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Abstract

Face recognition in the presence of pose changes re-

mains a largely unsolved problem. Severe pose changes,

resulting in dramatically different appearances, is one of

the main difficulties. We present a support vector machine

(SVM) based system that learns the relations between cor-

responding local regions of the face in different poses as

well as a simple SVM based system for automatic alignment

of faces in differing poses. We then present experimental re-

sults from multiple random splits of the CMU PIE Database

to verify the strength of our approach.

1. Introduction

Automatic face recognition has numerous applications

in areas as diverse as security, human computer interaction,

and image search engines. As such, there has been much

work on face recognition in the past decades and tremen-

dous progress has been made. There already exist systems

that can perform in excess of 90% accuracy under con-

trolled conditions [6]. However, changes in illumination or

pose remain largely unsolved problems [17]. In this paper

we focus on the issue of recognition across pose. The gen-

eral problem we wish to address is as follows: given two

images of faces in arbitrary poses, indicate how likely they

are to be the same person. This is similar to the “one sample

per person” problem mentioned in [14]. This is an impor-

tant problem because it is not always possible to have mul-

tiple images of the same person. This is especially true if

one were attempting to determine the identity of a stranger.

In this problem, the stranger may have pictures of himself

scattered all over the Internet with no clear organization of

those images but there still must be a way to query a search

engine with just one facial image and get ranked results of

other similar faces.

In recent years, there has been much work related to the

problem of face recognition with pose changes. For exam-

ple, Blanz and Vetter [1] built a system that uses a 3D mor-

phable model to perform face recognition. In their work

they built explicit 3D models of the head and face which

has the advantage that their models can be very accurate.

However, there have been other works using simpler mod-

els that have proven effective [3, 4]. (Although it should

be noted that [4] did not perform as well on full profile

views. Our system performs competitively on such views.)

Eigen Light-Fields [5] addresses the problem by computing

an eigenspace from the light-fields of the head and recog-

nizing based on Eigen Light-Fields in a manner analogous

to Eigenfaces [15]. It has the advantage of being able to

use as many images as are available to improve its accuracy

and does not require the gallery images to be in a canon-

ical pose. However, it may be fruitful to investigate how

a more explicit image-based representation of relations be-

tween pose can improve accuracy. The Eigen Light-Fields

approach also does not make use of a component based

decomposition of the face which has been shown in some

cases to be more beneficial than a global approach to recog-

nition [8].

There have also been other works that attempt to solve

this problem using more explicit learning of pose relations

through patch decompositions. Kanade and Yamada [10]

presented a multi-subregion based approach which decom-

poses faces across pose into patches and learns the relations

between corresponding patches from one pose to another

under a Gaussian model. Their work showed that recogni-

tion between poses separated by as much as 45 degrees can

still be done with accuracy in excess of 80%. However, a

drawback to the multi-subregion system is its reliance on

similarity in appearance between corresponding patches of

the same people. Not surprisingly, at extreme differences

in pose, accuracy drops. Liu and Chen [11] extended the

work of [10] by introducing a texture map representation

of the face. They assume the head to be an ellipsoid and

determine what the texture map of such an ellipsoid head

would be. The basic idea is that their transformation al-

lows for facial features to maintain greater similarity over a

wider range of pose changes. While this does improve re-

sults, their alignment procedure has to optimize over a total

of eight parameters, for each image. There is also the draw-

back that at extreme poses, there is a limit to how much the

texture map can transform facial features to appear similar.
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Figure 1. Centers of the Salient Regions and some of the Bounding

Boxes

In this work, we offer our extension to the work of

Kanade and Yamada [10] by modeling the relations between

patches not based on their similarity but on their joint ap-

pearances. This is achieved through the application of sup-

port vector machines (SVMs) [2] for capturing patch rela-

tions between poses. We first present our algorithm in the

next section followed by experimental results on manually

aligned faces and preliminary results on recognition perfor-

mance with automatically cropped and aligned faces.

2. SVM Based Recognition

SVMs have been shown to be a powerful tool for the task

of face recognition [9, 8]. Jonsson et al. [9] showed empir-

ical evidence that SVMs could effectively extract relevant

discriminatory information from training images of frontal

images. Heisele et al. [8] even applied SVMs to recogni-

tion in the presence of pose change. However, they only

tested their system on a database of 10 subjects as their goal

was to establish the strength of SVMs for face recognition

and to compare the accuracies of global versus local ap-

proaches to analyzing faces. In our work, we continue this

line of investigation by testing SVMs trained on local image

patches of the face using the CMU PIE database as it has

more individuals (68 subjects) and a greater set of ranges in

face pose. As Kanade and Yamada [10] presented promis-

ing initial work on this problem, we will adopt their testing

methodology so our work can be seen in context.

2.1. Local Patch Representation of Faces

In our work, we first chose to manually decompose

frontal faces into 21 salient rectangular regions. We then

manually located the corresponding salient regions to the

frontal regions for all other poses. In the case where only

a part of the face was visible due to self occlusion in more

extreme poses, we only located the visible corresponding

regions (see Figure 1). This is essentially the same as the

decomposition performed in [10] except we did not define

all regions to be of the same size. This is because corre-

sponding regions across pose do not maintain the same size

due to foreshortening and self-occlusion as the pose change

deviates from one view to the next. A good example of this

effect is in the eye. If we imagine a head turning from a

frontal view towards the right, the bounding box around the

person’s right eye would appear increasingly smaller.

Note that this step is performed once per pose, not once

for each image of a pose. We assume that the images are

aligned, either manually or automatically (see Section 2.4).

Thus, this step represents the input of knowledge about the

position (although not appearance) of facial features under

rotation. Currently this is manual. In future work we would

like to automatically define the salient regions of all poses

but we do this manually at present to test the effectiveness

of such regions for recognition.

2.2. Discretely Separated Poses for Training Face
Recognition

Kanade and Yamada [10] showed that recognition accu-

racies beyond 90% between images of faces in poses dif-

fering by as much as 30 degrees of out of plane rotation

can be done by just measuring the sum squared error be-

tween corresponding patches (as part of a Gaussian model).

This suggests that computers can tolerate some degree of

pose change without very precise modeling of facial geom-

etry. Intuitively, this makes sense because minor changes

in facial pose do not change facial appearance dramatically.

As long as we know the general locations of correspond-

ing salient regions in the face, direct comparisons between

the pixel values of the regions suffices when pose change is

minor. Recognition accuracy mainly drops when the poses

of two given facial images are too different. What this sug-

gests is that there may be no need to model pose change as a

continuous process for face recognition purposes. Instead,

modeling how a discrete set of specific poses covering a

wide range of rotations relate to each other may be all that

is needed for recognition across pose. Like the work of [10]

and [11], we adopted this same approach.

Thus, we only define the 21 regions above for a set of

discrete poses. We feel this is enough to gain good accuracy

on any intermediate poses. For this work, we chose the 13

poses from the CMU PIE Database (see Figure 3).

2.3. SVMs for Learning Pose Relations

We now define the main contribution of our work: a pose

relation SVM approach to face recognition. The basic idea

behind our application of SVMs to learning pose relations is

to train SVMs to answer the question of whether two faces

in pose m and pose n are of the same person or not. As

our analysis of faces is based on the patch decomposition

of [10], learning a relation from two given poses m and

n requires training an SVM for each of the corresponding

regions between the two poses to be able to decide if the

corresponding regions belong to the same person or not.

To apply SVMs to the problem of learning pose relations,

our algorithm first takes in images of multiple known sub-

jects in different poses as training data. These people are

not part of the set to be recognized (nor the query set). This



set is only used to learn a general relationship between the

appearance of a region in one pose and the appearance of

the same region in a different pose. The relations between

every pair of poses,m and n, are independently learned.

The training procedure will be presented shortly but we

shall first introduce some notation. Let pm(i) be an image
of subject i in pose m and pk

m(i) be the kth region of the

image pm(i). Similarly, let pk
n(j) be the corresponding kth

region of pk
m(i) in image pn(j). Let vk

m(i) be region pk
m(i)

represented as a vector and vk
m,n(i, j) be the concatenation

of vk
m(i) and vk

n(j). The training procedure between poses
is as follows.

1. For each vk
m,n(i, j) if i = j, consider it to be a pos-

itive case for region k; otherwise, consider it to be a

negative case for region k.

2. For each region k, train an SVM Rk
m,n (with a radial

basis function kernel) using the corresponding dataset.

This procedure aims to build independent pose relation

SVMs for each of the corresponding regions k between two

given poses. The learned functions are used to determine a

score for how likely two novel images of faces are to be the

same person. To employ the learned functions, we take two

novel facial images q and t in poses a and b respectively

and subdivide each of them into the regions associated with

their pose. For each pair of the corresponding regions l in

the two images, we concatenate the vectors describing each

of the regions l into a single vector vl
a,b(q, t) and feed it

to the function Rl
a,b which returns whether the two regions

match.

It would be natural to sum the resulting number of pos-

itive classifications (across the region l) from the SMVs to

determine how likely it is that the two images are of the

same person. However, we discovered that due to the small

training data sizes and the relatively large portion of nega-

tive examples in the training sets, all of theR outputs would

be −1 (i.e. not a match) for all our test data.
Instead, we discovered that the raw distances to the hy-

perplane for each SVM provided indications of which sub-

jects were likely to be the same person. Thus if we let Rl
a,b

be not the thresholded output of the support vector machine,

but rather the distance to the hyperplane (i.e. the value prior

to thresholding), although all of the outputs would be nega-

tive, the total sum would still be a good measure. Thus we

use

sr(q, t) =
K∑

k=1

Rk
a,b(v

k
a,b(q, t)) (1)

to score whether two images q and t with poses a and b

respectively are of the same person. The higher the score,

the more likely it is that the two observed faces belong to

the same person.

Figure 2. Examples of the Alignment Grids

2.4. Automated Face Cropping and Alignment

We performed experiments using manually cropped and

aligned images of the faces but we also developed an au-

tomation of that procedure. To automate the process, we

first used the Viola-Jones face detector [16] to automati-

cally crop faces from images. We found the detector to be

robust enough to crop faces in a wide range of poses (in-

cluding profile views) but the faces would typically have

some variation in alignment. This is partially due to the de-

tector not always cropping faces consistently and also from

differences in the way the subjects positioned their heads in

the images. As such, an alignment procedure was found to

be necessary to position the faces in canonical positions so

that their salient regions could be better compared.

We now present work on a simple SVM based align-

ment procedure that aligns given images reasonably well

for a large number of poses. The procedure learns canoni-

cal alignments for a set of discretely separated poses based

on provided manual alignments as training data. The align-

ment algorithm uses a set of “alignment SVMs” for each

pose pn which are trained as follows.

1. Gather a training set of manually aligned faces in pose

n.

2. For each image, divide the entire image intoK evenly

sized regions r1

n, r2

n, ..., rK
n over the entire image.

3. For each region rk
n, train an SVM Ak

n (using a radial

basis function kernel) to classify all examples of region

rk
n as positive and any other region rl

n where l 6= k as

negative.

In our experiments, we setK = 25 (see Figure 2). Once
the training procedure is complete, the 25 SVMs can be

used to score alignments of facial images pn(i) through ob-
servation of its 25 evenly sized regions. The scoring func-

tion is defined as

sa(p) =

K∑

k=1

Ak
n(rk

n(p)) (2)

where rk
n(p) is the region k in image p (assuming pose n).

We note that the SVMs here are separate from the SVMs



for recognition. Each pose n has a set of alignment SVMs

specifically trained for it. These determine what type of

appearance each local region rk
n should have and the SVMs

vote using their raw distances to the hyperplane on whether

their own region is consistent with a good alignment.

Using the alignment scoring procedure, a search for a

good alignment can be done simply by a brute force search

over the alignment parameters of translation, scale, and in-

plane rotation. However, a brute force search is very slow so

we adopted a heuristic. We observed that facial crops found

by the Viola-Jones detector are restricted to a certain range

of differences in translation, scale, and rotation. We decided

to perform a local gradient ascent by iteratively optimiz-

ing over each parameter independently and observed good

results. However, the automatic face crops were less con-

sistent in profile views and those images did not automati-

cally align as well. To address the problem with the profile

views, we introduced random restarts into our search proce-

dure and applied the same procedure (with random restarts)

to all the poses (including frontal views). We outline the

specific details of our alignment procedure below.

1. Maximize Equation 2 over each alignment parame-

ter (scale, rotation, x-translation, and y-translation) in

turn, while keeping the others fixed. (All parameter

searches on the variables are within some bounded re-

gion from the variable’s current value.)

2. Repeat the above step until convergence or a maximum

number of iterations has been reached.

3. If the score of the found alignment exceeds a minimum

alignment score threshold, accept the found alignment.

4. Otherwise, perform a random restart to some other

point in the parameter space within a bounded region

from the alignment that was just found and repeat from

step 1. (We do a maximum of 10 random restarts.)

5. If no alignment with a score exceeding the minimum

score threshold was found, select the alignment with

the highest score.

In our outline, we introduced a minimum alignment

score threshold. This threshold is determined based on the

training data used for the particular pose being aligned. We

set the threshold to be the mean of the training scores minus

half of the standard deviation of the same scores. (Higher

scores indicate better alignment. This threshold serves to

trade-off accuracy in alignment for speed.)

While there exist 3D facial alignment methods such as

[7], these methods rely on 3D laser scans to use as training

data. Our alignment algorithm only requires a set of 2D

images. (Although we should note that the work here on

alignment is still somewhat preliminary.) While our paper’s

emphasis is mainly on exploring the performance of SVMs

in face recognition across pose, we include this alignment

procedure and corresponding results to show more general

use of region-based SVMs in face recognition.

3. Experiments

We tested our system on the CMU PIE database and

adopted the general protocol used by Kanade and Yamada

[10]. The protocol is to choose half of the subjects for train-

ing the recognition system and the other half for testing.

However, when researchers develop such systems and are

using the same test data to verify their algorithms (during

development), they may unknowingly overfit their test data.

This is due to the fact that algorithms under development

can be adjusted and modified in many ways. We first de-

veloped our system using the first half of the subjects as the

training set and the last half as the testing set (in which the

frontal pose was used as the gallery database and the non-

frontal poses used as queries) and only coarsely tuned the

parameters of our algorithm. After we were satisfied with

our system, we selected five random splits of the subjects.

Each split would have half the subjects randomly selected

for training and the other half for testing. We then tested our

system without adjusting any parameters on these five ran-

dom splits and determined the mean and standard deviations

of our accuracies for recognition. The same splits were used

to test our implementations of the systems described in [10]

and [11] for comparison purposes.

3.1. The CMU PIE Database

The CMU PIE Database [13] contains images of 68 sub-

jects taken under 13 different poses, 21 different illumina-

tions, and 2 occasions resulting in over 37,000 images of

people. In our experiments, we use only the frontal illumi-

nation, neutral expression, no glasses subset of the database.

This means we work with the 68 subjects where each one

has 13 poses. The poses are denoted by their camera la-

bels (e.g. c27 for the frontal view and c11 for one of the 45

degree views).

3.2. Multi­Subregions

Kanade and Yamada [10] developed a system for recog-

nition across pose based on the similarity of local regions

on the face between different poses of the same people and

different people. They first manually determined the loca-

tions of the eyes and mouth for all facial images and used

those locations to define a 7-by-3 lattice of points on the

face starting from the eyebrow and extending down to the

chin. These points were then used to define 9-by-15 pixel

subregions on the face and the similarities between corre-

sponding regions between poses were then modeled using

two Gaussians, one for the similarities of image patches be-



Figure 3. Examples of the Poses in the CMU PIE DB (From the CMU PIE DB Website)

tween same identities and the other for different identities.

In our implementation of their system, we needed to make

one modification because they assume all regions are 9-by-

15 pixels in size. Our regions are variably sized (as dis-

cussed in Section 2.1) so we had to normalize the sizes be-

tween corresponding regions. We do this normalization by

resizing the smaller patch to be the same size as the larger

patch. In a way, this illustrates a strength of our approach.

Our system can learn relations between subregions of dif-

ferent poses without the need to fix patch sizes to be the

same between all poses.

3.3. Texture Maps

Liu and Chen [11], developed a transformation in which

the head is assumed to be an ellipsoid and a texture map

based on this assumption is computed for each face. The

idea is that if the head were an ellipsoid, the out of plane

rotation of the head would be easier to recognize after this

transformation. The hope is that the texture maps would

help to preserve similarities of facial features between the

same person across a wider range of poses than in [10]. In

their work, Liu and Chen first manually cropped out faces.

They then applied texture map transformations to the faces

based on a best fit to their Universal Mosaic Model. As

we did not have such a model available to us, we used our

manually aligned faces and determined (manually) the tex-

ture mapping parameters for fitting to a canonical mosaic

model. We spent a long time optimizing these parameters

to achieve good results and visually inspected the texture

map results to verify that they were reasonable fits.

3.4. Results

In our experiments, we tested each split independently

with all facial crop sizes normalized to 64-by-64 pixels. We

kept galleries of frontal images from each of the five splits

and used all the other poses as probe images. At the mo-

ment, we assume that the pose of each image is specified

so the recognition accuracies determined were done inde-

pendently for each pose for all three systems. There also

already exist systems in the literature such as [12] where

face detection and pose estimation are done simultaneously
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and such systems could be integrated into ours.

Figure 4 compares our system to the other two systems

with manually aligned images. It can be seen that our

method outperforms the other two methods as the pose be-

comes increasingly distant from the frontal view. The rea-

son we do not have as much advantage over the texture map

method in the less extreme poses is because the appearance

of subregions does not vary greatly when pose change is

minor. In this case, the other systems may actually be more

generally applicable than our SVM-based system since they

are based on direct measurements of similarity between im-

age patches. (The multi-subregion method would have been

expected to perform well in the closer to frontal cases but

did not. This is likely due to the differently sized subre-



gions that we selected.) SVMs on the other hand require

sufficient training data to choose support vectors that would

cover a wide enough range of cases in facial appearance.

However in the case of extreme pose change, the use of

similarity between images patches fails because the same

facial feature can appear dramatically different (e.g. the

nose). In this case, use of SVMs provides better accuracy.

It should be noted that although we made a best effort to

produce a fair comparison of our work to the work of [11],

many factors such as the way images were cropped or our

choice of texture parameters can have an effect on their ac-

curacy. We note that [11] reported accuracies of 60% and

70% for their most extreme poses so it may be that our im-

plementation of their system is not optimally tuned. How-

ever, they use more facial features. For example, they note

the forehead as being a strong indicator of identity between

poses. We chose to only limit ourselves to the regions de-

fined in [10] which focuses primarily on the face only. It

can be seen that even with fewer features and a more rig-

orous 5-split testing procedure we still achieve about 70%

accuracy for both extreme poses.

Figure 5 compares our automatic alignment system’s

performance to that of manually aligned images and auto-

matic crops without automatic alignment. For these results,

we also retrained the alignment system based on each of the

random splits. It is not surprising that there is a degrading of

performance. The performance is especially degraded in the

extreme poses. Although our automatic alignments were

actually quite close to the manual alignments, accuracy was

likely affected by slight inconsistencies in scale and trans-

lation. Our current use of SVMs examines the pixel values

directly and is thus more sensitive to misalignments. How-

ever, it is encouraging that the rank 2 accuracies of the auto-

matically aligned images can be 15% greater than the rank

1 accuracies. If a person were using such a face recognition

system in a search engine, a set of top ranked images would

still provide useful results to the user.

4. Conclusions

We present a method for using region-based pose rela-

tion support vector machines to learn aligning and recog-

nition scoring functions. The results are good and do not

require any manual intervention except the definition of 21

regions for each pose. We are especially encouraged by the

quality of the results given the small training set size (only

34 images per pose). In most applications, a larger database

of images would be available.
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