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Abstract. Many problems require making sequential decisions. For these prob-
lems, the benefit of acquiring further information must be weighed against the
costs. In this paper, we describe the catenary support vector machine (catSVM),
a margin-based method to solve sequential stopping problems. We provide theo-
retical guarantees for catSVM on future testing examples. We evaluated the per-
formance of catSVM on UCI benchmark data and also applied it to the task of
face detection. The experimental results show that catSVM can achieve a better
cost tradeoff than single-stage SVM and chained boosting.

1 Introduction

Many problems require making sequential decisions. In product testing, parts are in-
spected throughout the manufacturing process. Humans or computers must decide
whether to continue manufacturing or whether to stop (in case the piece is not sal-
vageable). In medical diagnosis, doctors, patients, and insurers must decide whether
the current information is sufficient to make a decision or whether to conduct the next
of a bank of tests. In both of these cases, the benefit of further processing must be
weighed against the costs. The acquisition of new information is costly.

In object detection in images, a similar problem is faced. Scanning an image for an
object of interest takes processing time. If the image can be scanned more quickly or at a
lower resolution (reducing the number of pixels to be examined), the detection can be sped
up. In doing so, the speed of detection must be weighed against the accuracy of detection.

Most classification methods assume full information about testing examples and are
thus not suitable for sequential decision making scenarios. Recently, Shelton et al. [1]
proposed chained boosting to solve sequential stopping problem. They assume that the
relative costs of stopping at each stage are known and can be made explicit. Given
the stopping costs for each training example, the goal is to minimize the cost of the
decision rules applied to future examples. The difficulty of the problem lies in the fact
that the decisions in later stages depend on what happens in early stages. Motivated by
the success of support vector machines (SVMs) in many classification problems, this
paper presents the catenary support vector machine (catSVM), a margin-based method
to solve sequential stopping problems.

2 Related Work

We are interested in direct estimation of a sequence of decision rules. For this reason we
are not considering density estimation (like a hidden Markov model) followed by a cost
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analysis to derive the decision rules. This rules out approaches like influence diagrams
[2] as we would like to skip the density estimation step.

Our formulation (see the next section) appears similar to cascade classification [3,4,5]
in that there are stages of classification. For applications like face detection, negative
examples are far more frequent than positive examples. Rejecting negative examples as
quickly as possible is crucial to the speed of the classification process. Viola and Jones [3]
propose an iterative approach to train the cascade. In each iteration, a new stage is added
to the cascade and a new stage classifier is trained to achieve a very low false negative
rate and an approximately 50% false positive rate using a modified AdaBoost algorithm.
Stages are added to the cascade until the number of false positives is reduced below a
small number on a validation set. Bi et al. [6] propose using 1-norm SVM as the stage
classifiers in the cascade. Like Viola and Jones, their approach trains the stage classifiers
sequentially from the first stage to the last stage. In every stage, an 1-norm SVM is trained
to minimize the sum of the weighted errors and the regularization term.

There are two major differences between our problem formulation and cascade clas-
sification. First, although classification speed is important, we are mainly concerned
about the costs of gathering information (i.e., the feature costs). Also, while cascade
classification requires the user to choose the desired false negative rate and false posi-
tive rate at every stage, we assume that the feature costs and the misclassification costs
are explicitly specified by the user and our algorithm automatically determines the best
tradeoff between the feature cost and the two types of errors.

Second, we optimize the stage classifiers as a group to maximize the overall per-
formance of the processing pipeline. The problem formulation allows the information
available to change at each stage. Thus, false-positive and false-negative rates at each
stage are not sufficient. It matters which positive examples are incorrectly rejected at a
stage, not just how many. In particular, examples for whom further processing would
still result in the incorrect classification should be rejected, while those for whom fur-
ther information would clarify their classification should be saved.

Cascade classification and catSVM are both “staged” classifiers, but they are more
complementary than competitive. The former attempts to speed up the computation of a
single classification task (fixed information) by exploiting the asymmetric distribution
of examples while the latter attempts to speed up a decision task by exploiting the
correlation between data sources gathered at different times. One could well imagine
using cascade classifiers at each stage within the framework shown here.

The prior algorithms that are closest to our work are two recent papers, [7] and [1].
Dundar and Bi [7] consider the problem of jointly optimizing cascaded SVM classi-
fiers. However, they ignore the difference of rejecting an example at different stages.
They formulate a non-convex and non-linear objective function and propose a cyclic
optimization algorithm to optimize it. Shelton et al. [1] consider using boosting to build
a classifier pipeline. They formulate a loss function in terms regular costs and propose
a upper bound of the conjunction of indicator functions using a product of exponen-
tial functions. The resulting upper bound of the loss function is convex and easy to
optimize, but it may be too loose to approximate the loss function well. We demon-
strate evidence to this effect in our experimental results.
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Fig. 1. An example of a three-stage processing pipeline

3 Sequential Stopping Problem

We follow the problem formulation in Shelton et al. [1]. There is no assumption about
the structure of the costs. Rather, we assume that each training example carries a cost
vector indicating the costs of stopping after each stage. These costs may increase, de-
crease, or have any other arbitrary relationship with the stage index. The costs might be
function of a “label” or might be different for each example.

Let S be the number of stages in the processing pipeline. Denote the feature vector
and the costs of an example by x and c, respectively. Let xj be the components of x that
are available at the j-th stage. Let cj be the total cost of rejecting the example at the j-th
stage and cS+1 be the total cost of accepting it (allowing it to “pass” at each decision).
We assume that c is drawn from a known set C. In the case of binary classification, C
might be of cardinality 2: one sequence of costs for positive examples, and one sequence
for negative examples. In general, C can be of any size. The only requirement is that the
maximum magnitude of the members of C be bounded. Figure 1(a) shows an example
of a three-stage processing pipeline.

Denote the classifier at the j-th stage by fj and the entire processing pipeline by f .
A positive value for fj indicates that processing should continue, while a negative value
indicates processing should stop. The loss for an example is therefore

L(f(x), c) =
S∑

j=1

(
cjI [fj(xj) < 0]

j−1∏

k=1

I [fk(xk) ≥ 0]

)
+ cS+1

S∏

k=1

I [fk(xk) ≥ 0] .

(1)
The goal is to find S classifiers, one for each stage, which together minimize
E[L(f(x), c)]. Although we do not know the true distribution of (x, c), we can use
the empirical loss as a surrogate. We let {(X1, C1), . . . , (XN , CN )} denote the training
set and Xij denote the features of Xi that are available at the j-th stage. Analogously,
we let Cij denote the cost associated with Xi at the j-th stage.

4 Catenary Support Vector Machines

We return to the formulation in Section 3 and derive an optimization procedure based
on a loss bound.



600 K.F. Kan and C.R. Shelton

4.1 Loss Bound

We start by re-writing the loss function (1) in terms of incremental costs.

L(f(x), c) = m1 +
S∑

j=1

(
j−1∏

k=1

I [fk(xk) ≥ 0]

)(
αjI [fj(xj) ≥ 0]

+ βjI [fj(xj) < 0]
)

(2)

where for j = 1, . . . , S,

mj =

{
min (mj+1, cj) if j < S,

min (cj+1, cj) if j = S;

αj =

{
mj+1 − mj if j < S,

cj+1 − mj if j = S;

βj = cj − mj .

In words, mj is the minimal cost at stage j or later. αj is the incremental increase in
the minimal cost by continuing processing and βj is the incremental cost of stopping
processing. Note that either αj or βj is positive but not both. We denote the incremental
costs associated with Xi at the j-th stage by mij , αij , and βij . Figure 1(b) shows a
three-stage processing pipeline with the incremental costs.

It is hard to minimize (2) directly. We define a upper bound for L(f(x), c) and min-
imize the upper bound instead.

L̂(f(x), c) = m1 +
S∑

j=1

[
αj

(
Uα

j (x) − V α
j (x)

)
+ βj

(
Uβ

j (x) − V β
j (x)

)]
(3)

where

U∗
j (xj) = max

(
1, M∗

j (x)
)

V ∗
j (xj) = max

(
0, M∗

j (x)
)

Mα
j (x) = max (−f1(x1), . . . , −fj−1(xj−1), −fj(xj))

Mβ
j (x) = max (−f1(x1), . . . , −fj−1(xj−1), fj(xj)) .

The wildcard ‘*’ represents either α or β. The key idea of deriving Equation (3) is
to use the difference of two max functions to upper bound the conjunction of indicator
functions. Figure 2(a) shows an example when the conjunction consists of two indicator
functions. Note that we simply bound the 0-1 function by the ramp function. Similar
ramp loss functions have been used before to approximate the classification error more
closely [8,9] and to improve the scalability of SVMs [10]. Figure 2(b) shows U∗

j and
V ∗

j as a function M∗
j .

We formulate the following optimization problem.

min
N∑

i=1

L̂(f(Xi), Ci) + λΩ(‖f1‖H1 , . . . , ‖fS‖HS) (4)
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Fig. 2. (a) Upper bound of I [f1 > 0] · I [f2 > 0], (b) U∗
j and V ∗

j as a function M∗
j

where Ω is some monotonically increasing function. The first term measures the em-
pirical loss and the second term is the regularization term, measured with respect to a
set of reproducing kernel Hilbert spaces {Hj}.

4.2 Catenary Support Vector Optimization

We begin with linear classifiers fj(xj) = wj · xj + bj and an �2 regularization term
Ω(‖f1‖H1 , . . . , ‖fS‖HS) =

∑S
j=1 ‖wj‖2

2. Note that U∗
j and V ∗

j are all convex func-
tions in {(w1, b1), . . . , (wS , bS)}. But the difference of two convex functions, U∗

j (xj)−
V ∗

j (xj), is non-convex. Thus, Problem (4) is not a convex optimization problem.
We re-formulate Problem (4) as the following constrained optimization problem.

min
∑N

i=1
∑S

j=1

(
αijξ

α
ij + βijξ

β
ij

)
+ λ

∑S
j=1 ‖wj‖2

2

s.t.

ξα
ij ≥ −wk · Xij − bk − V α

j (Xi) ∀i, k ≤ j

ξβ
ij ≥ −wk · Xij − bk − V β

j (Xi) ∀i, k < j

ξβ
ij ≥ wj · Xij + bj − V β

j (Xi) ∀i, j

ξα
ij , ξ

β
ij ≥ 1 ∀i, j

(5)

Note that we have dropped the constant term,
∑N

i=1 mi,1, from the objective. In
principle, we can leave V ∗

j in the objective. But moving V ∗
j to the constraints appears

to give better empirical results. Also, it is possible to have different tradeoff parameters
for each classifier stage.

The Concave-Convex Procedure. The constraints of Program (5) can all be viewed
as the difference of two convex functions. We employ the concave-convex procedure
(CCCP), first introduced by Yuille and Rangarajan [11] to solve minimization problems
whose objective function can be expressed as the sum of a convex part and a concave
part. While Yuille and Rangarajan [11] considered only linear constraints, Smola et al.
[12] generalized the CCCP to handle concave-convex constraints. The CCCP is an iter-
ative procedure. In each iteration, it replaces the concave parts in the objective function
and the constraints by their first-order Taylor approximation. The resulting problem is
convex and can be solved using efficient convex minimization algorithms.
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Consider the following optimization problem:

min f0(x) − g0(x)
s.t. fi(x) − gi(x) ≤ ci ∀i

where fi and gi are real-valued convex and differentiable functions on �n for i ∈
{0, . . . , m}, and ci ∈ � for i ∈ {1, . . . , m}. The CCCP computes x(t+1) from x(t) by
solving the following convex optimization problem.

minf0(x) −
(
g0(x(t)) + ∇g0(x(t))T (x − x(t))

)

s.t. fi(x) −
(
gi(x(t)) + ∇gi(x(t))T (x − x(t))

)
≤ ci ∀i

It can be shown that the CCCP converges to a local minimum [12]. In case of non-
global minimum, one may restart the CCCP with a different x(0). However, the CCCP
can be considered as a special case of difference of convex functions (D.C.) program-
ming. Tao and An [13] state that the D.C. minimization algorithm (DCA) often con-
verges to a global minimum.

catSVM Program. To formulate Program (5) as a CCCP problem, let w =
(w1, . . . , wS) and b = (b1, . . . , bS). In each iteration, we need to replace V ∗

j in the
constraints by its first-order Taylor expansion at the current estimates of w and b. No-
tice that V ∗

j are non-smooth functions. When we calculate its Taylor expansion, we
use its subgradient. For the pointwise maximum function h(x) = max1≤i≤m hi(x),
its subdifferential at x, ∂h(x), is the convex hull of the subdifferentials of the “active”
functions at x, i.e., ∂h(x) = HConvex{∂hi(x)|hi(x) = h(x)}. Thus, by simple calcu-
lus, we obtain that, for j = 1, . . . , S,

∂V ∗
j (x;w,b)

∂w
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if M∗
j (x) < 0,{

(−τ1x1, . . . , −τj−1xj−1, στjxj ,0)∣∣∣τk ≥ 0,
∑j

k=1 τk ≤ 1
}

if M∗
j (x) = 0,{

(−τ1x1, . . . , −τj−1xj−1, στjxj ,0)∣∣∣τk ≥ 0,
∑j

k=1 τk = 1
}

if M∗
j (x) > 0;

(6)

where

τk = 0
if k < j and M∗

j (x) 	= −wk · xk − bk

or if k = j and M∗
j (x) 	= σ(wk · xk + bk)

σ =

{
−1 if *= α,

+1 if *= β.

and 0 denotes padding zeroes of appropriate length.
Similarly, we can obtain ∂Vj∗(x;w,b)

∂b by replacing xk’s by 1 in Equation (6). In the
experiments, we pick the subgradient with
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τk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c if k is the largest index s.t.

either k < j and M∗
j (x) = −wk · xk − bk,

or k = j and M∗
j (x) = σ(wk · xk + bk),

0 otherwise,

where c = ρ
ρ+1 and ρ is the number of active functions if M∗

j (x) = 0, and c = 1 if
M∗

j (x) > 0.
Since only one of αij or βij is nonzero, we need only consider the constraints as-

sociated with one of ξα
ij or ξβ

ij . The number of constraints in Program (5) is quadratic
in the number of stages. We can re-write it so that the number of constraints depends
linearly on the number of stages.

min
∑N

i=1
∑S

j=1

(
αijξ

α
ij + βijξ

β
ij

)
+ λ

∑S
j=1 ‖wj‖2

2

s.t.

ξα
ij ≥ ηij − V α

j (Xi) ∀i, j

ξβ
ij ≥ ηi,j−1 − V β

j (Xi) ∀i, j

ξβ
ij ≥ wj · Xij + bj − V β

j (Xi) ∀i, j

ξα
ij , ξ

β
ij ≥ 1 ∀i, j

ηij ≥ −wj · Xij − bj ∀i, j
ηij ≥ ηi,j−1 ∀i, j

(7)

4.3 Extensions

One important advantage of SVM is that it can use kernels to handle data that are not
linearly separable. By the Representer Theorem [14], we can also kernelize the stage
classifiers. Denote the kernel matrix for the j-th stage by Kj and its i-th column by
Kj(·, i). The only changes to Program (7) are (i) replacing the regularization term in
the objective by λ

∑S
j w′

jKjwj , and (ii) replacing the feature vector Xij by Kj(·, i).
We are free to use different kernels for different stages. Also, instead of using a �2
regularization term, we may also use �1 regularization term to promote sparsity. If we
do so, in each iteration of the CCCP, we need to solve a linear program instead of a
quadratic program.

4.4 An Alternative Loss Bound

In the above derivation, we view the loss of an example as the sum of losses incurred
in each stage and then derive a upper bound using ramp functions. This is not the only
way to do it. Alternatively, we can view the loss of an example as the max of losses
incurred in each stage and obtain the following loss bound:

L̃(f(x), c) = d0 + max
({

dj(Uα
j (x) − V α

j (x))
}S

j=1
, dS+1(U

β
S+1(x) − V β

S+1(x))
)

(8)
where d0 = min (c1, . . . , cS+1) and dj = cj − d0.

Note that L̃ is no greater than L̂. It is not difficult to see that we can formulate a
constrained optimization problem with L̂ and employ the CCCP to solve it. Unfortu-
nately, our preliminary experimental results showed that the CCCP is not effective in
optimizing L̃. We leave the problem of optimizing L̃ as an open problem.
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5 Performance Bounds

We are able to provide theoretical bounds on how well catSVM will perform on new
testing data. In fact, Shelton et al. [1] gave a risk bound for chained boosting and a
similar bound holds for catSVM. We will state the theorem below. The proof is similar
to the one in [1] and is omitted. We need the following definition.

Definition 1. Let μ be a probability distribution on a set X and suppose that
X1, . . . , Xn are independent samples selected according to μ. Let F be a class of func-
tions mapping from X to �. Define the random variable

Ĝn(F ) = E

[
sup
f∈F

∣∣∣
2
n

n∑

1

gif(Xi)
∣∣∣
∣∣∣∣ X1, . . . , Xn

]
,

where g1, . . . , gn are independent Gaussian N(0, 1) random variables. The Gaussian
complexity of F is Gn(F ) = EĜn(F ).

We can now state the theorem, bounding the true risk by the empirical risk and the
Gaussian complexity of the classes of the stage classifiers:

Theorem 1. Let L and L̂ be as in Equations (1) and (3). Let γj = maxc∈C(αj + βj)
and Λ = maxf(x),c L̂(f(x), c). Let F1, . . . , FS be the sequence of the classes of the
stage classifiers. Let (Xi, Ci)N

i=1 be independently selected according to some fixed
probability measure P . Then, for any integer N and any 0 < δ < 1, with probability at
least 1− δ over samples of size N , every sequence f1, . . . , fS in F1 × . . .×FS satisfies

E[L] ≤ ÊN [L̂] + κ

S∑

j=1

⎛

⎝
S∑

�=j

γ�

⎞

⎠GN (Fj) + Λ

√
8 ln 2

δ

N

for some constant κ.

Note that the second term in the bound does not depend on the regular costs cj’s directly,
and it does not depend on m1 at all. Quite often, the incremental costs αj’s and βj’s are
smaller than the cj’s. Additionally, for j < j′, the complexity of Fj has a larger weight
than that of Fj′ . This may suggest that it is advantageous to use simple stage classifiers
in early stages and use complex stage classifiers in later stages. We can further bound
the true risk in terms of kernel functions of the stage classifiers. We need the following
lemma which follows from McDiarmid’s inequality [15].

Lemma 1. Let F be a class of functions mapping to [−1, 1]. For any integer n,

P
{
|Gn(F ) − Ĝn(F )| ≥ ε

}
≤ 2 exp

(
−nπε2

4

)
.

Theorem 1 and Lemma 1, combined with Lemma 22 in Bartlett and Mendelson [16],
imply the following theorem.
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Theorem 2. Let L and L̂ as in Equations (1) and (3). Let γj = maxc∈C(αj + βj)
and Λ = maxf(x),c L̂(f(x), c). Let F1, . . . , FS be the sequence of the classes of stage
classifiers. Let Xj be the feature space in the j-th stage. For j = 1, . . . , S, fix Bj , and
let Kj : Xj × Xj → � be a kernel with supx∈Xj

|Kj(x, x)| < ∞. Let X be the full

feature space, i.e., X =
⋃S

j=1 Xj . Suppose that {Xi, Ci}N
i=1 are selected at random

and independently according to some probability distribution P on X × C. Then with
probability at least 1 − δ, every function sequence f1, . . . , fS of the form

fj(x) =
N∑

i=1

αiKj(xij , x)

with
∑

i1,i2
αi1αi2Kj(xi1,j , xi2,j) ≤ B2

j satisfies

E[L] ≤ ÊN [L̂]+
κ

N

S∑

j=1

⎛

⎝
S∑

�=j

γ�

⎞

⎠Bj

√√√√
N∑

i=1

Kj(xij , xij)

+

⎛

⎝Λ +
1√
2π

S∑

j=1

jγj

⎞

⎠

√
8 ln 2(S+1)

δ

N

for some constant κ.

6 Experimental Results

We tested catSVM on UCI benchmark data and the MIT face database. We compared
the performance of catSVM to chained boosting1 and single-stage SVM. For chained
boosting, we used decision stumps as weak classifiers and set the number of rounds before
the algorithm stops to 2000. For single-stage SVM and catSVM, we used the RBF kernel
and set the kernel width to the median of the pairwise distance in the training set. We set
the regularization parameter λ to be 1 and did not adjust it. Furthermore, for catSVM,
we initialized the SVM in every stage to be zero (i.e., for j = 1, . . . , S, wj = 0 and
bj = 0). We used Mosek to solve the quadratic programs generated by catSVM.

The single-stage SVM and our catSVM algorithms run on the same hypothesis space of
RBF kernels. We ran chained boosting on a different feature space. It was not possible to
use the same feature space. The boosting algorithm constructs a linear surface in the space
of features that are decision stumps. That does not correspond to any easily constructed
kernel. The feature space dimensions of the RBF kernel could be defined as the set of all
kernel functions with one point as a training point. However, those dimensions have real
values and the boosting algorithm is designed for thresholded features (or weak learners).
However, our experience with these datasets suggests that boosting decision stumps and
RBF kernels for SVMs have roughly the same performance on single-stage problems.

We did not compare to constructing three independent SVM classifiers and then
connecting them in a chain; this would have required selecting the false-positive and

1 The original chained boosting algorithm uses regular costs. We modified it to use incremental
costs as well, which improved its performance.
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Fig. 3. UCI heart tradeoffs: (a) False negative vs. False positive, (b) False negative vs. Average
feature cost

Table 1. For four different cost settings for the heart dataset, the distributions of the stages at
which the examples were rejected (or accepted for the final column) for boosting and catSVM,
for training and testing, and for positive and negative examples

fn: 9, fp: 18 fn: 18, fp: 18 fn: 36, fp: 18 fn: 72, fp: 18

bo
os

ti
ng tr
ai

n + 76 0 0 0 70 0 0 6 38 0 0 38 16 0 0 60
– 94 0 0 0 94 0 0 0 82 8 4 0 74 4 16 0

te
st + 43 0 0 1 39 0 0 5 24 2 0 18 18 2 1 23

– 56 0 0 0 52 1 2 1 45 5 4 2 42 7 4 3

ca
tS

V
M tr
ai

n + 76 0 0 0 6 2 6 62 2 1 1 72 0 0 2 74
– 94 0 0 0 68 3 19 4 54 8 20 12 25 20 34 15

te
st + 44 0 0 0 9 0 5 30 7 1 3 33 7 0 4 33

– 56 0 0 0 49 1 5 6 35 5 9 7 20 9 19 8

false-negative costs for each classifier. One of the main purposes of our approach is to
automatically adjust the classifier to achieve the desired cost results without having to
manually search over such trade-off parameters.

We construct the vectors of stage costs as follows. We assign a constant feature cost
to each stage that is the same for all examples (as specified in the problem set up below).
It represents the cost of collecting the features, regardless of the final outcome. If the
example is positive, we add an extra cost to ci for i ≤ s, representing an extra penalty if
a positive example is rejected at any stage. If the example is negative, we add an extra
cost to cs+1, that is we penalize the classifier if it allows the example to pass through
every stage (and therefore wrongly accepts it as a positive example).

6.1 UCI Data

We report the results on the heart disease dataset from the UCI machine learning repos-
itory. We assigned the 13 attributes to three stages in descending order according to
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Fig. 4. Face detection tradeoffs: (a) False negative vs. False positive, (b) False negative vs. Aver-
age feature cost

Table 2. For four different cost settings for the face detection dataset, the distributions of the
stages at which the examples were rejected (or accepted for the final column) for boosting and
catSVM, for training and testing, and for positive and negative examples

fn: 150, fp: 250 fn: 250, fp: 250 fn: 500, fp: 250 fn: 1000, fp: 250

bo
os

ti
ng tr
ai

n + 224 0 0 0 224 0 0 0 220 0 0 4 33 0 0 191
– 376 0 0 0 376 0 0 0 375 1 0 0 342 34 0 0

te
st + 341 0 0 1 341 0 0 1 342 4 0 36 143 32 1 166

– 654 1 3 0 653 1 3 1 646 4 4 4 533 88 19 18

ca
tS

V
M tr
ai

n + 224 0 0 0 35 8 0 181 0 0 1 223 0 0 0 224
– 376 0 0 0 278 86 10 2 104 233 36 3 96 240 37 3

te
st + 342 0 0 0 42 16 6 278 1 10 7 324 1 10 7 324

– 658 0 0 0 457 143 28 30 170 392 63 33 152 410 62 34

their correlation with the predicted output: four attributes to each of the first two stages
and five to the last stage. The single-stage SVM was trained and tested on all the 13
attributes. We set the feature cost of each stage to the number of attributes assigned to
that stage and all the preceding stages. Early rejections are treated as “normal” whereas
an example that passes all stages is treated as “disease.” Figure 3(a) shows the false
negatives and false positives as the misclassification penalties vary. The three methods
give very similar tradeoff between the two types of errors. Figure 3(b) shows the false
negative and the average feature cost as the misclassification penalties vary. The aver-
age feature cost is the average number of features that must be examined before the
classifier makes a decision. The feature cost of single-stage SVM is fixed at 13. We
observe that catSVM does a better job in trading false negative rate for feature cost than
chained boosting.

Table 1 shows at which stage the examples are rejected or accepted. The feature
costs are 4, 8, 13, and 13. ‘fn: 9, fp: 18’ means the penalties for false negative and false
positive are 9 and 18, respectively; therefore the cost vectors would be [13, 17, 22, 13]
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and [4, 8, 13, 31] for positive and negative examples, respectively. Note that for every
penalty setting, the first three columns are the number of examples rejected in the three
stages and the last column is the number of examples accepted. As the penalty of false
negative increases, both chained boosting and catSVM try to accept more and more
positive examples.

6.2 Face Detection

We also validated the catenary SVM by applying it to face detection. We tested on the
MIT face database [17] which contains 19-by-19 gray-scale images of faces and non-
faces. For face detection, the non-face is usually the majority. Therefore, our goal is to
produce a classifier that can identify non-face images by examining as low a resolution
patch as possible. We built a multi-stage detection system where any early rejection
is labeled as a non-face. The first stage looks at down-sampled versions of the images
at a resolution of 3-by-3. The next stages do the same, at resolutions of 6-by-6 and
12-by-12. We did not examine the full 19-by-19 resolution as it did not provide signifi-
cant improvement over the 12-by-12 resolution.

We assign a feature cost to each stage proportional to the total number of pixels at
that stage and all the preceding stages. There are three free parameters in the problem
formulation: the per pixel cost, the penalty for an incorrect face classification, and the
penalty for an incorrect non-face classification. Changing these quantities will control
the tradeoff between false negatives and false positives, and between classification error
and feature cost. In the experiments, we fix the per pixel cost and vary the other two
quantities.

We used 600 images as the training set and 1000 images as the testing set. The
single-stage SVM was trained and tested on image patches at the highest resolution,
12-by-12. Figure 4(a) shows the false negatives and false positives as the misclassifi-
cation penalties vary. Note that catSVM can achieve better tradeoff than single-stage
SVM and chained boosting. The processing pipeline successfully improves the ability
of SVM to tradeoff between the two types of errors. Figure 4(b) shows the false neg-
ative and the average feature cost as the misclassification penalties vary. The feature
cost of single-stage SVM is fixed at 144. Chained boosting and catSVM give higher
average feature costs for lower false negative rates. Note that catSVM requires a lower
average feature cost than chained boosting for most false negative rates. The advantage
of catSVM becomes more obvious when the false negative rate is small.

Table 2 shows at which stage the examples are rejected or accepted. The feature costs
are 9, 45, 189, and 189. ‘fn: 150, fp: 250’ means the penalties for false negative and false
positive are 150 and 250, respectively. As the penalty of false negative increases, both
chained boosting and catSVM try to accept more and more positive examples. It is clear
that catSVM is more effective in pushing the positive examples forward.

It is interesting to note that the performance of catSVM is superior to that of a single-
stage SVM (which is a regular SVM trained on the full set of features, varying the false-
positive and false-negative costs) in terms of testing error. We believe this is because the
hypothesis class of the earlier stages are simpler. Therefore, those decision rules have
less variance for a fixed number of samples. Our algorithm then has a natural bias that
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helps reduce the variance with few numbers of samples. Our generalization bounds also
point to this advantage.

7 Conclusion

We believe that for some decision-making problems, it is important to weigh the benefit
against the cost of acquiring more information. We present the catenary SVM to solve
one-sided early detection for binary classification. We formulate the problem as a con-
strained concave-convex optimization problem and solve it using CCCP. In addition,
we are able to provide data-dependent theoretical guarantee for catSVM. The experi-
mental results show that catSVM can tradeoff misclassification error and feature cost
more effectively than single-stage SVM and chained boosting.

The main drawback of catSVM is its scalability. Currently, we use a generic solver
to solve the linear or quadratic programs generated by CCCP. Although the number
of constraints is only linear in the number of stages, the generic solver runs out of
memory even for medium-size datasets. We are planning to explore other more scalable
algorithms (e.g., cutting-plane methods). Moreover, it would be interesting to extend
catSVM to two-sided early detection.
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