 𝐵𝐵𝐶𝐶;
for 𝑝𝑝 = 0; 𝑝𝑝 < 𝐾𝐾; 𝑝𝑝 += 𝐾𝐾𝐶𝐶
𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐾𝐾-𝑝𝑝>𝐾𝐾𝐶𝐶)?𝐾𝐾𝐶𝐶 :𝐾𝐾-𝑝𝑝;
// call DGEMM
𝐶𝐶+= 𝐴𝐴(:, 𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1) ⋅ 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,:)
// call DGEMV
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟 +=𝐶𝐶𝑇𝑇𝐶𝐶; 𝐶𝐶𝑟𝑟+= 𝐴𝐴𝑟𝑟𝐵𝐵;

verify {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟 , 𝐶𝐶𝑟𝑟}

if (incorrect) // 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 located by {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟 , 𝐶𝐶𝑟𝑟}

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐 += 𝐶𝐶 ⋅ 𝐶𝐶;𝐶𝐶𝑐𝑐+= 𝐴𝐴𝐵𝐵𝑐𝑐 ;

verify {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐 , 𝐶𝐶𝑐𝑐}; // 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟 located 

correct error at 𝐶𝐶(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟);

Fuse to re-use 𝑪𝑪

Fuse to re-use 𝑩𝑩

Fuse to re-use 𝑨𝑨

Fuse to re-use 𝑪𝑪

Fig. 4. Outer-product online ABFT DGEMM optimization layout. The
ABFT-related operations are marked in red.

5.2 Reducing the memory footprint: fusing ABFT into
DGEMM

As discussed in the previous section, the huge gap between
memory transfer and floating-point computation is the rea-
son the O(n2) checksum-related operations can no longer
be amortized by the O(n3) GEMM. We, therefore, design a
fused ABFT scheme to minimize the memory footprint of
checksum operations. To be more specific, the encoding of
Cc and Cr is fused with the matrix scaling routine C=βC.
When we load B to pack it to the continuous memory buffer
B̃, checksum Bc is computed and checksum Cr is computed
simultaneously by reusing B. In this fused packing routine,
each B element is reused three times for each load. Similarly,
each element of A loaded for packing is reused to update the
column checksum Cc. In the macro kernel, which computes
Cblock+=Ã · B̃, we reuse the computed C elements at the
register level to update the reference checksums Cr

ref and
Cc

ref to verify the correctness of the computation. By fusing
the ABFT memory footprint into DGEMM, the FT overhead
becomes purely computational, decreasing from about 15%
to 2.94%. It is worth noting that, in addition to square inputs,
our proposed kernel fusion strategy for ABFT GEMM can be
beneficial to irregularly shaped GEMMs. With the proper
kernel parameters selected, the performance overhead of
fault-tolerant kernels can be well maintained for even ir-
regularly shaped inputs. We refer the interested reader to
[64] for details.

5.3 Enabling parallel support for ABFT using OpenMP

In addition to providing highly efficient serial implemen-
tations, we further enable the multithreading support for
DGEMM with and without fault tolerance. As discussed
in Section 3.3.2, our DGEMM starts from three for loops
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Fuse to re-use 𝐶𝐶

Fuse to re-use 𝐵𝐵

Fuse to re-use 𝐴𝐴

Fuse to re-use 𝐶𝐶

malloc 𝐴𝐴𝑟𝑟 𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛𝑛𝑛𝑛𝑛][𝐾𝐾 ,𝐵𝐵𝑠𝑠𝑡𝑡𝑡𝑟𝑟𝑡𝑡
𝑐𝑐 𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛𝑛𝑛𝑛𝑛][𝐾𝐾 ;

malloc 𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟
𝑟𝑟 𝑁𝑁 ,𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟

𝑐𝑐 𝑀𝑀 ,𝐶𝐶𝑟𝑟 𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛𝑛𝑛𝑛𝑛][𝑁𝑁 ,𝐶𝐶𝑐𝑐[𝑀𝑀];

#pragma omp parallel 
{

malloc 𝐵𝐵𝑟𝑟𝑡𝑡𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡
𝑐𝑐 𝐾𝐾 ;

// partition 𝑀𝑀, compute offset 𝑛𝑛𝑠𝑠 and length 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛
𝐴𝐴𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡, : = 𝑡𝑡𝑇𝑇𝐴𝐴 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, : ;
𝐶𝐶(𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, ∶) = 𝛽𝛽 ∗ 𝐶𝐶 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, 0:𝑁𝑁 ;
𝐶𝐶𝑐𝑐 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1 = 𝐶𝐶 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, : ∙ 𝑡𝑡;
𝐶𝐶𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡, : = 𝑡𝑡𝑇𝑇𝐶𝐶 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, : ;
if (𝑡𝑡𝑡𝑡𝑡𝑡 == 0) malloc �𝐵𝐵; // prepare for a parallel copy for �𝐵𝐵
#pragma omp barrier
for 𝑝𝑝 = 0; 𝑝𝑝 < 𝐾𝐾; 𝑝𝑝 += 𝐾𝐾𝐶𝐶

𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐 = (𝐾𝐾-𝑝𝑝>𝐾𝐾𝐶𝐶)? 𝐾𝐾𝐶𝐶 : 𝐾𝐾- 𝑝𝑝;
for 𝑗𝑗 = 0; 𝑗𝑗 < 𝑁𝑁; 𝑗𝑗 += 𝑁𝑁𝐶𝐶

𝑗𝑗_𝑡𝑡𝑛𝑛𝑐𝑐 = (𝑁𝑁-𝑗𝑗>𝑁𝑁𝐶𝐶)? 𝑁𝑁𝐶𝐶 : 𝑁𝑁- 𝑗𝑗;
// partition 𝑗𝑗_𝑡𝑡𝑛𝑛𝑐𝑐, compute offset 𝑛𝑛𝑠𝑠 and length 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛
pack 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑗𝑗+𝑛𝑛𝑠𝑠: 𝑗𝑗+𝑛𝑛𝑠𝑠+𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-1) → �𝐵𝐵+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐*𝑛𝑛𝑠𝑠;
𝐵𝐵𝑠𝑠𝑡𝑡𝑡𝑟𝑟𝑡𝑡
𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡, 𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1 = 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑗𝑗+𝑛𝑛𝑠𝑠: 𝑗𝑗+𝑛𝑛𝑠𝑠 + 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-1) ∙ 𝑡𝑡;

𝐶𝐶𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗+𝑛𝑛𝑠𝑠: 𝑗𝑗+𝑛𝑛𝑠𝑠 + 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-1 = 𝐴𝐴𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡, : ∗ 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑗𝑗+𝑛𝑛𝑠𝑠: 𝑗𝑗+𝑛𝑛𝑠𝑠 + 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-1);
#pragma omp barrier
reduce 𝐵𝐵𝑠𝑠𝑡𝑡𝑡𝑟𝑟𝑡𝑡

𝑐𝑐 (: , : ) → 𝐵𝐵𝑟𝑟𝑡𝑡𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡
𝑐𝑐

if (�̃�𝐴==𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) malloc �̃�𝐴; // prepare for private copy for �̃�𝐴
for 𝑡𝑡 = 0; 𝑡𝑡 < 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛; 𝑡𝑡 += 𝑀𝑀𝐶𝐶

𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐 = (𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-𝑡𝑡>𝑀𝑀𝐶𝐶)? 𝑀𝑀𝐶𝐶 : 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-𝑡𝑡;
pack 𝐴𝐴(𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1) → �̃�𝐴;
𝐶𝐶𝑐𝑐(𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐-1)= 𝐴𝐴(𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐-1,𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐−1)* 𝐵𝐵𝑟𝑟𝑡𝑡𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡

𝑐𝑐 ;
𝐶𝐶_𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏=𝐶𝐶(𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑗𝑗: 𝑗𝑗+𝑗𝑗_𝑡𝑡𝑛𝑛𝑐𝑐−1);
call macro_kernel_gemm for two purposes:
1. 𝐶𝐶_𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏+= 𝐴𝐴 ∗ 𝐵𝐵;
2. 𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟

𝑟𝑟 (𝑗𝑗: 𝑗𝑗+𝑗𝑗_𝑡𝑡𝑛𝑛𝑐𝑐−1)= eT𝐶𝐶𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏; 𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟
𝑐𝑐 (𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐−1)=𝐶𝐶𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏 ∙ 𝑡𝑡;

#pragma omp barrier
p-loop: verify {𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟

𝑟𝑟 , 𝐶𝐶𝑟𝑟} and {𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟
𝑐𝑐 , 𝐶𝐶𝑐𝑐}; correct error if necessary;

}

Fig. 5. Parallel ABFT-GEMM with kernel fusion. The ABFT-related oper-
ations are marked in red.

allowing submatrices of A (MC ×KC ) and B (KC ×NC ) to
reside in L2 and L3 cache, respectively. The cache-blocking
parameters MC ,KC , and NC are tuned to fit with the physi-
cal cache size. In practice, we set MC = 192,KC = 384, and
NC = 9216 for AVX-512-enabled DGEMM. Before starting
the computation, both submatrices A and B are packed into
continuous memory buffers, namely Ã and B̃, to minimize
TLB misses in performance-sensitive computing kernels.

On Intel Skylake and Cascade Lake server CPUs, physi-
cal cores share a large unified L3 cache while each physical
core holds a smaller private L2 cache. To map this cache hier-
archy in a threaded implementation, we allocate a memory
buffer shared among all the threads for B̃, and each thread
requests a private memory buffer for Ã. The computation
workload on the C matrix is partitioned along the M -
dimension. Since memory buffers Ã are thread-private, each
thread packs data from matrix A into their own Ã buffers.
When packing matrix C into the shared memory buffer
B̃, the memory access workloads are partitioned along the
N -dimension and each thread is responsible for packing a
chunk of B̃. Just like the serial ABFT GEMM implementa-
tion, we conduct checksum encoding for the row checksum
vector of A (Ar) and full checksum vectors of C (Cc, Cr).
To compute the C checksums, we partition the C matrix
along the M -dimension such that each thread computes a
slice of the column checksum Cc while maintaining a local
copy of its own row checksum vector Cr . Similarly, we
partition the A matrix along the M -dimension to compute
its row checksums Ar in parallel. The checksum encoding
of Bc is fused with the parallel packing operation for B
to B̃ and at the same time, we update the reference row
checksum of C . Therefore, each B element loaded from

the main memory is re-used three times. Since the parallel
copy operation partitions B from the N -dimension, an extra
stage of reduction operation among threads is required to
compute the final column checksum Bc.

6 EXPERIMENTAL EVALUATION

To validate the effectiveness of our optimizations, we com-
pare the performance of FT-BLAS with three state-of-the-art
BLAS libraries: Intel oneMKL (2020.2, abbreviated as MKL
in this Section), OpenBLAS (0.3.13), and BLIS (0.8.0),
on a machine with an Intel Gold 5122 Skylake processor at
3.60 GHz, equipped with 96 GB DDR4-2666 RAM. We also
compare the performance of FT-BLAS under error injection
with references on an Intel Xeon W-2255 Cascade processor.
This Cascade Lake machine has a 3.70 GHz base frequency
and 32 GB DDR4-2933 RAM. Hardware prefetchers on both
machines are enabled according to the Intel BIOS default
[75]. In addition to Intel processors, we validate our AVX2
implementations on an AMD Ryzen7 3700X desktop pro-
cessor and an AMD EPIC 7713 server processor. The AMD
desktop processor has a 3.60 GHz base frequency and 32
GB DDR4-2933 RAM, while the AMD EPIC 7713 server
processor has a 2.0 GHz base frequency (3.68 GHz boost
frequency) equipped with 512 GB main memory. We repeat
each measurement twenty times and then report the average
performance. For Level-1 BLAS routines, the performance is
averaged from array lengths ranging from 5×106 to 7×106.
For Level-2 and Level-3 BLAS routines, the performance is
averaged for matrices ranging from 20482 to 102402. For
the multi-threading parallel benchmark, we test the array
lengths ranging from 2×108 to 3×108 and matrices ranging
from 5122 to 204802. We compile the code with icc 19.0
and the -O3 optimization flag.

6.1 Performance of FT-BLAS without FT Capability
We provide a new BLAS implementation, comparable to or
faster than the modern state-of-the-art, before embedding
FT capability. We abbreviate this BLAS implementation as
FT-BLAS: Ori in the figures.

6.1.1 Optimizing Level-1 BLAS
For memory-bound Level-1 BLAS, the optimization strate-
gies employed are: 1) exploiting data-level parallelism us-
ing the latest SIMD instructions, 2) assisting pipelining by
unrolling the loop, and 3) prefetching. As seen in Table 1,
OpenBLAS has under-optimized routines, such as DSCAL
and DNRM2, with respect to prefetching and AVX-512
support. We add prefetching for DSCAL, obtaining 3.85%
and 5.61% speed-up over OpenBLAS and BLIS. DNRM2
is only supported with SSE2 by OpenBLAS, so our AVX-
512 implementation provides a 17.89% improvement over
OpenBLAS, while reaching a 2.25-fold speedup on BLIS.
Our implementations for both routines reach comparable
performance to closed-source MKL, as seen in Figure 6.

6.1.2 Optimizing Level-2 BLAS
Register-level data re-use enters the picture in the Level-
2 BLAS routine optimization. Following the optimization
schemes described in Section II, we see in Figure 6 that our
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DGEMV obtains a 7.13% speed-up over OpenBLAS. This
is enabled by discarding cache blocking on matrix A over
concerns about the potential harm of discontinuous memory
accesses regarding TLB thrashing and the corresponding
performance of hardware prefetchers. Because BLIS adopts
the same strategy as OpenBLAS on DGEMV, our DGEMV
is 6.16% faster than BLIS, while achieving nearly indistin-
guishable performance with MKL. For DTRSV, our strategy
of minimizing the blocking parameter to cast the maximized
computations to the more efficient Level-2 BLAS DGEMV
grants us higher performance than all baselines, surpassing
MKL, OpenBLAS, and BLIS by 3.76%, 11.17%, and 6.98%,
respectively.
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(d) DTRSV
Fig. 6. Comparisons of selected Level-1/2 BLAS routines.
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Fig. 7. Comparisons of selected Level-3 BLAS routines.

6.1.3 Optimizing Level-3 BLAS
Adopting the traditional cache blocking and packing
scheme, our DGEMM performs similarly to OpenBLAS
DGEMM. As seen in Figure 7, both of these DGEMM
implementations outperform MKL and BLIS by 7.29-11.75%.
For the Level-3 BLAS routine DTRSM, we provide a highly-
optimized macro kernel to solve for the diagonal block and
cast the majority of the computation to the near-optimal
DGEMM. Because OpenBLAS and BLIS simply provide an
unoptimized scalar implementation for the diagonal solver,
our DTRSM outperforms OpenBLAS and BLIS by 22.19%
and 24.77% and surpasses MKL by 3.33%.

6.2 Performance of FT-BLAS with Fault Tolerance Ca-
pability
Having achieved comparable or better performance than
the current state-of-the-art BLAS libraries without fault

tolerance, we now add on fault tolerance functionalities.
For memory-bound Level-1 and Level-2 BLAS routines,
we propose a novel DMR verification scheme based on
the AVX-512 instruction set and then further reduce the
overhead of fault tolerance to a negligible level via assembly
optimization. For compute-bound Level-3 BLAS, we fuse
the checksum calculations into the packing routines and as-
sembly kernels to reduce data transfer between registers and
memory. The results in this section were obtained with fault-
tolerant DMR and ABFT operating, but not under active
fault injection—see subsection C for injection experiments.
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Fig. 8. Optimizing DSCAL with/without FT.

6.2.1 Reducing DMR overhead for memory-bound routines
Figure 8 presents the performance and overhead of DSCAL
with step-wise assembly-level optimization. In each step,
the assembly optimization described in Sections III and IV
is applied to the FT version and its baseline, our non-FT
version evaluated above. The performance of the most naive
baseline, a scalar implementation, is 1.15 GFLOPs. Duplicat-
ing computing instructions and verifying correctness for this
baseline halves the performance to 0.56 GFLOPS, bringing
a 50.83% overhead. A vectorized implementation based on
AVX-512 instructions decreases overhead by a factor of 9.8
compared to the scalar duplication/verification scheme. A
vectorized implementation with fault-tolerance capability
increases performance to 1.36 GFLOPs, a 2.42-fold increase
of the scalar FT version. After this vectorization, simply
unrolling the loop gains 1.55% and 1.87% improvement
on the non-FT (vec-unroll-ori) and FT (vec-unroll-naive)
versions respectively, while the overhead is now 4.9%. It is
at this point that our non-FT version reaches OpenBLAS per-
formance. Our novel verification scheme involving opmask
registers improves the overhead to 2.7%. We then schedule
instructions via heuristic software pipelining, improving the
performance of the non-FT (sp-unroll-ori) and FT (sp-unroll-
FT) implementations to 1.48 and 1.47 GFLOPs respectively.
The overhead improves to 0.67% in this step. We add
prefetch instructions as a final step, and the overhead settles
at 0.36%.
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6.2.2 Reducing ABFT overhead for compute-bound rou-
tines
Figure 9(a) presents the performance of two methods of
implementing ABFT for GEMM: building upon MKL (FT-
MKL) and fusing into the GEMM routine (FT-BLAS: FT
fused). FT-MKL under error injection leads to 15% overhead
compared with the baseline MKL. When there is no error
injected, we no longer compute and verify the checksum
Cr so the overhead decreases to 9%. In contrast, the fused
implementation (2.9% overhead) of ABFT does not generate
an extra cost when encountering errors because its reference
checksum computation is fused into the assembly comput-
ing kernel and is computed regardless of whether an error is
detected. As shown in Figure 9(b), the overhead of building
ABFT on a third-party library slightly varies when linking to
different libraries, but the trend is clear: reference checksum
construction generates the majority of the ABFT overhead,
which is eliminated by the fusing strategy. The overhead can
be up to a factor of 5.35 that of fusing ABFT into DGEMM.
Our overhead is also lower than the 2015 work by Smith
et al. [57], where checkpoint/rollback recovery is used to
tolerate errors. Their checkpoint/rollback recovery has a
wider error coverage, but the overhead is “in the range of
10%” [57].

6.2.3 Generalizing to other routines
Figure 10 compares the performance of FT-BLAS with FT
capability (FT-BLAS: FT) against its baseline: our imple-
mentation without FT capability (FT-BLAS: Ori) and refer-
ence BLAS libraries on eight routines of all three levels of
BLAS. The DMR-based FT implementations for the Level-
1 and Level-2 BLAS routines (DSCAL, DNRM2, DGEMV,
and DTRSV) generate 0.34%-3.10% overhead over the base-
line. For the Level-3 BLAS routines, DGEMM, DSYMM,
DTRMM, and DTRSM, our strategy to fuse memory-bound
ABFT operations with matrix computation generates over-
head ranging from 1.62% to 2.94% on average. Our imple-
mentation strategy for DSYMM in both FT-BLAS: Ori and
FT-BLAS: FT is similar to the DGEMM scheme, with mod-
erate modification to the packing routines. For DTRMM,
we use the same strategy with some additional modifica-
tions to the computing kernel, similar to the methods in
[76]. With these negligible overheads added to an already
high-performance baseline, our FT-BLAS with FT capability
remains comparable to or faster than the reference libraries.

6.2.4 Benchmarking on an Intel Cascade Lake processor
Figure 11 benchmarks the performance of FT-BLAS with
and without FT capability by comparing against refer-
ence BLAS libraries on an Intel Cascade Lake Xeon W-
2255 processor. Similar to the results on Skylake, our
baseline BLAS implementations (FT-BLAS: Ori) present
comparable or better performance compared with MKL,
OpenBLAS, and BLIS. The DMR-based FT implementa-
tions for memory-bound Level-1 and Level-2 BLAS rou-
tines (DSCAL, DNRM2, DGEMV, and DTRSV) add 0.06%-
2.79% overhead to the non-FT baselines. Our fused fault
tolerant strategy for compute-bound Level-3 BLAS rou-
tines (DGEMM, DSYMM, DTRMM, and DTRSM) generates
1.17%-3.58% overhead on average over the baseline. With
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Fig. 10. Comparisons of selected BLAS routines with FT on Skylake.

these negligible overheads added to our highly efficient
non-FT baselines, our FT-BLAS maintains its performance as
comparable to or faster than all of the state-of-the-art BLAS
libraries.

6.2.5 Enabling the parallel support

Figure 12 compares the parallel performance of FT-BLAS
with FT capability (FT-BLAS: FT) against its baseline: our
implementation without FT capability (FT-BLAS: Ori) and
reference BLAS libraries on four routines of all three levels
of BLAS on an Intel Cascade Lake Xeon W-2255 processor.
After enabling parallel support, the memory-bound Level-1
and Level-2 BLAS routines DDOT, DNRM2, and DGEMV,
which require mostly embarrassing parallelisms, maintain
a negligible overhead (0.15% - 3.53%) similar to that of
serial implementations. It is worth mentioning that BLIS
supports parallel implementations only for Level-3 BLAS
routines, and OpenBLAS also does not provide parallel sup-
port for DNRM2. Therefore, enabling multi-threading does
not increase their performance. Regarding the compute-
bound Level-3 BLAS DGEMM, with our parallel design
introduced in Figure 5, we manage to scale the performance
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Fig. 11. Comparisons of BLAS routines with FT on Cascade Lake.

of ABFT-DGEMM on the shared-memory multi-core plat-
form, obtaining scalability similar to that of OpenBLAS.
With the scalable parallel design and ABFT operations fused
into packing routines and assembly kernels, FT-DGEMM
presents a negligible overhead (1.79%). The performance
of our DGEMM implementation with FT is 16.97% faster
than BLIS, comparable to OpenBLAS while slightly under-
performing the closed-source Intel MKL.

6.2.6 Extending to AVX2-enabled AMD processors
Figure 13 compares the performance of four routines span-
ning all three levels of BLAS on an AVX2-enabled AMD
R7 3700X processor. Since the number of SIMD registers
on AVX2 ISA is halved compared with AVX-512, we suf-
fer from register pressure for the in-register checkpointing
strategy that we have presented. Therefore, we choose to
only detect errors for memory-bound routines rather than
correcting them online. Experimental results show that both
of our DMR- and ABFT-based fault-tolerant optimization
strategies remain valid for AVX2 routines. With negligi-
ble overhead added to our already highly efficient non-
FT baselines, our BLAS implementation with FT capability
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Fig. 12. Comparisons of parallel BLAS routines with FT on Cascade
Lake.
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Fig. 13. Comparisons of BLAS routines with FT on AMD Zen2.

maintains its performance comparable to or faster than the
reference libraries. It is worth mentioning that our AMD
Zen2 CPU adopts the Uniform Memory Access (UMA)
mode, or namely distributed mode, by default, which en-
ables a single-thread application to take advantage of the
entire memory bandwidth delivered by all of the memory
channels. Therefore, we observe the performance of single-
thread memory-bound Level-1 and Level-2 BLAS routines
to be significantly faster than that on Intel processors under
the NUMA mode (or local mode) [77].

6.3 Error Injection Experiments
We validate the effectiveness of our fault-tolerance scheme
by injecting multiple computing errors into each of our
computing kernels and verifying our final computation
results against MKL. External error injection tools often
significantly slow down the native program [78], [79], [80].
Therefore, we inject errors at the source code level to mini-
mize the performance impact on native programs.
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We inject 20 errors into each routine. The length of the
injection interval k is determined based on the number
of errors to inject, that is, we inject one error every k
iterations. For ABFT-protected Level-3 BLAS routines, the
error injection is straightforward because we can directly
operate in C code. An element of matrix C is randomly
selected for modification when an injection point is reached.
This injected error will lead to a difference in the checksum
relationship, and the erroneous element and error magni-
tude will be computed accordingly. This detected error is
then corrected by subtracting the error magnitude from the
erroneous position. For DMR-protected Level-1 and Level-
2 BLAS routines, the injection is more complicated since
the loop body is implemented purely using assembly codes.
Therefore, providing an assembly-level error injection mech-
anism becomes necessary. Once the program reaches an
injection point, we redirect the control flow to a faulty
loop body to generate an error. This generated error is then
detected via comparison with the computed results of the
duplicated instruction. After the error is detected, a recovery
procedure is activated to recompute the corrupted iteration
immediately. In all cases, we validate the correctness of our
final computations by comparing them with MKL to ensure
all injected errors were truly corrected.

10
24

20
48

30
72

40
96

51
20

61
44

71
68

81
92

92
16

10
24

0

Matrix Sizes (m=n)

0

1

2

3

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

MKL
BLIS
OpenBLAS
FT-BLAS: Ori
FT-BLAS: error injected

(a) DGEMV with error injec-
tion
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(c) DGEMM with error injec-
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(d) DTRSM with error injection

Fig. 14. Performance under error injection on Skylake.

Figure 14 compares the performance of four routines
under error injection. For both DMR-protected (DGEMV,
DTRSV) and ABFT-protected (DGEMM, DTRSM) routines,
we maintain negligible (2.47%-3.22%) overhead, and the
overall performance under error injection remains compa-
rable or faster than reference libraries. In particular, our
DTRSM outperforms OpenBLAS, BLIS, and MKL by 21.70%,
22.14%, and 3.50% even under error injection. Our experi-
mental results confirm that our protection schemes do not
require significant extra overhead to correct errors. This is
because our correction methods—either to recompute the
corrupted iteration or to subtract an error magnitude from
the incorrect position—generate only a few ALU computa-
tions instead of expensive memory accesses.
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(a) DGEMV with error injec-
tion
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(b) DTRSV with error injection
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(c) DGEMM with error injection
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(d) DTRSM with error injection
Fig. 15. Performance under error injection on Cascade Lake.

Figure 15 benchmarks FT-BLAS under error injection
using another processor, the Intel Cascade Lake W-2255. Ac-
cording to our experimental results, our protection scheme
is as lightweight as it was on the Skylake processor and is
still able to surpass open-source OpenBLAS and BLIS by
22.89% and 21.56% and the closed-source MKL by 4.98%
even while tolerating 20 injected errors. The execution time
of DTRSM and DTRSV for 5122 to 102402 matrices ranges
from 2 ms to 20 seconds. Therefore, injecting 20 errors into
these two routines is equivalent to injecting 1 to 10,000
errors per second. Hence, FT-BLAS is able to tolerate up
to thousands of errors per second with comparable and
sometimes faster performance than state-of-the-art BLAS
libraries—and none of them can tolerate soft errors.
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(b) FT-DGEMM

Fig. 16. Parallel performance under error injection on Cascade Lake.
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Fig. 17. Performance under error injection on AMD Zen2.

Figure 16 compares the parallel performance of DGEMV
and DGEMM under error injection on an Intel Cascade Lake
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W-2255 processor. When being threaded, our FT-DGEMV
under error injection remains 10.91% and 13.49% faster than
OpenBLAS and MKL. Compared with the non-threaded
BLIS, our FT-DGEMV is 3.72× faster even under error injec-
tion. Regarding the compute-bound DGEMM, our FT-BLAS
presents a performance comparable to OpenBLAS and is
16.83% faster than BLIS. Figure 17 further benchmarks the
serial performance of these two BLAS routines under error
injection on an AMD Zen2 Ryzen 3700X processor, validat-
ing that the overall performance of FT-BLAS remains com-
parable to the best of the-state-of-the-art reference libraries
on AVX2-enabled AMD processors.
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(c) FT-DTRSV
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Fig. 18. Comparisons of BLAS routines with FT on AMD EPYC 7713.

Figure 18 further compares the performance of FT-BLAS
under error injection on an AMD EPIC 7713 CPU. Similar to
other platforms, on this AMD server CPU, our FT-BLAS con-
tinues to present a performance comparable to or faster than
the state-of-the-art BLAS libraries, MKL, OpenBLAS and
BLIS with a negligible overhead added when encountering
injected errors. Regarding the four representative BLAS
routines spanning all three levels of BLAS we benchmarked,
FT-BLAS shows a marginal fault-tolerant overhead of up to
2.70% compared with our non-fault-tolerant baseline.

7 CONCLUSIONS

We present a fault-tolerant BLAS implementation that is
not only capable of tolerating soft errors, but also achieves
comparable or superior performance over the current state-
of-the-art libraries, OpenBLAS, BLIS, and Intel MKL. Future
work will focus on extending FT-BLAS to more architectures
and eventually open-sourcing the code.
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