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Abstract

A continuous-time Markov process (CTMP) is a collection of variables indexed by
a continuous quantity, time. It obeys the Markov property that the distribution over
a future variable is independent of past variables given the state at the present time.
We introduce continuous-time Markov process representations and algorithms for filtering,
smoothing, expected sufficient statistics calculations, and model estimation, assuming no
prior knowledge of continuous-time processes but some basic knowledge of probability and
statistics. We begin by describing “flat” or unstructured Markov processes and then move
to structured Markov processes (those arising from state spaces consisting of assignments
to variables) including Kronecker, decision-diagram, and continuous-time Bayesian network
representations. We provide the first connection between decision-diagrams and continuous-
time Bayesian networks.

1. Tutorial Goals

This tutorial is intended for readers interested in learning about continuous-time Markov
processes, and in particular compact or structured representations of them. It is assumed
that the reader is familiar with general probability and statistics and has some knowledge
of discrete-time Markov chains and perhaps hidden Markov model algorithms.

While this tutorial deals only with Markovian systems, we do not require that all vari-
ables be observed. Thus, hidden variables can be used to model long-range interactions
among observations. In these models, at any given instant the assignment to all state vari-
ables is sufficient to describe the future evolution of the system. The variables themselves
real-valued (continuous) times. We consider evidence or observations that can be regularly
spaced, irregularly spaced, or continuous over intervals. These evidence patterns can change
by model variable and time.

We deal exclusively with discrete-state continuous-time systems. Real-valued variables
are important in many situations, but to keep the scope manageable, we will not treat them
here. We refer to the work of Särkkä (2006) for a machine-learning-oriented treatment of
filtering and smoothing in such models. The literature on parameter estimation is more
scattered. We will further constrain our discussion to systems with finite states, although
many of the concepts can be extended to countably infinite state systems.

We will be concerned with two main problems: inference and learning (parameter es-
timation). These were chosen as those most familiar to and applicable for researchers in
artificial intelligence. At points we will also discuss the computation of steady-state prop-
erties, especially for model for which most research concentrates on this computation.
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The first section (Section 2) covers the basics of flat (unstructured state-space) continuous-
time Markov processes. The remaining sections discuss compact representations. This tu-
torial’s goal is to make the mathematical foundations clear and lay out the current research
landscape so that more detailed papers can be read more easily.

1.1 Related Models

There are many non-Markov continuous time models. Gaussian processes (Williams, 1998)
are the best-known and model continuous-valued processes. For discrete-valued processes,
most models build upon Poisson processes, or more general marked processes. As a Poisson
process is memoryless, to make an interesting model, researchers usually generalize to allow
the rate of an event to be a function of the process’s history.

Poisson networks (Rajaram, Graepel, & Herbrich, 2005) constrain this function to de-
pend only on the counts of the number of events (possibly of different event types) during
a finite time window. The cascade of Poisson process model (Rajaram et al., 2005) defines
the rate function to be the sum of a kernel applied to each historic event. The kernel has
parameters for the effect of time passing, overall event rate, and chance that one type of
event follows another. Piecewise-constant intensity models (PCIMs) (Gunawardana, Meek,
& Xu, 2012; Parikh, Gunamwardana, & Meek, 2012) define the intensity function as a
decision tree, with internal nodes’ tests drawn from a set of pre-specified binary tests of
the history. Forest-based point processes (Weiss & Page, 2013) extend this by allowing the
intensity function to be the product of a set of functions, each a PCIM-like tree. Didelez
(2008) presents a generalization of the continuous-time Bayesian networks (see Section 5)
to inhomogeneous point processes, but without specific parameterizations or algorithms.

1.2 Why Continuous Time

Contemporary computers are discrete-time computation engines (or at least present a model
of one). Therefore, why would we consider a continuous-time model? The quickest answer is
by analogy: We build models of non-temporal systems employing real-valued variables. The
tools of linear algebra, calculus, and the like allow us to derive and analyze these algorithms
and methods. Yet, in the end they will be implemented on discrete-valued computers with
finite memory and precision. However, we find the abstraction of continuous-valued vari-
ables useful and only make approximations during the final implementation when employing
fixed- or floating-point precision arithmetic.

Similarly, it is productive to treat time as a continuous quantity. It allows us to more
naturally discuss and reason about systems in which

1. Events, measurements, or durations are irregularly spaced,
2. Rates vary by orders of magnitude, or
3. Durations of continuous measurement need to be expressed explicitly.

All of these happen in asynchronous systems. Most dynamic systems of interest are asyn-
chronous: events or measurements (or both) do not occur based on some global clock. Social
networks, phylogenetic trees, and computer system logs are just some examples.

Note that while the underlying system model is continuous-time, observations and mea-
surements of that model need not be continuous. We directly treat discrete-time observa-
tions, both at regular and irregular intervals.
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1.3 Why Not Discrete Time

Clearly for any given continuous-time system specification, some discretization of time val-
ues could be made without introducing too much approximation error. Such a conversion
of time from real-valued to integral makes it mathematically more difficult to be flexible
about how to treat time algorithmically. This makes the development of computationally
efficient algorithms more difficult. For instance, in a discrete-time model, it is natural to
have computations proceed one time “step” at a time. However, for uneventful times, this
can be computationally overly burdensome. With a continuous-time model, because there
is no natural time step, it is simpler to think about methods that can “jump” over such
uneventful time periods. Additionally, there are a few oddities about Markov chains built
by discretizing continuous time. Finally, the full system specification may not be known
when the discretization must be selected (for instance, if parameters must be estimated).

1.3.1 Time Discretization and Markovian-ness

Consider the two-state Markov chain X described by the stochastic matrix1

T 1 =

[
0.75 0.25
0.5 0.5

]
. (1)

The elements of T 1 are the probabilities p(Xt | Xt−1) for each value of Xt and Xt−1. Over
one time unit, the probability of moving from state 1 to state 2 is 0.25, for example.

If T 1 describes a continuous-time system, sampled at a period of 1 time unit, there
should be a matrix T 1/2 describing the same system, sampled at a period of 1

2 time unit
(or twice the sampling rate). Indeed there is:

T 1/2 =

[
0.83 0.17
0.33 0.67

]
. (2)

This can be verified:

P (Xt = j | Xt−1 = i) =
∑
k

P (Xt−1/2 = k | Xt−1 = i)P (Xt = j | Xt−1/2 = k)

T 1(i, j) =
∑
k

T 1/2(i, k)T 1/2(k, j)

T 1 = T 1/2T 1/2 .

That is, T 1/2 is the matrix square root of T 1.
Now take a different two-state Markov chain transition matrix

S1 =

[
0.1 0.9
0.9 0.1

]
(3)

and construct the corresponding transition matrix at half the sampling period, S1/2:

S1/2 =

[
0.5 + .447i 0.5− .447i
0.5 + .447i 0.5− .447i

]
. (4)

1. We will use row-stochastic matrices exclusively in this tutorial. While column-stochastic matrices are
often used for discrete time, row-stochastic matrices are more common in continuous time.
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Figure 1: Example of (a) a DBN unrolled, and (b) the same DBN marginalized to twice
the sampling periodicity

There is no real-valued stochastic matrix describing the same processes as S1, but at half the
sampling periodicity. Put differently, there is no two-state continuous-time Markov system
that when sampled at a rate of 1 time unit produces the Markov chain with transition
matrix S1.

The problem in generating S1/2 arises because S1 has a negative eigenvalue (by contrast,
all eigenvalues of T 1 are positive). In general, only stochastic matrices with all positive
eigenvalues correspond to a continuous-time Markov process sampled at a given periodicity.
This can be viewed in two ways. First, it means that the set of continuous-time Markov
processes is smaller than the set of discrete-time Markov processes. Second, it means that
there are processes that are Markovian only when sampled at a particular periodicity and
the only way to extend them to time points outside that periodicity would be to construct
a non-Markovian (and non-stationary) process.

If the periodicity of a discrete-time Markov chain is inherent to the process, then this
result is not of concern. However, many systems do not have a natural sampling rate. The
rate is chosen for computational or measurement convenience. In this case, we must be
careful about how we employ our Markovian assumption. Or, we should directly model the
underlying system in continuous time.

1.3.2 Independencies and Markovian-ness

A similar problem arises for independencies. We describe the problem here in terms of
dynamic Bayesian networks (DBNs) (Dean & Kanazawa, 1989). If unfamiliar with DBNs,
the reader may skip to the next section.

Consider the DBN in Figure 1(top,a), which has been unrolled one time step. We can
marginalize out the middle time slice and the result is the DBN in Figure 1(top,b): the
same model, but over twice the sampling periodicity. However, perhaps we wish to go the
opposite direction (to half the sampling periodicity). Figure 1(bottom,b) shows a DBN over
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Figure 2: Comparison of learning DBNs with different time-slice widths

two time units. There is no DBN graph structure over one time unit that would marginalize
to this graph structure. There may be a DBN, but the independencies expressed by the
graph structure over two time units are not expressible in the graph structure at half the
sampling periodicity. Such independencies would be buried in the parameters of the DBN
(if those parameters are possible, given the previous discussion). This means that the
independencies expressed by a DBN’s graph are a function of both the underlying process
and the sampling rate.

1.3.3 Structure Learning

Selection of a sampling rate is not just a theoretical problem. Nodelman, Shelton, and Koller
(2003) demonstrate the problem for parameter estimation. In particular, they considered
data drawn from a continuous-time Markovian process of eight variables (mostly binary).
The resulting trajectories were discretized in time according to a parameter ∆t and DBNs
(including structure) were learned for each setting. Figure 2 shows the test log-likelihood
accuracy as a function of the number of training trajectories and ∆t. It also shows the
result of not discretizing time (the CTBN line, a model explained in Section 5).

While it is not too surprising that the CTBN model does the best (as the data were
generated from this model), it is instructive that the best ∆t depends on the number of
observed trajectories. This means that, if the sampling periodicity is a model parameter,
its choice cannot be made independently of the amount of data used to estimate the DBN.

2. Continuous-Time Markov Processes

A continuous-time Markov process (CTMP) is a distribution over trajectories. A trajectory
(or sample) of a CTMP is a right-continuous piece-wise constant function of a real-valued
variable, time. Figure 3 illustrates example trajectories. If the states have a natural order-
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Figure 3: Example continuous-time Markov process samples (trajectories)

ing, Figure 3(a) might be a natural depiction. If the states are not ordered, Figure 3(b)
depicts the same sample for a three-state system. In later sections we will be considering
large factored state spaces in which a state is an assignment to multiple variables. Fig-
ure 3(c) depicts such a trajectory.

A finite CTMP defines a set of random variables, each with the same finite sample space
(the state space), indexed by a real-value usually denoted as t for time. Let X be such a
process. The Markovian property states that

X(t1) ⊥ X(t3) | X(t2),∀ t1 < t2 < t3 . (5)

Throughout this tutorial, we will describe distributions over both continuous and dis-
crete random variables. We will use lowercase letters for the densities of continuous random
variables and uppercase letters for the probabilities of discrete random variables.

2.1 Parameterization

We will parameterize a CTMP X by a starting distribution at time t = 0, P (X(0)) (and
restrict t ≥ 0) and an intensity matrix QX (or just Q if the context is clear). The starting
distribution is just as in a discrete-time Markov chain, and we will largely ignore it. The
intensity matrix is analogous to the transition matrix of a discrete-time process.

2.1.1 Comparison to Discrete-Time

Consider the following (roughly equivalent) discrete-time transition matrixM and continuous-
time intensity matrix Q:

M =

 0.5 0.2 0.3
0.1 0.8 0.1
0.2 0.1 0.7

 Q =

 −0.8 0.32 0.48
0.12 −0.24 0.12
0.27 0.13 −0.4

 .

We can interpret a row of M in two ways. The first row could be viewed as stating
that if the process is in state 1, at the next time step there is a 0.5 chance that it will be
in state 1, a 0.2 chance that it will be in state 2, and a 0.3 chance that it will be in state 3.
Alternatively, it could be viewed as stating that if the process is in state 1, it will remain
there for a number of steps geometrically distributed: Pr(stay for n steps) = 0.5n. And,
when it leaves it will transition to state 2 with probability 0.2/0.5 = 0.4 and to state 3 with
probability 0.3/0.5 = 0.6.

The intensity matrix Q has two similar interpretations. The first row states that if the
process is in state 1, after a short period of time ε, there is approximately a 1− 0.8ε chance
of being in state 1, a 0.32ε chance of being in state 2, and a 0.48ε chance of being in state
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3. The approximation has error O(ε2). Alternatively, it states that if the process is in state
1 it remains there for a duration exponentially distributed: p(dwell time = t) = 0.8e−0.8t.
And when it leaves, it will transition to state 2 with probability 0.32/0.8 = 0.4 and to state
3 with probability 0.48/0.8 = 0.6.

2.1.2 Racing Exponentials

We can also view a row of the matrix as describing racing exponential distributions. There
are two important properties of an exponential distribution. First, it is memoryless:

pZ(t) = pZ(t+ s|Z > s) if Z is exponentially distributed (6)

and thus is the right distribution for dwell times in a Markovian process. (The amount of
time the process has stayed in this state does not affect the remaining dwell time.) It is
also closed under minimization: Given a collection of random variables Z1, Z2, . . . , Zn,

pZi(t) = rie
−rit (7)

Y = min
i
Zi (8)

J = arg min
i
Zi (9)

implies

pY (t) = re−rt (10)

Pr(J = j) =
rj
r

(11)

where

r =
n∑
i=1

ri . (12)

That is, if we have a set of exponential distributions with (potentially) different rates, their
minimum (the time of the earliest one) is also exponentially distributed with rate equal to
the sum of the component rates. Furthermore, the component which causes this minimum
is independent of the time and is proportional to that component’s rate. Thus, we can view
each row of the matrix as a set of “racing” exponential distributions: one for each potential
next state with rates dictated by the off-diagonal elements. Whichever potential transition
happens first is the one actually taken by the process, and the rest are discarded.

2.1.3 Event Decomposition

Further, we can use this to build an interpretation of the summation of two intensity
matrices. If Q = Q1 + Q2, where both Q1 and Q2 are valid intensity matrices, then
the process of Q can be viewed as the combination of processes of Q1 and Q2 in which
both sub-processes “race” to produce the next transition: For each current state, the two
sub-processes have their own rate of transition for the possible new states. Whichever
transition happens first switches the state and the joint process continues with the new
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state. We can also view this as two different event types each with its own intensity matrix.
The process of Q is the joint process of running both events at the same time, but throwing
away (marginalizing out) the event types associated with the transitions, leaving only the
transitions themselves.

2.1.4 Infinitesimal Rate Semantics

More formally, the dynamics of an n-state CTMP are described by a n-by-n intensity matrix
Q. The diagonal elements of Q are non-positive and the non-diagonal elements of Q are
non-negative. The rows of Q sum to 0 (thus the diagonal elements are the negative row
sums, if the diagonal element is excluded from the sum). We will denote the i, j element of
Q as qi,j . Further, for notational simplicity, we will let qi = −qi,i. That is, qi is the rate of
leaving state i, the absolute value of the corresponding diagonal element.

If we let p(t) be a row-vector of the marginal distribution of the process at time t, then
the semantics of Q can be stated as

p(t+ ε) = p(t)(I + εQ) + o(ε) . (13)

This implies that

p(t+ ε)− p(t) = εp(t)Q+ o(ε) (14)

lim
ε→0

(p(t+ ε)− p(t))/ε = p(t)Q (15)

dp(t)

dt
= p(t)Q (16)

(17)

This first-order linear homogeneous differential equation has solution

p(t+ s) = p(t)eQs (18)

assuming s > 0 and the initial conditions at t, p(t), are known. The exponential is the
matrix exponential, defined by its Taylor expansion:

eQs =

∞∑
k=0

sk

k!
Qk . (19)

Although not often practical computationally, we can also express the matrix exponential
in terms of the eigenvalues ({λi}) and corresponding right and left eigenvectors ({vi} and
{wi}) of Q:

eQs =
∑
i

eλisviw
>
i . (20)

If Q is of finite size and irreducible (there is a positive-rate path from any state to any
other state), then the process is ergodic (the notion of “cycling” behavior does not exist
in continuous-time Markov processes) and there will be exactly one eigenvalue equal to 0.
The corresponding right eigenvector is the unique steady-state (or stationary) distribution
of the process. If the process is not ergodic, then there may be multiple 0 eigenvalues and
no unique stationary distribution. All other eigenvalues will be less than 0 and correspond
to transients in the system. Therefore, Q will always be negative semi-definite.
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Figure 4: Propagation of marginal distribution from time 0 to time 8 by Euler integra-
tion. Left: fixed step-size. Right: adaptive step-size. Top: 11 evaluation points.
Bottom: 5 evaluation points.

2.2 Matrix Exponential

The matrix exponential plays a critical role in many aspects of reasoning about continuous-
time dynamic systems. At first, this would seem to be a significant downside, relative to
discrete-time systems. Propagation of distribution p (as a vector) n time steps in a discrete-
time system requires the multiplication by Mn (if M is the stochastic transition matrix).
By contrast, the same operation in continuous-time requires the calculation of the matrix
exponential, which is an infinite sum of matrix powers.

Consider computing the marginal distribution at time t by integrating the differential
equation of Equation 18. The simplest method would be to use Euler integration with a
fixed step size of ∆t. This amounts to propagating over a fixed time interval by multiplying
by M = I + ∆tQ. This is essentially the same as discretizing time and approximating the
stochastic matrix over the resulting interval. To propagate to time t requires t/∆t matrix
multiplications. This is shown on the left side of Figure 4.

However, because time is continuous, we need not limit ourselves to time steps of uniform
size. If we choose an adaptive step size, we can achieve the same accuracy with fewer
evaluation points. Figure 4 demonstrates this for the simplest adaptive scheme (Euler steps
with step size proportional to derivative magnitude). Note that for the same number of
steps (computational complexity), the accuracy with adaptive steps is better.

For real applications, we would use a more advanced differential equation solver with
more intelligent step size selection; see the work of Press, Teukolsky, Vetterling, and Flan-
nery (1992) for an introduction. Yet, the idea is essentially the same: we can take larger
steps during “less interesting” time periods. To do something similar with discrete time
would require computations that essentially convert the discrete-time system to a continuous-
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time one. Techniques like squaring and scaling to multiply by large matrix powers can also
be applied to the matrix exponential. For a full discussion of matrix exponential calcula-
tions, we refer to the excellent treatments of Moler and Loan (2003) and Najfeld and Havel
(1994, 1995).

2.3 Uniformization

Uniformization (also called randomization) is a method for converting questions about a
continuous-time Markov process into ones about a discrete-time one (Grassmann, 1977).
Given an intensity matrix Q, uniformization constructs the stochastic matrix

M = Q/α+ I (21)

where α ≥ maxi qi (that is, α is no less than the largest rate in Q). For example, the
following uniformization is with α = 0.5 (the smallest possible value for α).

Q =

−0.5 0.1 0.4
0.1 −0.2 0.1
0.2 0.1 −0.3

 → M =

 0.0 0.2 0.8
0.2 0.6 0.2
0.4 0.2 0.4

 (22)

The resulting stochastic matrix can be interpreted as a discrete-time process. However it
is not equivalent to sampling the continuous-time process at uniform intervals. Nor is it, in
general, equivalent to the embedded Markov chain (the sequence of states, discarding the
times of transitions). The former is achieved through the matrix exponential and the latter
is achieved by setting all diagonal elements of Q to zero and then normalizing each row to
sum to one.

Rather, the discrete-time process associated with the stochastic matrix M is related to
the continuous-time process associated with the intensity matrix Q in the following way.
Consider the procedure of (1) sampling event times from a Poisson process with rate α
(that is, the times between consecutive events are independently and identically distributed
as an exponential distribution with rate α), then (2) sampling state transitions at these
event times from the discrete-time process described by M , and then (3) discarding any
self transitions. This procedure produces samples from the same distribution as the original
CTMP described by Q.

This transformation is useful for simulation (sampling), but also for understanding and
computing the matrix exponential. Because the intensity matrixQ is negative semi-definite,
the Taylor expansion of the matrix exponential is unstable, as the “sign” of the terms
alternates. However, we can fix this by using M instead of Q. By reworking Equation 21,
we note that Q = α(M − I). We can then write

eQt = eα(M−I)t (23)

= e−αteαMt
[eA+B = eAeB if AB = BA] (24)

= e−αt
∞∑
k=0

αktk

k!
Mk (25)

=

∞∑
k=0

e−αt
αktk

k!︸ ︷︷ ︸
βk

Mk (26)

734



Tutorial on Structured Continuous-Time Markov Processes

s1 s2 s3 s4

t1 t2 t3

s0

t0 t4 t5

Figure 5: Pictorial representation of a finite-length sample from a CTMP.

where βk is the probability of having exactly k events from a Poisson process with rate α
in time t. This series is more stable (M is positive semi-definite) and for a finite number
of terms, the sum is a quasi-probability vector (it is non-negative and sums to less than
1). The missing probability is a bound on the error. The sequence βk grows and then
decays. Therefore, discarding not only the tail of the series, but also early terms can speed
up computations. Fox and Glynn (1988) give a method to compute left and right bounds
on k to ensure a desired error tolerance.

Note that, if Q represents an ergodic continuous-time Markov process, then M repre-
sents an ergodic discrete-time Markov process when α is strictly greater than maxi qi (a
sufficient, but not necessary condition). If M is ergodic, then the stationary distribution
of Q is the same as the stationary distribution of M .

2.4 Likelihood

A complete finite-length sample (trajectory) Tr from a CTMP is sequence of states and the
times of the transitions, plus an ending time: Tr = {(s0, t0), (s1, t1), . . . , (sn−1, tn−1)}, tn.
Figure 5 shows a pictorial representation, for n = 5. If we use the convention that the
process starts at time 0, then t0 must be equal to 0.

The likelihood of this sample is the product of the conditional probabilities of each event
(the starting state, each dwell duration, and each state transition):

p(Tr) =

init dist︷ ︸︸ ︷
Pr(X(t0) = s0)

n−2∏
i=0


density of duration︷ ︸︸ ︷
qsie

−qsi (ti+1−ti)

pr of trans︷ ︸︸ ︷
qsi,si+1

qsi


pr of last duration︷ ︸︸ ︷
e−qsn−1 (tn−tn−1) (27)

= P0(s0)
n−1∏
i=0

e−qsi (ti+1−ti)
n−2∏
i=0

qsi,si+1 (28)

ln p(Tr) = lnP0(s0)−
n−1∑
i=0

qsi(ti+1 − ti) +
n−2∑
i=0

ln qsi,si+1 (29)

We let P0 be the distribution over the starting state of the process. Note that at time tn
the process does not transition. Rather, we observe that the process remains in state sn−1

for a duration of at least tn − tn−1.
Equation 29 can be rewritten as

ln p(Tr) = lnP0(s0)−
∑
s

T [s]qs +
∑
s 6=s′

N [s, s′] ln qs,s′ (30)

where T [s] is the total time spent in state s and N [s, s′] is the total number of transitions
from s to s′, both of which are functions of Tr. This demonstrates that a CTMP is a

735



Shelton & Ciardo

member of an exponential family in which the sufficient statistics are T [·] and N [·, ·] (plus
the relevant sufficient statistics for the starting distribution), and the natural parameters
are the diagonal elements of the intensity matrix and the logarithm of the non-diagonal
elements. The likelihood of multiple trajectories has the same form, where T [s] and N [s, s′]
are the sums of the sufficient statistics over the individual trajectories.

2.4.1 Parameter Estimation

The maximum likelihood parameters can be easily derived by differentiating Equation 30,
after replacing qs with

∑
s′ 6=s qs,s′ :

∂ ln p(Tr)
∂qs,s′

=
N [s, s′]

qs,s′
− T [s] ∀ s′ 6= s (31)

which implies the ML parameters are

q̂s,s′ = N [s, s′]/T [s] ∀ s′ 6= s (32)

q̂s =
∑
s′ 6=s

N [s, s′]/T [s] ∀ s (33)

A maximum a posteriori (MAP) estimate can be calculated if we place suitable prior dis-
tributions on the parameters. In particular, we will put an independent gamma distribution
prior over each of the independent parameters, qs,s′ ,∀ s 6= s′:

p(qs,s′ ;αs,s′ , τs,s′) =
τ
αs,s′+1

s,s′

Γ(αs,s′ + 1)
q
αs,s′

s,s′ e
−qs,s′τs,s′ (34)

which has parameters αs,s′ and τs,s′ . The posterior distribution over the parameters given
data summarized by the sufficient statistics T [s] and N [s, s′] is also gamma-distributed with
parameters αs,s′ +N [s, s′] and τs,s′ + T [s]. Thus, the MAP estimates of the parameters are

q̂s =
∑
s′

N [s, s′] + αs,s′

T [s] + τs,s′
(35)

q̂s,s′ =
N [s, s′] + αs,s′

T [s] + τs,s′
. (36)

2.5 Inference

We will now consider two classic problems of reasoning in temporal systems: filtering and
smoothing. Initially, we will assume we have observations (evidence) with a pattern like that
in Figure 6: a sequence of times {t0, t1, . . . , tk} and a sequence of evidences {e1, e2, . . . , ek}.
We assume that we know the prior marginal distribution over X(t0), either from previous
reasoning or because t0 = 0.

Filtering is the task of computing p(X(t) | e1, e2, . . . , ek) for t ≥ tk. If the evidence at
each point is an observation of the state of the system, the Markovian property of the process
makes inference trivial. Instead we will assume that ei is only probabilistically related to
X(ti) but independent of everything else given X(ti). (This is analogous to a discrete-time
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t0 t1 t2 t3

e1 e2 e3

Figure 6: Example evidence pattern, point evidence.

hidden Markov model.) Thus we can view each observation as a noisy measurement of the
system.

As with a hidden Markov model, we define a recursive filtering solution using a forward
“message” α whose components are defined as

αi(t) = Pr
(
X(t) = i, e[t0,t)

)
(37)

where we denote e[s,t) = {(ti, ei) | s ≤ ti < t}: the set of evidence in the interval [s, t). By
analogy we will also define e[s,t] and e(s,t] to be the evidence on [s, t] and (s, t] respectively
(which we will need later). Note that α is a row vector of probabilities, one for each state
of the system. Recursive calculation of α can be derived from

Pr
(
X(t) = j, e[t0,t)

)
=
∑
i

Pr
(
X(s) = i, e[t0,s)

)
Pr
(
X(t) = j, e[s,t) | X(s) = i

)
∀ t0 ≤ s < t

(38)

α(t) = α(s)F (s, t) ∀ t0 ≤ s < t
(39)

where the second equation is the vector version of the first equation, and the matrix F (s, t)
has element i, j equal to Pr

(
X(t) = j, e[s,t) | X(s) = i

)
.

If there is no evidence in [s, t), F (s, t) = eQ(t−s). Thus, we can propagate the distribution
from one evidence time point to the next with the matrix exponential. To propagate across
evidence times, we define

α+(t) = Pr
(
X(t), e[t0,t]

)
(40)

to be the same as α(t), but including evidence at t. If there is no evidence at t, the two
vectors are the same. If there is evidence at t, then α+(t) is the same as α(t), except that
each element is multiplied by the probability of the evidence at that time point.

If we let O(i) be a diagonal matrix in which diagonal element j is Pr(ei | X(ti) = j),
then the recurrence for α can be written as

α(t0) = α+(t0) = given (41)

α(ti) = α+(ti−1)eQ(ti−ti−1) ∀ 0 < i ≤ k (42)

α+(ti) = α(ti)O
(i) ∀ 0 < i ≤ k (43)

α(t) = α+(ti)e
Q(t−ti) ∀ ti < t ≤ ti+1 or ti < t, i = k (44)

Equation 42 is a special case of Equation 44. It propagates from “just after” one evidence
time until “just before” the next. Equation 43 propagates “across” an evidence point.
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Equation 44 can be used to construct the filtered estimate at any non-evidence time by
normalizing α(t) to sum to 1 (dividing by the probability of the evidence prior to t).

Finally, note that a similar set of recurrences can be derived for F (·, ·). The result allows
for the propagation of any distribution across time intervals which includes evidence; that
is, we are not restricted to any particular initial condition, α(t0). However, if only a single
α is to be propagated, computing F first is more computationally expensive.

2.5.1 More Complex Evidence

The above filtering equations are just an inhomogeneous hidden Markov model (that is, the
transition matrix is not constant) and familiar to those who have employed hidden Markov
models. However, with continuous time, there are evidence patterns that do not have
direct corresponding analogies in discrete-time. If the evidence consists of a finite number
of observations, we can convert it into a similar form, by breaking time into intervals of
constant evidence.

For instance, we might observe that the system is in a subset of states for a duration
of time: During this time interval, the system does not leave the subset, but we do not
observe whether there are any transitions within the subset. We can augment our evidence
to include this information. For each interval [ti−1, ti), we let Si denote the subset of states
in which the evidence constrains the system. If there are no such constraints, Si is the full
state space. For time points at which there is a change in Si, but no point evidence, O(i)

is the identity matrix (inducing no change in the filtering estimate). Both Si and O(i) may
be non-trivial for the same i.

Now to propagate from ti−1 to ti, we must use a modified intensity matrix. In particular,
we set to zero any rate which is inconsistent with the evidence Si: all rates to, from, or
within the set of states that are not in Si. Let Q(i) denote such a matrix. If the rows
and columns are permuted such that the states in Si are in the upper left corner, then this
matrix has the form

Q(i) =

[
Q̃Si

0
0 0

]
(45)

where Q̃Si
is the submatrix ofQ of the rows and columns corresponding to Si. Additionally,

we modify O(i−1), setting to 0 any diagonal elements corresponding to states not in Si.

Note that Q(i) is not (strictly) an intensity matrix: its rows do not sum to 0. In
general, a diagonal element is greater (in absolute value) than the sum of the other row
elements because we have set to zero non-diagonal rates. This “missing rate” corresponds to
the probability of leaving the evidence set (and therefore not conforming to the evidence).
While eQ(ti−ti−1) is a stochastic matrix representing the conditional distribution at time ti
given the state at time ti−1, eQ

(i)(ti−ti−1) is a substochastic matrix (the row sums are less
than or equal to 1), where the sum of each row is the probability of the evidence over the
interval, given the state at time ti−1.

738



Tutorial on Structured Continuous-Time Markov Processes

The new filtering recurrence is

α(t0) = given (46)

α(ti) = α+(ti−1)eQ
(i)(ti−ti−1) ∀ 0 < i ≤ k (47)

α+(ti) = α(ti)O
(i) ∀ 0 < i ≤ k (48)

α(t) = α+(ti)e
Q(i+1)(t−ti) ∀ ti < t ≤ ti+1 or ti < t, i = k . (49)

We might also observe a transition at an exact time point. More generally, at time ti we
might observe that a transition occurred from one state of the set U−i to one state of the set
U+
i (without knowing exactly which states within the sets). In this case, elements of α(t)

have the probabilities of a duration lasting until at least t, and α+(t) should have the prob-
ability density of a duration lasting exactly until t. The difference between the probability
of the tail of an exponential and the density at the same point is just a multiplication by
the relevant rate q. Thus, for this type of evidence, we can just modify O(i). In particular,

O(i)
j,k =

{
qj,k if j ∈ U−i , k ∈ U+

i , and j 6= k

0 otherwise
. (50)

The recurrence remains the same, with the new definition of O(i). Other evidence types
are also possible and can be derived from the above types by augmenting the state space.

2.5.2 Smoothing

Smoothing is the problem of calculating Pr
(
X(t) | e[t0,tk]

)
for t0 ≤ t ≤ tk. As common with

Markov processes, we note that

Pr
(
X(t) | e[t0,tk]

)
∝ Pr

(
X(t) | e[t0,t)

)
Pr
(
e[t,tk] | X(t)

)
(51)

where the constant of proportionality can be found by noting that the sum of Equation 51
over the value of X(t) must equal 1. The first term on the right is calculated with the
α(·) recurrence above. The second term we calculate with a backward message recurrence.
Define

βi(t) = Pr
(
e[t,tk] | X(t) = i

)
(52)

β+
i (t) = Pr

(
e(t,tk] | X(t) = i

)
(53)

If we let β be a column vector, then the backward recurrence is analogous the forward one,
but with right multiplication instead of left multiplication:

β+(tk) = 1 vector of 1s (54)

β(ti) = O(i)β+(ti) ∀ 0 < i ≤ k (55)

β+(ti−1) = eQ
(i)(ti−ti−1)β(ti) ∀ 0 < i ≤ k (56)

β(t) = eQ
(i)(ti−t)β(ti) ∀ ti−1 ≤ t < ti . (57)

For any time t, the vector of the distribution of the state of the system at t given all the
evidence is

p(X(t) | e[t0,tk]) ∝ α(t)� β(t) (58)

where � is the Hadamard (point-wise) product.
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2.6 Parameter Estimation from Incomplete Evidence

Section 2.4.1 demonstrated that a CTMP is a member of an exponential family with suf-
ficient statistics T [i] (the amount of time spent in state i) and N [i, j] (the number of
transitions from i to j). If the evidence trajectories are fully observed over a continuous
interval of time, then these sufficient statistics can be trivially tallied. Further, if each
evidence trajectory is observed at t = 0, the sufficient statistics for the initial distribution
are also directly observed.

However, if portions of the interval are hidden, or more generally the observations are
of the form of the previous section, direct likelihood maximization is not feasible. There
are two basic approaches for maximum likelihood estimation in this case: gradient ascent
and expectation maximization (EM).

For gradient ascent, we can replace the sufficient statistics in Equation 31 with their
expected values The standard argument for exponential models applies: Let Tr be a partially
observed trajectory and let h stand for any potential completion of it.

ln p(Tr) = ln
∑
h

eln p(Tr,h) (59)

∂ ln p(Tr)
∂qi,j

=
1

p(Tr)
∑
h

p(Tr, h)
∂ ln p(Tr, h)

∂qi,j
(60)

= Eh|Tr

[
N [i, j]

qi,j
− T [i]

]
(61)

=

(
N̄ [i, j]

qi,j
− T̄ [i]

)
(62)

where N̄ [i, j] and T̄ [i] are the expected values of N [i, j] and T [i] with respect to completions
of Tr. For EM, we similarly replace N [i, j] and T [i] in Equation 32 with N̄ [i, j] and T̄ [i].
We are therefore left with the problem of computing the expected values of N [i, j] and T [i].

Full derivations are shown in the work of Nodelman et al. (2003). A quick version for
T̄ [i] is

T̄ [i] =

∫ tk

t0

p(X(t) = i | e[t0,tk]) dt (63)

=
1

p(Tr)

∫ tk

t0

αi(t)βi(t) dt . (64)

The expected value of N [i, j] has a similar form:

N̄ [i, j] =
qi,j
p(Tr)

∫ tk

t0

αi(t)βj(t) dt+
∑

l∈Trans

αi(tl)O
(l)
i,jβ

+
j (tl)∑

i′,j′ O
(l)
i′,j′

(65)

where Trans is the set of evidence indices at which time a transition was (perhaps partially)
observed: The first term handles unobserved transitions and the second handles (partially)
observed transitions.
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If we let ∆i,j be a matrix of all zeros, except for a single one in location (i, j), the
integrals in both Equation 64 and Equation 65 have the form∫ tk

t0

αi(t)βj(t) dt =
k∑
l=1

∫ tl

tl−1

αi(t)βj(t) dt (66)

=
k∑
l=1

∫ tl

tl−1

α+(tl−1)eQ
(i)(t−tl−1)∆i,je

Q(i)(tl−t)β(tl) dt . (67)

Thus, after a forward and backward pass to calculate α+(i) and β(i) at each evidence
change point i, each integral is relatively simple. They can be solved by standard quadrature
methods or by the solution of a differential equation (Asmussen, Nerman, & Olsson, 1996).
Alternatively, the calculation of α and β usually results in values for each at various time
points, which can be interpolated to full functions and used to directly solve the integrals.

3. Kronecker Algebra Representations

When the number of states is no more than a few thousand, the above methods are compu-
tationally feasible on a modern computer. However, most models are described in terms of
assignments to variables. Thus the number of states grows exponentially with the number
of variables. For more than a few tens of variables, we must seek more compact represen-
tations.

For the remainder of this paper, we will consider the state space of the process X to
be an assignment to L variables, {X1, X2, . . . , XL}. We let variable Xi have ni possible
assignments. Thus, the total state space is of size n =

∏L
i=1 nl. We let a bold x stand

for a state (joint assignment to all L variables), with component xi being the assignment
to variable i in state x. Such a state space is often referred to as factored or structured or
variable-based.

Kronecker products and sums are natural “basic operations” from which to build com-
pact representations of the process intensities. In some cases, these compact representations
naturally describe the transition rates, but do not as naturally describe the diagonal ele-
ments of Q (the negative rates of leaving each state). Thus, we will define R to be the same
as Q, except with zeros at each diagonal position. The diagonals can be reconstructed from
the non-diagonal elements in the same row, so the information content is the same.

3.1 Kronecker Product

The first basic operation is the Kronecker product. Given matrices A(1),A(2), . . . ,A(K)

where A(k) is of general size mk-by-nk, the Kronecker product is written

A =

K⊗
k=1

A(k) (68)

where A (the result) is an m-by-n matrix: m =
∏
kmk and n =

∏
k nk. The elements of A

represent all possible multiplications of one element from each of A(1),A(2), . . . ,A(K). Let
Mk = {1, 2, . . . ,mk} and Nk = {1, 2, . . . , nk}, that is the valid indices into matrix A(k).
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Given A =

[
a00 a01

a10 a11

]
and B =

 b00 b01 b02

b10 b11 b12

b20 b21 b22



A⊗B=

[
a00Ba01B

a10Ba11B

]
=



a00b00 a00b01 a00b02 a01b00 a01b01 a01b02

a00b10 a00b11 a00b12 a01b10 a01b11 a01b12

a00b20 a00b21 a00b22 a01b20 a01b21 a01b22

a10b00 a10b01 a10b02 a11b00 a11b01 a11b02

a10b10 a10b11 a10b12 a11b10 a11b11 a11b12

a10b20 a10b21 a10b22 a11b20 a11b21 a11b22


Figure 7: Example Kronecker product

Then, let Ir be a mapping fromM1×M2×· · ·×MK to {1, 2, . . . ,m} and let Ic be similarly
defined as a mapping from N1 ×N2 × · · · ×NK to {1, 2, . . . , n}. It does not matter usually
what the mappings are, but by convention we take them to be lexicographic orderings (or
mixed-base numbering index). For instance Ir(i1, i2, . . . , iK) =

∑
1≤k≤K ikm1:k−1 where

ma:b =
∏
a≤k≤bmk. Then

AIr(i1,i2,...,iK),Ic(j1,j2,...,jK) =

K∏
k=1

A(k)
ik,jk . (69)

While the notation makes it appear complex, the concept is simple. Figure 7 demonstrates
a simple example. In terms of sparsity (one measure of structure), the Kronecker product
has a number of non-zero elements equal to the product of the number of non-zero elements
in each input matrix.

A Kronecker product is analogous to a factor product (in Bayesian network terminology)
if we treat each operand matrix as a factor over two different variables (and no matrices
share the same variables), and the result matrix is a factor in which half of the variables
are flattened into the “column” dimension and the other half are flattened into the “row”
dimension.

In terms of distributions, the Kronecker product represents independence. Given two
variables X1 and X2 with marginal distributions represented by the vectors v1 and v2,
v1 ⊗ v2 is a joint distribution over both X1 and X2. In particular, it is the independent
joint distribution with marginals v1 and v2.

In terms of a rate matrix, the Kronecker product represents synchronization (Plateau,
1985). If we have two variables, X1 and X2 with rate2 matrices R1 and R2, R1 ⊗ R2

is a rate matrix over the state space X = X1 × X2 (joint assignments to X1 and X2). It
represents a rate matrix in which changes in the state of X1 must occur at the same time
as those in the state of X2 (both variables will be changed by every transition).

2. This does not hold generally for intensity matrices, as the Kronecker product does not do anything
sensible with the diagonal elements.
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A⊕B = A⊗ I3 + I2 ⊗B =

a0,0 a0,1

a0,0 a0,1

a0,0 a0,1

a1,0 a1,1

a1,0 a1,1

a1,0 a1,1

+



b0,0 b0,1 b0,2
b1,0 b1,1 b1,2
b2,0 b2,1 b2,2

b0,0 b0,1 b0,2
b1,0 b1,1 b1,2
b2,0 b2,1 b2,2

 =



a0,0+b0,0 b0,1 b0,2 a0,1

b1,0 a0,0+b1,1 b1,2 a0,1

b2,0 b2,1 a0,0+b2,2 a0,1

a1,0 a1,1+b0,0 b0,1 b0,2
a1,0 b1,0 a1,1+b1,1 b1,2

a1,0 b2,0 b2,1 a1,1+b2,2



Figure 8: Example Kronecker sum, given same matrices A and B as in Figure 7. Zeros are
omitted. Note that the non-zero off-diagonal entries all correspond to only one
of the two indices (into A or B) changing.

3.2 Kronecker Sum

The other Kronecker operation is the Kronecker sum. It is only defined on square matrices.
Given square matrices A(1),A(2), . . . ,A(K) where A(k) has size nk-by-nk, the Kronecker
sum is defined in terms of the Kronecker product:

A =
K⊕
k=1

A(k) =
K∑
k=1

In1 ⊗ In2 ⊗ . . . Ink−1 ⊗A
(k) ⊗ Ink+1 ⊗ · · · ⊗ InK (70)

where In is the identity matrix of size n-by-n. The Kronecker sum has the same size as
the Kronecker product of the same matrices and we can use the same indexing function
to reference elements in the sum, but we need only one because the matrix is square, thus
Ir = Ic = I:

AI(i1,i2,...,iK),I(j1,j2,...,jK) =


∑K

k=1A
(k)

ik,ik if il = jl for all l

A(k)
ik,jk if il = jl for all l except l = k

0 otherwise.

(71)

Figure 8 demonstrates a simple example.
In terms of a CTMP, the Kronecker sum represents asynchronicity. Given two variables,

X1 and X2 with intensity3 matricesQ1 andQ2, Q1⊕Q2 is an intensity matrix over the joint
state space in which each process’s events proceed irrespective of the other’s state. That
is, the processes are independent (assuming their starting distributions are independent).

3. The same holds for rate matrices, but we can be stronger here than for the Kronecker product and make
this statement about the intensity matrices too.
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Note that the intensity of any transition that involves two or more variables is zero (at any
instant, a maximum of one variable can change).

3.3 Properties

The Kronecker product obeys the classic distributive property:

(A+B)⊗C = A⊗C +B ⊗C

The mixed product property provides a relationship between the Kronecker product and
the matrix product. Given matrices A, B, C, D and assuming that AC and BD are valid
matrix products,

(A⊗B)(C ⊗D) = (AC)⊗ (BD) . (72)

One consequence is that the Kronecker product can be expressed as

K⊗
k=1

A(k) =
K∏
k=1

In1 ⊗ In2 ⊗ · · · ⊗ Ink−1 ⊗A
(k) ⊗ Ink+1 ⊗ · · · ⊗ InK (73)

=
K∏
k=1

In1:k−1 ⊗A
(k) ⊗ Ink+1:K (74)

where na:b is the product of the terms na through nb as defined above. This shows a
bit of the relationship between Kronecker products and sums: Compare Equation 70 and
Equation 73.

This can be further reworked as

K⊗
i=k

A(k) =
K∏
i=k

Pn1:k,nk+1:K
> · (Ink ⊗A

(k)) · Pn1:k,nk+1:K (75)

where nk = n1:K/nk and P a,b is the matrix describing an a,b-perfect shuffle permutation of
(0, ..., ab− 1): its entry in position (i, j) is 1 if j = (i mod a) · b+ bi/ac, and 0 otherwise (in
particular, P a,b = P a,b = Ia·b if a or b is 1). Whereas Equation 74 orders the Kronecker
products of the outer product’s terms so that the elements of Ak are in the correct places,
Equation 75 repeats Ak on the diagonal and then permutes the rows and columns to place
the elements in the correct locations. A similar transformation can be used to rewrite
Equation 70 as a sum of shuffled block-diagonal matrices. Because the permutations can
often be done implicitly in code, these versions can be useful in deriving algorithms.

3.4 Compact Kronecker Representations

Given a factored state space as before, any joint rate matrix R can be expressed as a sum
of Kronecker products:

R =

E∑
e=1

L⊗
l=1

R
(l)
e (76)

where there are L variables and R
(l)
e is a rate matrix over the space of variable l only. In

particular, an exponentially sized (in the number of variables) representation is straight-
forward: e ranges over the elements in the resulting matrix. For element corresponding to
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(x1, x2, . . . , xL), (x′1, x
′
2, . . . , x

′
L), R

(l)
e = ∆xl,x

′
l

for 1 < l ≤ L and the same for l = 1, except
multiplied by the scalar value to be placed in this location. In this way each term in the
sum is a matrix with at most a single non-zero element. However, for many processes we
can expect E to be a manageable number. For instance, if the variables are all independent,
E = L (and all but L of the L2 rate components are identity matrices), as per the Kronecker
sum above.

We can view each of the E terms in the sum as separate “events” whose identities have
been marginalized out to produce the resulting process (see Section 2.1.3). These events
must couple variables synchronously (due to the Kronecker product). We exploit this type
of decomposition more extensively in the next sections.

4. Decision Diagram Representations

While the encoding in Equation 76 can be efficient, we can do better by exploiting more
internal structure. R can be viewed as a mapping from two discrete domains (the row index
and the column index) to a real value. Decision diagrams have long been used in computer
science to compactly encode functions over discrete domains. Here we show how they have
been used in CTMPs and how they can be seen as an alternative to Kronecker algebra
encodings, in the case of the MTBDDs used in PRISM (Kwiatkowska, Norman, & Parker,
2011), or even as an extension of Kronecker algebra encodings, in the case of the Matrix
Diagrams used in Möbius (Deavours, Clark, Courtney, Daly, Derisavi, Doyle, Sanders, &
Webster, 2002) or the EV∗MDDs used in SMART (Ciardo, Jones, Miner, & Siminiceanu,
2006).

4.1 Decision Diagram Overview

Decision diagrams encode functions of the form f : X → X0 where, as before, the domain
state space X is structured: X = X1 × · · · ×XL. In other words, f is applied to a (state)
tuple and evaluates to an element of a range set X0. One can then think of f as the encoding
of a vector indexed by X and having entries with values in X0. Of course, the same idea can
be employed to encode matrices, we simply need to use the domain X×X. (In practice, we
actually use the interleaved domain X ′1×X1× · · · ×X ′L×XL, where the “unprimed” state
variables refer to row indices, or “from” states, while the “primed” state variable refer to
column indices, or “to” states, as this usually leads to more compact decision diagrams.)

Binary decision diagrams, or BDDs (Bryant, 1986), encode functions for which all sets
forming the domain X are binary, while multiway decision diagrams, or MDDs (Kam, Villa,
Brayton, & Sangiovanni-Vincentelli, 1998), allow non-binary domain sets. However, for both
the range X0 is binary. For our numeric application, we need to extend such representations
to allow the range X0 to be either the integers Z (possibly augmented with the value ∞ to
indicate “undefined”) or the reals R (possibly, again, augmented with ∞, or restricted to
the nonnegative reals R≥0). The range Z is used primarily to encode indexing functions for
non-consecutive sets of states. The range R is used to encode the rates themselves.

Informally, decision diagrams are directed acyclic graphs organized in layers with each
layer corresponding to a different variable in the domain of the function. The outgoing
edges from a node correspond to the values the variable on that layer can take on. The
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value of the function is determined by following the path from the root corresponding to the
values taken by the domain variables. The path ends in a terminal node which, in BDDs
and MDDs, give the value of the function.

A first proposal to encode non-binary function was to extend BDDs and MDDs so that,
instead of the terminals 0 and 1, any element of X0 can be a terminal node. The resulting
multi-terminal (Clarke, Fujita, McGeer, Yang, & Zhao, 1993) BDDs (or MTMDDs) are
quite general. However, as we will see, MTMDDs are sometimes unable to compactly
encode even simple functions. We therefore focus on a newer class of edge-valued deci-
sion diagrams, which can be exponentially more compact, and provably never larger, than
MTMDDs (Roux & Siminiceanu, 2010). For edge-valued decision diagrams, a value is as-
sociated with each edge in the tree, and the function’s value is determined from the values
along the path to the terminal node. The exact definition of these diagrams depends on
the operator used to combine edge values. We consider two cases, EV+MDDs (Ciardo &
Siminiceanu, 2002) (where X0 is either Z ∪ {∞} or R ∪ {∞} and edge values along a path
are summed) and EV∗MDDs (Wan, Ciardo, & Miner, 2011) (where X0 is R≥0 and edge
values along a path are multiplied).

4.2 Multiterminal and Edge-Valued Decision Diagrams

Formally, both an EV+MDD and an EV∗MDD are acyclic directed edge-labeled and edge-
valued graphs. A node in the graph p has a level p.lvl and a set of directed edges indexed
by x. The edge associated with label x is written as p[x] = 〈p[x].val,p[x].ch〉, where p[x].val
is the value associated with the edge and p[x].ch is the target of the edge.

• The only terminal node (one without outgoing edges) is Ω, at level 0: Ω.lvl = 0.

• A nonterminal node p is at level k ∈ {1, . . . , L}: p.lvl = k. For each xk ∈ Xk, it has
an outgoing edge labeled xk, associated with a value v ∈ X0, and pointing to a node
q with q.lvl < k. Thus p[xk] = 〈v,q〉.

• A node p at level k encodes the function fp : X1 × · · · ×Xk → X0. For EV+MDDs,
fp is defined recursively as fp = 0 if p = Ω, and fp(x1, . . . , xk) = p[xk].val +
fp[xk].ch(x1, . . . , xp[xk].ch.lvl) otherwise (that is, if p is a nonterminal node).

For EV∗MDDs, fp is defined recursively as fp = 1 if p = Ω, and fp(x1, . . . , xk) =
p[xk].val · fp[xk].ch(x1, . . . , xp[xk].ch.lvl) otherwise.

Most decision diagram definitions have additional restrictions to ensure canonicity, that
is so that any representable function has a unique representation. For the edge-valued
decision diagrams we have defined, this is achieved by additionally requiring all of the
following.

• There are no duplicate nodes: if p.lvl = q.lvl = k and, for each xk ∈ Xk, we have
p[xk] = q[xk], then p = q.

• The absorbing value terminates a path: for EV+MDDs, p[xk].val = ∞ implies that
p[xk].ch = Ω; for EV∗MDDs, p[xk].val = 0 implies that p[xk].ch = Ω.

• Each node p at level k > 0 is normalized : for EV+MDDs, min{p[xk].val : xk ∈ Xk} =
0; for EV∗MDDs, max{p[xk].val : xk ∈ Xk} = 1.
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Figure 9: Encoding the lexicographic index function, φX , for set X. The left panel shows
the quasi-reduced MDD encoding X followed by the MTMDD and the EV+MDD
encoding φX ; the right panel shows the corresponding encodings for the set Y =
{100, 110, 001, 101, 011}. In either case, the EV+MDD is isomorphic to the MDD.
Each level of the tree corresponds to a different variable. Black boxes are the
values of this variable (and traversal of the diagram follows the edge leading out
of this box for the value of input). White boxes (for EV+MDD) are the values
of the corresponding edge (which are summed to produce the function’s value).
The 0 at the top of the EV+MDD is the value added to any path or traversal of
the diagram.

Furthermore, we require that one of the following two reduction forms must be used.

• In quasi-reduced form, only nodes at level L have no incoming edges (except the special
case of the graph consisting of just Ω) and the children of a node at level k are at
level k − 1 (except for absorbing-valued edges, which point to Ω, as stated above).

• In fully-reduced form, there are no redundant nodes, where a node p at level k is
redundant if p[xk] = p[yk] for all xk, yk ∈ Xk.

Strictly speaking, an EV+MDD node encodes a function with values between 0 (in-
cluded) and ∞ (possibly included); thus, a function f with range Z ∪ {∞} or R ∪ {∞} is
encoded by 〈σ,p〉 where σ = min{f(i) : i ∈ X} and fp = f − σ (the special case f ≡ ∞
is encoded by the pair 〈∞,Ω〉). Analogously, an EV∗MDD node encodes a function with
values between 0 (possibly included) and 1 (included); thus a function f with range R≥0 is
encoded by 〈σ,p〉 where σ = max{f(i) : i ∈ X} and fp = f/σ (the special case f ≡ 0 is
encoded by the pair 〈0,Ω〉). In the following, we use the term EV+MDD or EV∗MDD also
for the pair 〈σ,p〉, with the understanding that σ is just a parameter that scales the values
of the function encoded by node p.

4.3 Lexicographic Index Example

We illustrate the compactness of these decision diagrams using the lexicographic index, also
called the mixed-base value, of a state x = (x1, . . . , xL), defined as φ(x) =

∑
1≤k≤L xk ·n1:k−1,
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where na:b = na · · ·nb for a ≤ b (as in Section 3.1). We discuss the importance of this
function after showing its encoding.

Figure 9 (left) shows the lexicographic index function φ (along side the MDD encoding
the set of states). The MTMDD for φ is a full L-level tree with n1:L leaves. By contrast,
the EV+MDD for φ contains just one node at each level, where the child labeled xk of the
node at level k points to the node at level k − 1 and has value xk · n1:k−1.

Interestingly, this function retains a compact encoding even if we modify it so that
it applies to a set Y ⊂ X, that is φY (x) = |{y ∈ Y : φ(y) < φ(x)}| if x ∈ Y , and
φY (x) =∞ otherwise, in the sense that the MDD encoding Y and the EV+MDD encoding
φY are isomorphic (right panel in Figure 9). This is of particular importance for the exact
numerical solution of structured CTMPs whose reachable state space Xrch is a strict (and
possibly complicated) subset of X, since in this case we need to frequently and efficiently
map a state x = (x1, . . . , xL) to its index φXrch

(x) in a full probability vector of size |Xrch|.
Compactly representing this index function is key to efficient calculations in such CTMPs.

Obviously, EV∗MDDs can also be exponentially more compact than MTMDDs; simply
consider that the EV∗MDD encoding of e−φ also has one node per level, where the child
with label xk of the node at level k has value e−xk·n1:k−1 .

4.4 Decision Diagram Operations

In addition to efficiently encoding structured functions, decision diagrams are also able
to efficiently manipulate functions. All decision diagram operations proceed recursively
from the root node(s) and make extensive use of dynamic programming. Specifically, they
use an operation cache to retrieve the result of a specific operation on a specific choice of
parameters, if this result has been previously computed when exploring different paths in the
recursion. This reduces the worst-case complexity of an operation (for example, computing
c = a + b, where a and b are functions encoded by two EV∗MDDs) from exponential (i.e.,
the size of the domain) to polynomial. For example, Figure 10 shows the pseudocode for
an algorithm to perform the element-wise addition of two EV∗MDDs, that is when α, β ≥ 0
and a, b are EV∗MDD nodes at level L (unless α = 0, in which case a = Ω, or β = 0,
in which case b = Ω), Sum(L, 〈α,a〉, 〈β,b〉) returns an EV∗MDD 〈ρ,r〉 such that, for all
x = (x1, . . . , xL) ∈ X, we have ρ · fr(x) = α · fa(x) + β · fb(x); of course, the input
EV∗MDDs are assumed to be in canonical form, and the output EV∗MDD is guaranteed
to be in the same canonical form. Its complexity is the product of the sizes of the input
EV∗MDDs.

In a practical implementation, the “unique table,” which stores nodes and avoids dupli-
cates, is implemented as a lossless hash table which, given a lookup key 〈level, r[0], . . . , r[nk−
1]〉, returns a node’s address, while the cache is implemented as a (possibly) lossy hash ta-
ble. The cache can be made more effective by scaling and exploiting commutativity. For
example, by defining an arbitrary order on nodes (for example, a ≺ b if the memory address
of a is smaller than that of b), we can exchange the two input EV∗MDDs to ensure that
a ≺ b prior to cache lookup, and then observe that α·fa+β ·fb = α·(fa+γ ·fb), for γ = β/α,
so that we just store entries of the form 〈SUM, a, γ, b→ ρ, r〉 in the cache. Then, assuming
p ≺ q, the call Sum(k, 〈0.5,p〉, 〈0.2,q〉) would be cached as 〈SUM, p, 0.4, q → σ, s, 〉 and

748



Tutorial on Structured Continuous-Time Markov Processes

function Sum(level k, EV∗MDD〈α,a〉, EV∗MDD〈β,b〉)
if a = b then return 〈α+ β,a〉 . This includes the terminal case k = 0: a = b = Ω
if α = 0 then return 〈β,b〉 . a = Ω by definition
if β = 0 then return 〈α,a〉 . b = Ω by definition
if cache contains 〈SUM,α, a, β, b→ ρ, r〉 then return 〈ρ,r〉 . Check if result is in

the cache
r ← NewNode(k) . Create new temporary result node at level k
for all xk ∈ Xk do

r[xk]← Sum(k − 1,〈α · a[xk].val,a[xk].ch〉,〈β · b[xk].val,b[xk].ch〉) . Recurse down
one level

ρ← maxxk∈Xk
{r[xk].val}; . Maximum edge value for node r before normalization

for all xk ∈ xk do
r[xk].val← r[xk].val/ρ . Normalize node r so that the maximum edge value is 1

r ← UniqueTableInsert(r); . If node like r exists, return it and delete r, else
return r

Enter 〈SUM,α, a, β, b→ ρ, r〉 in cache; . Remember the result in the operation
cache

return 〈ρ,r〉;

Figure 10: Pseudo-code for sum of quasi-reduced EV∗MDDs (a and b are either Ω or nodes
at level k). The fully-reduced version is similar but slightly more involved, as it
needs to take into account the levels of a and b.

return 〈0.5σ,s〉, while a subsequent call Sum(k, 〈0.25,p〉, 〈0.1,q〉) or Sum(k, 〈0.1,q〉, 〈0.25,p〉)
would find 〈SUM, p, 0.4, q → σ, s, 〉 in the cache and immediately return 〈0.25σ,s〉.

4.5 Encoding Transition Rate Matrices with EV∗MDDs

We now turn to the use of EV∗MDDs to compactly encode the transition rate matrix R
(the same as the intensity matrix Q, but without the diagonal) of a CTMP. This can be
accomplished using various approaches.

4.5.1 Monolithic Encoding vs. Disjunctive Partition Encoding

Clearly, a node r of a 2L-level EV∗MDD can encode an arbitrary function of the form
X × X → [0, 1]. Then, for σ ≥ 0, the pair 〈σ,r〉 encodes an arbitrary function of the
form X × X → [0, σ], where EV∗MDD levels (1, . . . , 2L) correspond to state variables
(x′1, x1, . . . , x

′
L, xL), that is, we use an interleaved order to describe the transition rate from

x to x′. With a monolithic approach, we can then store R using a single EV∗MDD 〈σ,r〉
where σ is the largest rate in R and r encodes matrix R/σ.

However, many practical systems exhibit asynchronous behavior, that is each state
change is due to some event e ∈ E occurring (asynchronously) somewhere in the system.
In these situations, we can employ a disjunctive partition to encode R, storing a set of
EV∗MDDs {〈σe,re〉 : e ∈ E}, so that 〈σe,re〉 encodes matrix Re, where Re(x, x

′) describes
the rate at which the system moves from state x to state x′ due to the occurrence of event e.
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With this disjunctive partition encoding, R =
∑

e∈ERe does not have to be built explicitly;
rather, the individual matrices Re are directly used in the numerical computations used to
solve the CTMP. The idea of a disjunctive partition was initially suggested for BDDs (Burch,
Clarke, & Long, 1991), although it is obviously also related to Kronecker encodings: consider
Equation 76, which expresses R first and foremost as a sum.

The choice between a monolithic or a disjunctive partition encoding is largely model-
dependent. In most applications, the high-level language description of the model suggests
what the set of asynchronous events E should be. Thus, we first build the EV∗MDDs for the
disjuncts Re then, if desired, we can explicitly build the EV∗MDD for R by summing the
EV∗MDDs for the disjunct corresponding to each event (using the algorithm in Figure 10,
for instance).

However, while the disjunct EV∗MDDs are usually quite compact, the EV∗MDD for
R obtained by summing the disjuncts Re might still be very compact, or it might grow
very large. In the former case, the monolithic approach is preferable, as it allows us to
directly use the EV∗MDD encoding R in the numerical iterations. In the latter case, the
disjunctive partition approach is preferable, as it allows us to use the EV∗MDD for each Re
individually, without even attempting to build the monolithic EV∗MDD encoding R.

For example, consider a simple system of four Boolean variables, X1, X2, X3, and
X4, and two events. The first event, c21, changes the value of (X2, X1), interpreted as
a 2-bit integer, in the sequence 0−[1]→ 1−[1/2]→ 2−[1/4]→ 3−[1/8]→ 0−[1]→ · · · , where the
numbers in the square brackets indicate the rate of the corresponding transition. The second
event, c43, changes the value of (X4, X3), interpreted as a 2-bit integer, in the sequence
0−[3]→ 1−[1]→ 2−[1/3]→ 3−[1/9]→ 0−[3]→ · · · . Figure 11 on the left shows the EV∗MDDs
encoding the matricesR21 andR43 corresponding to these two events, as well as the matrix
R = R21 +R43. (for visual simplicity, edges with value 0, which by definition point to the
terminal node Ω, are not shown).

4.5.2 Adopting Ideas from Kronecker Encodings: Identity Patterns

Neither the monolithic approach nor the disjunctive partition approach exploit locality : the
fact that most events (synchronously) affect only a few state variables. In other words,
while each matrix Re is conceptually of size |X| × |X|, it usually has a much smaller
support Se ⊆ {x1, . . . , xL}. Specifically, Xk ∈ Se if and only if Xk and e are dependent : the
local state xk affects the rate at which e occurs (including the case where it may disable e
altogether, that is set its rate to 0) or is changed by the occurrence of e. When Xk 6∈ Se,
Xk and e are independent and the EV∗MDD encoding Re contains identity patterns in
correspondence to xk. For example, the EV∗MDD encoding R21 in Figure 11 on the left
exhibits such patterns with respect to variables X4 and X3, while the one for R43 exhibits
them for X2 and X1.

Essentially, these identity patterns simply describe the fact that the value of x′k (the
new value of xk after the occurrence of e) equals the old value of Xk and that the rate is
not affected by the value of Xk, and this is true for all possible values of Xk. When this

happens, the Kronecker encoding of event e has R
(k)
e = Ink , while the quasi-reduced or

the fully-reduced forms alone cannot take advantage of these common patterns. To exploit
these patterns, a combination of the fully-reduced form, for unprimed level Xk, and a new
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Figure 11: An example of EV∗MDDs encoding transition rate matrices using the quasi-
reduced form (left) or the fully-identity-reduced form (right). Omitted edges
have implied value 0 (thus resulting in value 0 for any path containing them).
The right diagrams are the same as those on the left, except that identity pat-
terns have been omitted and are implied: Any completely skipped pair of levels
is assumed to have an identity structure (compare to corresponding diagram on
the left).

identity-reduced form (Ciardo & Yu, 2005) for primed level X ′k, is needed. This allows
us to encode Re in an EV∗MDD which has nodes only at (unprimed and primed) levels
corresponding to state variables in Se. A further advantage of this fully-identity-reduced
form is that the resulting decision diagrams, unlike a Kronecker encoding, also recognize
and exploit partial identity patterns (those arising in models where Xk remains unchanged
after e occurs in certain states but not in others). Figure 11 on the right shows the encoding
of the same matrices R21, R43, and R, but using this new fully-identity-reduced form.

4.5.3 Beyond Kronecker: Disjunctive-then-Conjunctive Partition Encoding

We can push the decomposition further by employing a disjunctive-then-conjunctive parti-
tion approach. This idea was first introduced for logic analysis (Ciardo & Yu, 2005) but
it is also related to Equation 76, which expresses R as a sum of products. This is partic-
ularly appropriate for globally-asynchronous locally-synchronous systems, where not only
each state change is due to an (asynchronous) event e ∈ E, but the occurrence of e de-
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pends on and (synchronously) changes only a few state variables. Each Re is then further

decomposed into the product of m matrices, Re =
∏

1≤c≤mR
(c)
e and, again, each matrix

R
(c)
e is conceptually of size |X| × |X| but, in practice, it usually has a small support S

(c)
e .

Specifically, Xk ∈ S
(c)
e if and only if the fully-identity-reduced EV∗MDD for R

(c)
e contains

a node associated to Xk or X ′k. We restrict ourselves to the case where the supports of

the conjuncts for an event are disjoint, so that
⋃

1≤c≤m S
(c)
e = Se and each S

(c)
e is sub-

stantially smaller than Se. For example, when a Kronecker encoding for Re exists, that is

Re =
⊗

1≤k≤LR
(k)
e , we have S

(k)
e = {Xk} for each Xk ∈ Se, that is for each R

(k)
e 6= Ink ;

in this case, a disjunctive-then-conjunctive approach that uses an EV∗MDD to store each

R
(c)
e is as compact as the disjunctive partition approach that uses an EV∗MDD to store

each Re, and both are essentially just as compact as the Kronecker approach (except that
they can save additional memory by exploiting partial identity patterns).

The disjunctive-then-conjunctive approach is instead distinctly more efficient when the
Kronecker approach is not applicable (that is, when the Kronecker approach would require
an enormous set of events to correctly describe R), but it can nevertheless be seen as an
extension of the Kronecker approach. Consider using the decomposition of Equation 75:

Re =
⊗

1≤k≤L
R

(k)
e =

∏
1≤k≤L

Pn1:k,nk+1:L
> · (Ink ⊗R

(k)
e ) · Pn1:k,nk+1:L

=
∏

Xk∈Se

Pn1:k,nk+1:L
> · (Ink ⊗R

(k)
e ) · Pn1:k,nk+1:L

where the last step simply stresses that, when R
(k)
e = Ink , the corresponding factor is just

In1:L and can be skipped.

This is the idea behind the Shuffle Algorithm (Fernandes, Plateau, & Stewart, 1998),
which, as observed by Buchholz, Ciardo, Donatelli, and Kemper (2000), is very efficient,

but only when the matrices R
(k)
e are not “too sparse.” (The perfect shuffle pre- and post-

multiplications are essentially free; they simply describe a different state indexing.)

Then, the disjunctive-then-conjunctive approach extends the Kronecker expression of
Re to allow situations where the factors are not restricted to a support consisting of just
one variable, but still exploits each factor’s locality:

Re =
∏

1≤c≤m
P
S

(c)
e

> ·
(
I
S

(c)
e

⊗R
S

(c)
e

)
· P

S
(c)
e

(77)

where P
S

(c)
e

> and P
S

(c)
e

are perfect shuffle permutations that respectively move all de-

pendent state variables in S
(c)
e at the end of the variable order and back to their original

position, I
S

(c)
e

is the identity matrix of size
∏
Xh 6∈S

(c)
e
nh (the skipped levels), and R

S
(c)
e

is

a square matrix of size
∏
Xh∈S

(c)
e
nh (the conjunct encoded by an EV∗MDD if we ignore the

skipped levels corresponding to state variables not in S
(c)
e ).

Since the supports S
(c)
e are disjoint, this generalization of the Kronecker approach comes

at no additional cost and essentially corresponds to a Kronecker approach where we allow
each event to be defined on a different set of state variables, each set corresponding to
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a different partition of the “basic” state variables (X1, .., XL). In this case, building the
EV∗MDD for Re by multiplying the EV∗MDDs for each R

S
(c)
e

does not involve any numeric

multiplication, but it grows the size of the diagram if the spans of the sets S
(c)
e are not

disjoint; for example, if S
(1)
e = {X3, X7} and S

(2)
e = {X4, X6}, then each path from X7 to

X3 in the EV∗MDD for Re will contain a copy of the entire EV∗MDD encoding Re(2) .

4.5.4 Numerical Solutions with Decision Diagrams

We have described a method for storing the rate or intensity matrix compactly for common
process models. We now address the use of these data structures in CTMP computations.
The literature surrounding decision diagrams and CTMPs is primarily concerned with com-
putation of the unconditional distribution of the resulting process, either at a finite time or
(more commonly) in the limit of infinite time (the stationary distribution). We follow the
convention of this literature and refer to this as the solution of the process. Model estima-
tion, solutions conditioned on evidence, and computations of marginals or other statistics
are, to our knowledge, unexplored for these representations, but we return to this later.

When matrix R is stored using 2L-level EV∗MDDs (using a monolithic, a disjunctive
partition, or a disjunctive-then-conjunctive partition encoding), the traditional numerical
solution algorithms need to be adjusted accordingly. First of all, when seeking an exact
solution, neither the stationary vector π nor the transient vector π(t) admit a compact
EV∗MDD representation (unless the modeled system contains extensive symmetries or is
composed of completely independent subsystems, which is rarely the case in practice).

Two approaches have been explored. For an exact solution for the stationary distribution
π (the null-space of Q), a hybrid approach (Kwiatkowska, Norman, & Parker, 2004) is
usually best, where the solution is stored as a full vector of reals having size equal to the
number of reachable states (|Xrch|, equal to |X| only if all states are reachable) while the
rate matrix R is stored with EV∗MDDs, and the expected holding time vector h (the inverse
absolute values of the diagonal of Q) is stored either as a full vector or with EV∗MDDs.
Clearly, such an approach scales the size of the tractable problems by eliminating the main
memory obstacle (the storage of R), only to encounter the next memory obstacle (the
storage of the solution vector). For example, Figure 12 shows the pseudocode for a classic
Jacobi-style stationary solution of an ergodic CTMP when the transition rate matrix is
monolithically encoded by the EV∗MDD 〈σ,r〉, while the state space Xrch is indexed by an
EV+MDD 〈0,p〉, as previously discussed, so that, for each i ∈ X, we can compute φXrch

(i),
an index between 0 and |Xrch| − 1 included if i ∈ Xrch, or ∞ if i 6∈ Xrch. Function
φXrch

is used to index entries of the solution vector: πnew and πold. The holding time
vector is stored as the full vector h, also indexed by φXrch

(but it could have been stored
using EV∗MDDs instead). At each recursive call of JacobiRecur, we descend a “from”
and a “to” level from the current rate matrix EV∗MDD node and a single level from the
corresponding “source” and “destination” EV+MDD nodes (these are needed to index the
full vectors of reals, and are initially both set to 〈0,p〉, encoding the entire φXrch

function).
Note that, in the simple case when all states are reachable (that is, X = Xrch) the indexing
function φXrch

is just the mixed-base value φ(i) =
∑

1≤k≤L ik · n1:k−1 discussed in Section
4.3 and, as such, it does not really require an EV+MDD for its encoding; on the other hand,
as shown in Figure 9, this EV+MDD is just a single path of nodes, so its use does not carry
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. Computes π such that πQ = 0. 〈σ,r〉 is R, 〈0,p〉 is φXrch

function JacobiIteration(EV∗MDD〈σ,r〉,EV+MDD〈0,p〉)
πold ← “initial guess” . Real vector of size |Xrch|, visible to JacobiRecur
num iter ← 0
repeat
πnew ← zero vector . Real vector of size |Xrch|, visible to JacobiRecur
JacobiRecur(L,〈σ,r〉,〈0,p〉,〈0,p〉)
for all i ∈ {0, . . . , |Xrch| − 1} do
πnew[i]← πnew[i] · h[i] . h is the holding time vector

swap(πold, πnew)
num iter ← num iter + 1

until num iter > MAX ITER or Converged(πold,πnew)
. for example, using a relative or absolute test

. Computes πnew ← πoldR
function JacobiRecur(level k, EV∗MDD〈σ,m〉, EV+MDD〈ηsrc,src〉,
EV+MDD〈ηdes,des〉)

if src = des = Ω then
πnew[ηdes]← πnew[ηdes] + πold[ηsrc] · σ
return

for i from 0 to nk−1 s.t. m[i].val 6= 0 and src[i].val 6=∞ do . “from” level k
for j from 0 to nk−1 s.t. m[i][j].val 6= 0 and des[j].val 6=∞ do . “to” level k′

η′src ← ηsrc + src[i].val
η′des ← ηdes + des[j].val
σ′ ← σ ·m[i][j].val
JacobiRecur(k−1, 〈σ′,m[i][j].ch〉, 〈η′src,src[i].ch〉, 〈η′des,des[j].ch〉)

Figure 12: A Jacobi-style iteration for the stationary solution (πQ = dπ
dt = 0) when R

(non-diagonal elements of Q) is stored as a monolithic EV∗MDD and h (inverse
absolute value of the diagonal elements of Q) is stored in a vector. 〈σ,r〉 is the
encoding of R and 〈0,p〉 is the encoding of the mapping from states to indices
(for π and h).

any overhead. A similar hybrid approach can be used to compute a transient solution using
a uniformization-style algorithm where R is also stored using EV∗MDDs but, again, the
size of the full vectors limits scalability.

The filtering and smoothing operations as described in Section 2.5 have not been ex-
plicitly tackled for decision-diagram encodings. However, if we are willing to represent
the distribution exactly (as above), we can do the necessary vector-matrix multiplications
directly on the decision-diagrams (without expanding them). Estimating an EV∗MDD rep-
resentation of R from data is completely unexplored.

To tackle larger problems we must instead be willing to accept an approximate solution.
However, work in this area is mostly restricted to systems exhibiting special structures.
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One exception is the work of Wan et al. (2011), which addresses the stationary solution of
arbitrary ergodic CTMPs whose state space is encoded as an MDD and whose transition rate
matrix is encoded as one or more EV∗MDDs. The approach uses L different approximate
aggregations of the exact CTMP and solves them iteratively, until reaching a fixpoint.
This approach provides an exact solution under certain conditions — essentially, if the
system has a so-called “product-form” (Baskett, Chandy, Muntz, & Palacios-Gomez, 1975).
Unfortunately, no similar approximation for the transient solution of a structured CTMP
has been proposed so far.

Thus for state spaces large enough that a single vector over their values cannot be
maintained, the literature for inference and estimation with these models is very limited.
However, in the next section we describe a different model that can be viewed as a restricted
form of the disjunctive EV∗MDD encoding of this section. This model has many inference
and estimation method and we believe this link between the two may allow for those methods
to be extended to more general decision-diagram representations.

5. Continuous-Time Bayesian Networks

In the artificial intelligence and machine learning literatures, continuous-time Bayesian net-
works (CTBNs) (Nodelman, Shelton, & Koller, 2002) were developed as an extension of
dynamic Bayesian networks (DBNs). As we discuss in this section, they are a more limited
case of the disjunctive EV∗MDD encodings above. However, approximate methods and
computations conditioned on evidence have been more extensively developed for CTBNs.

A CTBN consists of a set of variables, {X1, X2, . . . , XL}, a directed graph G with a one-
to-one mapping between the nodes and the variables, a set of conditional intensity matrices
for each variable, and an initial distribution. The initial distribution is usually described
as a Bayesian network (to keep its description compact), but many of the algorithms and
theory hold for other compact distribution representations.

The graph G describes instantaneous influence of variables on each other. An edge from
Xi to Xj denotes that the rates of transitions of Xj depend on the instantaneous value of
Xi. Note that G may be cyclic.

These dependent rates are captured in the conditional intensity matrices. Let ni be
the number of states for variable Xi. We denote the parents of variable Xi as Pari and a
joint assignment to Pari as pari. The set of conditional intensity matrices for variable Xi

consists of one ni-by-ni intensity matrix for each possible instantiation pari: QXi|pari for
which we denote element xi, x

′
i as qxi,x′i|pari , the rate of Xi transitioning from xi to x′i when

Pari have values pari.

Semantically, a CTBN is a continuous-time Markov process over the joint state space of
all constituent variables. We let δ(x,x′) be equal to the set of variables whose assignments
differ between joint assignments x and x′. The joint intensity matrix for the entire process
can be described as

qx,x′ =


∑L

i=1 qxi,x′i|pari if δ(x,x′) = {}
qxi,x′i|pari if δ(x,x′) = {Xi}
0 otherwise

(78)
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X2

X1

X3

QX1|X2=0 =

[
−1 1
2 −2

]
QX1|X2=1 =

[
−4 4
3 −3

]

QX2|X1=0 =

[
−5 5
6 −6

]
QX2|X1=1 =

[
−7 7
8 −8

]

QX3|X2=0 =

−9 0 9
8 −10 2
7 4 −11



QX3|X2=1 =

−12 6 6
8 −13 5
7 7 −14



Figure 13: An example CTBN graph. See Figures 14, 15, and 17 for the same CTMP in
other representations.

where pari is the assignment to Pari in x. The intensity of transition between two states
that differ only by one variable can be read from the appropriate conditional intensity matrix
for that variable. The intensity of transition between any other two states (that differ by
more than one variable) is zero. The diagonal elements are filled in to be the negative row
sums. This process allows two variables to transition at arbitrarily close times, but not at
exactly the same time.

A CTBN retains the local Markov properties of a standard Bayesian network. In partic-
ular, a variable (local process) is independent of its non-descendants, given its parents. Of
course, because of cycles, parents may also be descendants, but this does not pose a problem
to the definition. Note, however, that given refers to conditioning on the entire trajectory
of a variable (from the starting time until the ending time, after which no variables are
queried or observed). Conditioning on the current value is not sufficient (even for rendering
only the current values independent).

The global Markov properties also hold. The Markov blanket for a variable is the union
of the sets of its parents, its children, and its children’s parents. Note that these sets can
have significant overlap, as cycles are permitted. Conditioned on its Markov blanket, a
variable is independent of all other variables.

5.1 Connections to Other Representations

A CTBN can be related to a number of other representations. For instance, Portinale and
Codetta-Raiteri (2009) link CTBNs to stochastic Petri nets (Ajmone Marsan, Balbo, Conte,
Donatelli, & Franceschinis, 1995). Donatelli (1994) shows the translation from stochastic
Petri nets to Kronecker operators and Ciardo, Zhao, and Jin (2012) show the translation
from (ordinary, timed, or stochastic) Petri nets to various classes of decision diagrams.
However, below we concentrate on more direct comparisons of the approaches presented in
this tutorial.

Figure 13 shows a simple small CTBN of two binary variables (X1 and X2) and one
ternary variable (X3). We will use this as a running example for how to convert from a
CTBN to other compact representations.
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X2

X1

X3

X ′2

X ′1

X ′3

time = t time = t+ δt

P (X ′1|X1, X2) :

0, 0 1, 0 0, 1 1, 1

0 1−1δt 2δt 1−4δt 3δt
1 1δt 1−2δt 4δt 1−3δt

P (X ′2|X2, X1) :

0, 0 1, 0 0, 1 1, 1

0 1−5δt 6δt 1−7δt 8δt
1 5δt 1−6δt 7δt 1−8δt

P (X ′3|X3, X2) :

0, 0 1, 0 2, 0 0, 1 1, 1 2, 1

0 1−9δt 8δt 7δt 1−12δt 8δt 7δt
1 0 1−10δt 4δt 6δt 1−13δt 7δt
2 9δt 2δt 1−11δt 6δt 5δt 1−14δt

Figure 14: A DBN whose limit as δt→ 0 approaches the CTBN of Figure 13.

5.1.1 Connection to DBN

From a CTBN, we can construct a dynamic Bayesian network (DBN) whose parameters are
a function of the time between slices such that its limit as this time-slice width approaches
zero is the original CTBN. In particular, the DBN has no intra-time-slice edges (this is
because two variables in the CTBN cannot change at exactly the same time). If Xi has
parents Pari in the CTBN, then it has the same parents (at the previous time slice) plus
its previous value in the DBN. Figure 14 shows the CTBN of Figure 13 as a DBN. If Xi in
the CTBN has an intensity matrix QXi|pari for parent values pari, then the corresponding
variable in the DBN has the conditional probability distribution

pDBN(x′i|xi,pari) = δx′i,xi + δt qxi,x′i|pari (79)

where x′i is the value of Xi at the “next” time step (and xi and pari are the values at the
“previous” time step), δx′i,xi is 1 if x′i = xi and 0 otherwise, and δt is the time between time
slices. The limit of this process as δt approaches 0 is the original CTBN.

5.1.2 Connection to Kronecker Algebra

The joint intensity matrix expressed in Equation 78 can also be written as a sum of Kro-
necker products. We need first to define a conceptually simple, but notationally cumber-
some, term. First, let ∆i,j be a matrix of all 0, except for a single 1 in location i, j (same as
before). Second, let Q̃Xi|pari denote the Kronecker product of one matrix for each variable
in the CTBN. If the variable is Xi, the matrix is QXi|pari . If the variable is a parent of Xi

and has value xk in pari, then the matrix is ∆xk,xk . Otherwise, the matrix is the identity
matrix. In this way this Kronecker product distributes the elements of QXi|pari to the
relevant entries of the joint intensity matrix.

We can now define the joint intensity matrix. Let Q̃Xi
be
∑

pari
Q̃Xi|pari . Then,

Q =
∑

i Q̃Xi
. Figure 15 gives an example for the CTBN of Figure 13. Figure 16 gives

another example. While the Kronecker product in general does not handle the diagonal
elements, the expansion works for the intensity matrix in this case, since only one of the
matrices in each product is non-diagonal.
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Q̃X1
=
∑
x2

QX1|x2
⊗∆x2,x2 ⊗ I

Q̃X2
=
∑
x1

∆x1,x1 ⊗QX2|x1
⊗ I

Q̃X3
=
∑
x2

I ⊗∆x2,x2 ⊗QX3|x2

Q = Q̃X1
+ Q̃X2

+ Q̃X3

Figure 15: Sum of Kronecker encoding of the rate matrix Q of the CTBN in Figure 13.

X Y

Z

W

Q̃W = QW ⊗ I ⊗ I ⊗ I

Q̃X =
∑
z

I ⊗QX|z ⊗ I ⊗∆z,z

Q̃Y =
∑
w

∆w,w ⊗ I ⊗QY |w ⊗ I

Q̃Z =
∑
x,y

I ⊗∆x,x ⊗∆y,y ⊗QZ|x,y

Q = Q̃W + Q̃X + Q̃Y + Q̃Z

Figure 16: Sum of Kronecker product encoding of a CTBN with more than one parent per
node.

5.1.3 Connection to Decision Diagrams

The above decomposition of a CTBN into a sum of Kronecker products helps clarify the
connection to the edge-valued decision diagrams of the previous section. A CTBN is a
particularly structured version of the disjunctive EV∗MDD encoding of Section 4.5.1 paired
with the identity encoding of Section 4.5.2. In particular, a CTBN describes a CTMP
which can also be described by a sum of EV∗MDDs in fully-identity-reduced form. The two
descriptions have the same order space complexity. The decision-diagram encoding has one
EV∗MDD for each variable and each joint value for its parents.

Figure 17 shows the disjunction of EV∗MDDs for the CTBN in Figure 13. Each EV∗MDD
only encodes the non-identity matrices in the Kronecker product expression; the identity
matrices are implied by the fully-identity-reduced form. As another example, for the CTBN
in Figure 16, we could construct 9 EV∗MDDs: 1 for W , 2 for each of X and Y , and 4 for Z.
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Ω ΩΩΩΩΩ

x3

x′3

x2

x′2

x1

x′1

RX1|X2=0 RX1|X2=1 RX2|X1=0 RX2|X1=1 RX3|X2=0 RX3|X2=1
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1

1
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21

Figure 17: A set of identity-reduced EV∗MDDs whose sum is the same as the CTBN of
Figure 13.

Note that a disjunction of EV∗MDDs can compactly encode structure within a variable’s
local rate matrix, while a CTBN cannot. In this way, they represent a generalization that
can exploit context-sensitive independence.

Whether merging EV∗MDDs for a given variable or merging EV∗MDDs for multiple
variables will result in a reduction or increase in the representation size is largely an empirical
question. However, we would generally expect an increase in size because only one transition
is allowed at a time, so the paths through the levels must remember whether any previous
variable has changed and, if so, which one (for example, as in Figure 11).

5.2 Sampling

Sampling from a CTBN can be done by straight-forward application of the sampling method
described in Section 2.1. We need not construct the full intensity matrix. Instead, for any
joint assignment x, we can find the diagonal element by summing the diagonals of the
relevant conditional intensity matrices. This gives us the rate of the exponential to sample
for the time to the next variable change. We can read the intensities for each variable’s
potential transitions from the relevant row of its conditional intensity matrix and we select
a variable and the new state for that variable in proportion to the intensity. This process
takes O(L) time for each transition (where L is the number of variables).

We can do better by exploiting the racing and memoryless properties of exponential
distributions (discussed in Section 2.1). To select which variable transitions next, we will
race exponential distributions for each variable with rates of the corresponding diagonal
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function SampleCTBN(CTBN, initial distribution π0, end time T )
Let Tr ← empty trajectory
Let (x1, x2, . . . , xL)← joint sample from π0 . As per algorithm for π0’s

representation
for i from 1 to L do

Add (Xi = xi @ 0) to Tr
Let t← 0
Let E ← an empty event priority queue of time-variable pairs.
repeat

for all variables Xi that do not have an event in E do
Sample ∆t from an exponential with rate qxi|pari
Add 〈t+ ∆t,Xi〉 to E

Let 〈t,Xi〉 ← the earliest event in E . Update t and get new variable to change
if t < T then

Sample x′i from a multinomial proportional to qxi,x′i|pari
Let xi ← x′i . Update local copy of variable assignments
Add (Xi = xi @ t) to Tr
Remove Xi and all children of Xi from E . Their times must be resampled

until t ≥ T

Figure 18: Algorithm to sample from CTBN

elements of their conditional intensity matrices. We then note that if a variable is not
chosen, we can treat its transition time as two separate random draws: a draw stating
that its transition time is after the chosen time and a draw stating when after the chosen
transition time it will next transition (because of the memoryless property of the exponential
distribution). That means that if the chosen transition did not affect the rate for the variable
in question, we do not need to resample its transition time. By using a priority queue for
transitions times (not durations), we can reduce the running time per transition to O(D lnL)
where D is the maximal out-degree of the graph. This method is made explicit in Figure 18.

5.3 Inference

Inference in a CTBN is the process of calculating an expected value of the full trajectory,
given some partial trajectory. The most basic case is to infer the conditional probability of a
single variable at a single time point (the expectation of an indicator function) given a partial
trajectory. There are many ways in which a trajectory may be partial. The most obvious
for a variable-based model like a CTBN is to have variables only observed at particular
times and intervals. Each variable can have its own observation times and intervals. Thus,
for each variable, we assume we have evidence like that of Section 2.5.1: There are time
points at which the variable has known values and there are time intervals during which
the variable has known values (which might include observations of transitions).

Unfortunately, even if there is no evidence, this problem is NP-hard. In particular,
deciding whether the marginal probability of a single value of a single variable at a single
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time point is greater than any positive threshold is NP-hard. This has been generally
accepted, although never formally demonstrated. We provide the proof in the Appendix.

Thus, all known algorithms for CTBN inference have exponential (in the number of
variables) running time. The simplest method is to treat the CTBN as a general CTMP with
a single intensity matrix Q. We can apply the forward and backward passes of Section 2.5.
While the intensity matrix can be stored in compact form, the resulting vectors require
space for each instantiation to every variable in the CTBN (exponential space). We need
only keep values for states consistent with the evidence. Thus, if at all times only a few
variables are unobserved, the inference is tractable. But, if there are periods during which
many variables are unobserved, we require approximate inference methods (overviewed in
Section 5.5).

Other than calculating the probability of a variable at a time, the other common case
of inference is to calculate the expected sufficient statistics. As shown in Section 5.4.1, this
means calculating N̄ [xi, x

′
i|pari] and T̄ [xi|pari] for all values of i, xi, x

′
i, and pari. The

former is the expected number of times variable Xi transitioned from xi to x′i while its
parents were in state pari, and the latter is the expected amount of time variable Xi was
in state xi while its parents were in state pari.

The proof for marginal calculation can easily be adapted to show that deciding whether
these quantities are non-zero is also NP-hard. Therefore, the only known method is to
again treat the system as a general CTMP with a single large Q matrix. We can then
apply Equation 65 and Equation 64 to find the expected number of transitions and expected
amount of time for any joint assignments. If we let J(xi,pari) be the set of joint assignments
to all variables that are consistent with Xi = xi and Pari = pari, we can find the expected
sufficient statistics for the CTBN as

T̄ [xi|pari] =
∑

x∈J(xi,pari)

T̄ [x] (80)

N̄ [xi, x
′
i|pari] =

∑
x∈J(xi,pari)

∑
x′∈J(x′i,pari)

N̄ [x,x′] (81)

5.4 Parameter and Graph Estimation

The initial distribution of a CTBN can be estimated separately using any standard method
for estimation of a Bayesian network (or whatever other compact representation is desired).
This requires only data about the value of the trajectory’s value (or trajectories’ values) at
time 0.

We will concentrate on estimation of the rate parameters and dynamics graph struc-
ture (G). This exposition will assume there is a single trajectory, Tr. However, multiple
trajectories can be used by summing their sufficient statistics.

5.4.1 Parameter Estimation

The set of CTBNs with a fixed graph structure is just a subset of the exponential family of
CTMPs in which most parameters are fixed to 0 and many of the remaining ones are tied
to each other (share the same value). Thus, the log-likelihood of Equation 30 applies here
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too, but where the sufficient statistics for tied parameters are summed:

ln pCTBN(Tr) = lnP0(Tr(0)) +
∑

i,pari,xi

−T [xi|pari]qxi|pari +
∑
x′i 6=xi

N [xi, x
′
i|pari] ln qxi,x′i|pari


(82)

= lnP0(Tr(0)) +
∑

i,pari,xi,x
′
i 6=xi

(
−T [xi|pari]qxi,x′i|pari +N [xi, x

′
i|pari] ln qxi,x′i|pari

)
(83)

= lnP0(Tr(0)) +
∑
i

lXi(Tr) (84)

where i ranges over variables, pari ranges over joint assignments to the parents of i, and
xi and x′i range over differing assignments to Xi. T [xi|pari] denotes the amount of time
Xi = xi while Pari = pari. Similarly, N [xi, x

′
i|pari] denotes the number of transitions of

Xi from xi to x′i while Pari = pari. These new sufficient statistics are sums of the sufficient
statistics of the flat CTMP, summing over all assignments to all CTBN variables in which
Xi and Pari remain the same (see Equations 80 and 81). Given a complete trajectory, we
can construct them directly without employing such (exponentially large) sums. The last
line above is by definition of lXi , the “local log-likelihood” of variable Xi. Note that this is
a function only of the trajectories of Xi and its parents (not of all of Tr).

Maximizing Equation 83 is a straight-forward extension of maximizing Equation 30:

q̂xi,x′i|pari = N [xi, x
′
i|pari]/T [xi|pari] . (85)

We can produce Bayesian posterior distributions over the parameters if we take independent
conjugate prior distributions over each qxi,x′i|pari parameter (Nodelman et al., 2003). Just
as for a flat CTMP, our conjugate prior is a gamma distribution with hyper-parameters
αxi,x′i|pari and τxi,x′i|pari for parameter qxi,x′i|pari . The resulting posterior is also a gamma
distribution with corresponding hyper-parameters αxi,x′i|pari+N [xi, x

′
i|pari] and τxi,x′i|pari+

T [xi|pari]. Thus the MAP parameter estimates are

q̂xi,x′i|pari =
N [xi, x

′
i|pari] + αxi,x′i|pari

T [xi|pari] + τxi,x′i|pari
. (86)

5.4.2 Structure Estimation

Estimating the CTBN structure could be accomplished by statistical tests of the indepen-
dence of the processes. Yet, we are unaware of any methods that use this or of suitable
independence tests.

Instead, CTBN structures have been estimated by graph scoring functions. If the score
function decomposes as the likelihood does (Equation 83) into a sum of terms, one per
variable, in which the selection of a variable’s parents only affects the term for the same
variable, the search for the maximal scoring graph is very simple. Each variable’s parents
can be chosen independently by maximizing the corresponding term in the sum. While
there are an exponentially large (in the total number of variables) number of parent sets
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to consider for each variable, if we limit the cardinality of parent sets to no more than D,
then each variable’s parents can be chosen by exhaustive search and the total running time
is O(L2D), which is linear in the number of variables, L.

This is in contrast to Bayesian networks where a similar strategy does not lead to
an efficient algorithm (unless a variable ordering is known a priori). Learning CTBNs
structure is efficient because there are no restrictions on the graph: A CTBN’s graph may
be cyclic. A similar situation arises with dynamic Bayesian networks (DBNs). If we only
allow inter-time-slice edges (those from the “previous” time point to the “current” time
point), the graph structure may be searched efficiently, like in CTBNs. However, if we
allow intra-time-slice edges (those within the “current” time point) in a DBN, we must
enforce acyclicity constraints and the search is no longer efficient.

The Bayesian information criterion (Lam & Bacchus, 1994) can be made into a score:

scoreBIC(G : Tr) =

(∑
i

lXi(Tr)

)
− ln |Tr|

2
Dim(G) (87)

=
∑
i

(
lXi(Tr)−

ln |Tr|
2

∣∣∣QXi|pari

∣∣∣) (88)

where Dim(G) is the number of independent parameters in the network defined by the

graph G and
∣∣∣QXi|pari

∣∣∣ is the number of independent parameters in the conditional intensity

matrices associated with Xi. This second term is equal to ni(ni − 1) (because the diagonal
elements are not independent) times the number of parent instantiations. The data size,
|Tr|, is the number of transitions in the trajectory Tr (or in the total data set if it consists
of multiple trajectories). This score is consistent (Nodelman et al., 2003) because the term
lXi(Tr) grows linearly with the amount of data and represents the likelihood and the second
term grows logarithmically with the amount of data and penalizes excess parameters.

A Bayesian score can also be constructed by placing a prior on graphs (as well as
parameters) and finding the maximum of lnP (G | Tr) = ln p(Tr | G)+lnP (G)−ln p(Tr). The
last term isn’t affected by the choice of G, so we drop it. We assume structure modularity:
lnP (G) =

∑
i lnP (Pari). The remaining data term, lnP (Tr | G), is the (logarithm of the)

integral of the likelihood multiplied by the prior, over all possible parameter values. Using
the independent gamma priors from above, this decomposes into a separate term for each
variable (dropping the lnP0(Tr(0)) term which does not affect the choice of G):

ln p(Tr | G) =
∑

i,pari,xi 6=x′i

ln

∫ ∞
0

(τxi,x′i|pari)
αxi,x

′
i
|pari

+1

Γ(αxi,x′i|pari + 1)
exp

[
−(T [xi|pari] + τxi,x′i|pari)qxi,x′i|pari

+(N [xi, x
′
i|pari] + αxi,x′i|pari) ln qxi,x′i|pari

]
dqxi,x′i|pari

(89)

=
∑
i

∑
pari,xi 6=x′

i

ln

(
(τxi,x′

i|pari)
αxi,x

′
i
|pari

+1

Γ(αxi,x′
i|pari + 1)

Γ(N [xi, x
′
i|pari] + αxi,x′

i|pari + 1)

(T [xi|pari] + τxi,x′
i|pari)

N [xi,x′
i|pari]+αxi,x

′
i
|pari

+1

)
(90)

=
∑
i

lscoreB(pari : Tr) (91)
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where the last line is by the definition of lscoreB. This derivation is almost the same as the
one given in Nodelman et al. (2003). The difference is that our prior consists of a gamma
distribution for each independent variable whereas their prior consists of a gamma distribu-
tion for each diagonal rate parameter and a Dirichlet prior over the ratios qxi,x′i|pari/qxi|pari .
The two are equivalent, but parameterized differently.

The Bayesian score is therefore

scoreB(G : Tr) =
∑
i

lscoreB(pari : Tr) + lnP (Pari) . (92)

It converges to the BIC score in the limit of infinite data (Nodelman et al., 2003) and is
therefore also consistent.

5.4.3 Incomplete Data

For the case where the trajectory Tr is incomplete, we are back in the same situation as in
Section 2.6. As the likelihood takes the same form in a CTBN as in a general CTMP, the
solutions for maximizing the likelihood of this incomplete trajectory have the same form.
Namely, if we compute the expected sufficient statistics (using inference), we can apply
gradient ascent or expectation-maximization to find the maximum likelihood parameters.
The gradient is

∂p(Tr)
∂qxi,x′i|pari

= p(Tr)

(
N̄ [xi, x

′
i|pari]

qxi,x′i|pari
− T̄ [xi|pari]

)
(93)

and the expectation-maximization update equation is the same as Equation 85 except the
sufficient statistics are replaced by their expected values, given the partially observed tra-
jectory and the current model.

For graph estimation, we can apply structural expectation-maximization (Friedman,
1997) (SEM) to CTBNs (Nodelman, Shelton, & Koller, 2005). While SEM for Bayesian
networks can be a little complex due to the structure search step, for CTBNs, it is simpler
as the structure search step need not enforce acyclicity constraints and therefore can be
carried out more simply (see above). The tricky point (which also holds for standard
Bayesian networks) is that the graph search scoring function must be calculated using
expected sufficient statistics and therefore, given a current model, our inference algorithm
must produce expected sufficient statistics not only for the current model’s parent sets,
but also for any other parent sets to be considered by the structure search. If using exact
inference (by flattening the CTBN to a general CTMP), these are available. However,
approximate methods (below) differ in how simple it is to extract such expected sufficient
statistics. Once this inference is performed, a joint optimization of parameters and structure
is performed, the new model is used to find new expected sufficient statistics, and the process
repeats.

5.5 Approximate Inference

As mentioned in Section 5.3, exact inference is intractable when there are many concurrently
missing variables. Therefore, many approximate inference methods have been developed.
We briefly cover them in this section, but would refer to the full papers for more complete
descriptions.
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5.5.1 Sampling-Based Inference

Sampling is an obvious method for producing approximate inference. It has a number of
advantages. First, it produces a set of full trajectories from which any inference question can
be answered. Second, most sampling methods converge to the correct value if allowed to run
long enough. Third, sampling methods are usually easily parallelized, lending themselves
to multiple processors and multiple cores.

Hobolth and Stone (2009) have a description of a number of such methods for the
unstructured case and for full evidence at the beginning and the end of the trajectory, but
no evidence in between. Here we discuss work on CTBNs and for more general evidence
patterns.

Fan and Shelton (2008) and Fan, Xu, and Shelton (2010) developed an importance
sampler and a particle filter and smoother. Forward sampling (like in Figure 18) can be
turned into an importance sampler by taking the observed data as given and sampling for
the missing portions, marching time along. The weight of the sample is the probability of
having sampled the observed data (which was not sampled) given the trajectory up to those
data. The problem arises when a variable goes from being not observed to being observed.
In this case, the sampling must agree with “up coming” observation evidence. Adding a
transition exactly when the evidence starts is not correct (as there is almost surely not an
event at that time). These samplers handle it with some forward look ahead to sample
the necessary transition in advance, with suitable importance weight corrections. This is
then extended to a particle filter and smoother which are resampled based on the number
of transitions, rather than the absolute time. This method was extended to more general
temporal models by Pfeffer (2009).

El-Hay, Friedman, and Kupferman (2008) developed a Gibbs sampler for CTBN models.
They start with a simply developed trajectory that agrees with all of the evidence. Then,
the algorithm removes a single variable’s full trajectory and resamples it (keeping any time
periods during which the value is known). Conditioned on the full trajectories of a variable’s
Markov blanket (the union of the variable’s children, parents, and children’s parents), the
trajectory for that variable is independent of all other variables, so the sampler needs to
only consider the variable’s Markov blanket. The posterior distributions over the times of
transitions are no longer exponential distributions. Their forms are complex and thus the
Gibbs sampler must sample by performing binary search.

Fan and Shelton (2009) combined the ideas from the Gibbs sampler and their earlier
work on importance sampling to produce a Metropolis-Hastings sampler. The importance
sampling method is used instead of Gibbs sampling and the importance weight is used to
find the acceptance probability. While faster to generate samples, the samples take longer
to converge. The balance of the trade-off depends on the typicality of the evidence and the
inference query.

Rao and Teh (2011, 2013) used uniformization to develop an auxiliary Gibbs sampler
which is faster than the previous Gibbs sampler. The auxiliary variables are the times
of the self-transitions from an uniformization sampler (Section 2.3). Thus to resample a
variable, the algorithm samples auxiliary times, given the old trajectory (which can be
done quickly). It then throws away all of the transitions, but keeps the full set of times
(old times and the new times). Then, using a forward-backward two-pass algorithm, state
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transitions are sampled from the uniformized discrete-time process (conditioned on the
evidence). Finally, the self transitions are discarded. Rao and Teh (2012) extended this to
a time-varying uniformization rate to speed up convergence, but only explicitly in the case
of an unstructured process.

5.5.2 Non-Sampling Methods

A number of other non-sampling methods have also been proposed. Their advantages
include determinism (often helpful when used inside of EM to keep the estimates consistent),
and fewer parameters that need to be set well (number of samples, length of burn-in, and
others).

Cohn, El-Hay, Kupferman, and Friedman (2009) and Cohn, El-Hay, Friedman, and
Kupferman (2010) derived a mean-field approximation. The approximate distribution is an
independent time-inhomogeneous Markov process for each variable. That is, the variables
are independent (in the approximation), but the intensities depend on time. The natural
parameterization also differs slightly. Instead of transition rates, transition densities are
used, but the idea is the same. The resulting algorithm changes one variable’s distribution at
a time, again depending only on the Markov blanket. The update involves solving a system
of differential equations (to get the time-varying parameters of the inhomogeneous Markov
process). These are solved by adaptive integration which means that less computation is
required during intervals of less rapid change. The result is that the time-varying parameters
are represented by a series of time-value points (those produced during adaptive integration)
and linear interpolation between these points.

Nodelman, Koller, and Shelton (2005) derived an expectation-propagation method. The
propagation uses piece-wise constant time-homogeneous Markov processes, where each piece
corresponds to a period of constant evidence. These piece-wise constant approximations are
propagated instead of the true marginals (as such marginals would be intractably large).
Saria, Nodelman, and Koller (2007) extended this method to subdivide the pieces of the
approximations further and adaptively. El-Hay, Cohn, Friedman, and Kupferman (2010)
produced a belief propagation algorithm in the same spirit as the mean-field approximation
above, employing a free energy functional for CTMPs. Instead of propagating piece-wise
time-homogeneous Markov processes, they propagate a single time-inhomogeneous Markov
process and then use the same adaptive integration representation as in mean-field. The
result is more adaptive and mathematically cleaner.

Finally, for filtering (but not general inference), Celikkaya, Shelton, and Lam (2011)
developed a factored version of a uniformized Taylor expansion to approximate the matrix
exponential calculations. The result is something similar to that of Boyen and Koller (1998)
for dynamic Bayesian networks, but also involving a truncation of an infinite sum and a
mixture of propagation distributions. This method is the only current non-sampling method
with accuracy bounds, although they are very loose.

5.6 Extensions

As shown above, a CTBN can be converted into a sum of decision diagrams. In that way
decision diagrams (and other similarly convertible models) can be viewed as extensions of
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CTBNs. Many of the non-Markovian processes of Section 1.1 could, if restricted in the right
way, also be so viewed. However, there are a few more direct extensions of CTBNs.

First, El-Hay et al. (2010) introduced continuous-time Markov networks (CTMNs).
They are undirected graphical models of Markov processes in the same way that CTBNs
are directed graphical models. They model the subclass of reversible processes, ones for
which detailed balance holds: There exists a distribution π (the stationary distribution of
the process) such that π(x)qx,x′ = π(x′)qx′,x for all pairs of states x and x′. A CTMN
can be converted to a CTBN by replacing each undirected edge with a pair of directed
edges. Their parameterization directly reveals the stationary distribution of the process as
a Markov network.

Second, Portinale and Codetta-Raiteri (2009) and Codetta-Raiteri and Portinale (2010)
showed an extension of CTBNs to allow for simultaneous transition of multiple variables. It
is based on Petri nets and encodes “cascades” of transitions that all happen simultaneously.

Finally, Weiss, Natarajan, and Page (2012) presented a method for constructing the
local rate matrices for each variable not as a matrix, but as the multiplication of regression
trees. This is akin to exploiting context-specific independence (Shimony, 1991) in a standard
Bayesian network by use of trees (Boutilier, Friedman, Goldszmidt, & Koller, 1996). This
multiplication of trees is not the same as our reduction of a CTBN to a sum of EV∗MDDs
(see Figure 17). In particular, their trees do not require the tests be made in a particular
variable order, they use trees instead of DAGS, and they multiply the trees together (instead
of adding them). Weiss et al. (2012) also give a boosting-style algorithm for learning this
parameterization. No similar method is known for learning a sum of EV∗MDDs.

6. Applications and Current Directions

To provide some context for the theory and algorithms above, we describe how these meth-
ods have been used in applications. We then discuss what we believe to be the most
promising and pressing research directions.

6.1 Decision-Diagram-Based Models

Structured CTMPs arise in many applications areas, from performance and reliability eval-
uation of computer systems to the investigation of biological systems. As the underlying
CTMPs describing the dynamics being analyzed are usually very large, most software tools
used for such studies rely on compact symbolic techniques to encode them.

In particular, PRISM (Kwiatkowska et al., 2011) uses a hybrid form of MTBDDs,
Möbius (Deavours et al., 2002) uses Matrix Diagrams (a data structure almost equivalent to
EV∗MDDs), and SMART (Ciardo et al., 2006) uses EV∗MDDs to encode the transition rate
matrix of a CTMP. These tools can compute both stationary and transient exact numerical
solutions of compactly encoded CTMPs. (Indeed, they can compute much more complex
stochastic temporal logic properties such as those that can be expressed in CSL (Baier,
Haverkort, Hermanns, & Katoen, 2000), but these, too, ultimately require a sequence of
stationary or transient numerical solutions.) While such exact solutions place very large
computational demands due to the exponential explosion of the state space, the situation
is often somewhat mitigated by the fact that, in most applications targeted by these tools,
the actual state space is a small subset of the full cross-product of the state variable values.
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As an example application, we briefly summarize a study done using PRISM for the
analysis of a complex biological pathway called FGF (Fibroblast Growth Factor) (Heath,
Kwiatkowska, Norman, Parker, & Tymchyshyn, 2006). The state of the system consists of
the number of proteins (e.g., A,B) or protein complexes (e.g., A:B) present at the current
time. The events in the system consist of various reactions such as complexation (e.g.,
A + B → A : B) and decomplexation (its reverse, A:B → A + B), as well as degradation
(e.g., A→). Finally, each event has an occurrence rate, which can of course depend on the
number of proteins currently present for the types involved in the particular reaction. The
actual model for the FGF pathway, even after substantial simplifications to focus only on
key and well-known aspects in real cells, contains 87 different proteins or protein complexes
(each of them corresponding to a local state variable) and 50 different reactions (if we count
complexation and decomplexation separately). We stress that each reaction concerns just
a few proteins or compounds; thus its decision diagram representation in isolation is quite
compact.

Even the smallest meaningful model where there is only zero or one protein or compound
of each type would have a potential state space of size 287. However, as almost always the
case in this type of models, only a tiny fraction of these states is reachable, thus the model
used in the work of Heath et al. (2006) has merely 801,616 states and 560,000 state-to-
state transitions. The study focused on several key questions such as what fraction of
time particular proteins are bound, or the probability that a particular degradation has
occurred within a given time bound, all quantities obtainable through numerical stationary
or transient analysis of the underlying CTMP. Notwithstanding the relatively small size
of the state space (which could likely be scaled by a factor of 1000, to around 108 states,
given a modern workstation with sufficient memory) the results and predictions obtained
from this model using PRISM were shown to agree with biological data, demonstrating the
viability of these technique to perform “in silico genetics” as a much less costly alternative
to the “in vitro” experiments traditionally performed in biology.

6.2 Continuous-Time Bayesian networks

CTBNs have been employed on a number of real-world datasets and problems including life
event history data (Nodelman et al., 2003), user activity modeling (Nodelman & Horvitz,
2003), computer system failure modeling (Herbrich, Graepel, & Murphy, 2007), mobile
robotics (Ng, Pfeffer, & Dearden, 2005), network intrusion detection (Xu & Shelton, 2008,
2010), phylogentic trees (Cohn et al., 2009), social networks (Fan & Shelton, 2009), car-
diovascular health model (Weiss et al., 2012), and heart failure (Gatti, Luciani, & Stella,
2012). Many of these also innovated in extending the CTBN framework. For instance, Ng
et al. (2005) allowed for continuous-state variables whose dynamics are dictated by differ-
ential equations. The form of evidence is more limited, but a particle filter is developed
for this situation. Cohn et al. (2009) applied the CTBN model to a “time-tree” to allow
branching (as first done in Felsenstein, 1981 for general CTMPs). Weiss et al. (2012) added
context-specific independence.

To give an idea of the application of CTBNs, we briefly review the intrusion detection
work of Xu and Shelton (2008, 2010). In this work, the goal was to build a model of normal
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N

Figure 19: CTBN model for network traffic (Xu & Shelton, 2010). N is the number of
destination ports.

computer system events, specific to a particular machine. This model could then be used
to detect abnormal events or time windows as a method of intrusion detection.

Two models were built: one modeling network traffic in and out of the machine, and one
modeling system calls from processes. The network model was as in Figure 19. There is one
global hidden variable G with four states. The traffic is divided into different destination
ports (for instance, 80 for HTTP traffic and 995 for POP traffic). The most frequent
eight ports are separated out and the traffic from the remaining destinations are grouped
together. Each of these N = 9 groups has its own model (the plate in Figure 19). This
submodel has one hidden variable H and four completely observed binary variables, Pin,
Pout, Cinc, and Cdec, representing packets sent and received and connections started and
stopped respectively. These observed variables toggle state to represent an event of the
relevant type, but their state has no intrinsic meaning. Therefore, their matrices have only
a single independent parameter: the rate of transition from either state to the other. In
this way, these observed variables are really conditional Poisson processes.

The hidden variable H is structured to exploit domain knowledge. It has 8 states which
are grouped into pairs, one pair for each of its children. For each pair only one of its children
has a non-zero rate. Thus, H encodes what type of event will happen and some substate
of this meta-state.

The entire model has 4×89 or approximately 500 million hidden states (as the observed
variables are observed at all times, only the distribution over the G and the Hs need be
tracked). Yet, each submodel has only 8 hidden states, so exact inference over a submodel
is very reasonable. Thus, they adapted the particle filter and smoother of Fan and Shelton
(2008) to distributional particles, producing a Rao-Blackwellized particle filter in which G
is sampled and each of the models (which are independent, given a full trajectory of G) are
reasoned about exactly.

This inference method allows learning of specific models to each host using EM. These
models were then run on data in which computer virus or worm traffic had been injected
(very slowly to make it blend in with background traffic). The model was asked the likeli-
hood of 50-second window of traffic (given the previous traffic). This likelihood was thresh-
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olded to produce an alarm (if the likelihood dropped too low). The results out-performed
SVM-spectrum kernels, nearest-neighbor (using features from the computer network litera-
ture for this task), and other methods on this task and other similar tasks.

For process system calls, the model was similar, with a single hidden variable coordinat-
ing the behavior of a set of observed system-call variables. The dataset on which this model
was trained had time stamps for each system call. However, due to clock resolution, many
time stamps were the same. Yet, the temporal order was preserved (although the exact
durations between events was not). The paper demonstrates a method to use such data,
without assuming event durations, but employing the ordering. In this case, the results
were better than the SVM-spectrum kernel and nearest-neighbor and the same as stide
with frequency thresholding (Warrender, Forrest, & Pearlmutter, 1999).

6.3 Relative Comparison

Neither of the above two applications could currently be tackled with the other modeling
language. In the biological pathway example of Section 6.1, a transition in the system in-
volved more than one variable (increasing the number of protein complexes, while decreasing
the number of individual proteins). A CTBN cannot represent simultaneous transitions of
multiple variables. The pathways cannot be reformulated in terms of composite variables
to prevent such simultaneous transitions without placing all of the state in a single variable.

As a simpler example, consider a system of three variables, x, y, and z. A single event
performs three variable updates at the same time: {x′ ⇐ x+ y; y′ ⇐ y+ 1; z′ ⇐ z−1} with
rate r(x, y, z). We assume that each variable is a natural number in the range [0, . . . , n]
and that any update that would move a variable outside its range is disabled. Figure 20
demonstrates how an EV∗MDD can encode such a transition. Neither a Kronecker encoding
nor a CTBN can encode this event without merging variables.

Likewise, the network traffic example from Section 6.2 cannot be handled with current
decision-diagram-based models. It depends on hidden unseen variables and estimation of
transient solutions conditioned on data. More critically, it relies on estimation of the model
parameters from data, which has not been developed for decision-diagram models.

6.4 Current Research Directions

There are a range of open modeling, algorithmic, and theoretic problems. First, ques-
tions of steady-state distributions and efficient exact solutions have not been addressed for
CTBNs (as they have for EV∗MDDs). Similarly, questions of structure and parameter es-
timation and approximate inference have not been addressed for EV∗MDDs (as they have
for CTBNs).

Optimal decision making has been formulated as general continuous-time Markov deci-
sion processes (Puterman, 1994). Yet, extending the general mathematical framework to
structured variable-based models is largely unexplored (Kan & Shelton, 2008).

CTBNs were extended to handle continuous-valued variables and measurements in a
limited fashion (Ng et al., 2005), but otherwise this has been unexplored. For many ap-
plications this is critical. If the underlying system is discrete and the measurements are
continuous, techniques like those in Section 2.5 work. But, systems with continuous state
require stochastic differential equations (Øksendal, 2003), at least in some form. The work
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x 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
y 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
z 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

x′ – – – – – – – – – 0 1 2 1 2 – – – – 0 1 2 1 2 – – – –
y′ – – – – – – – – – 1 1 1 2 2 – – – – 1 1 1 2 2 – – – –
z′ – – – – – – – – – 0 0 0 0 0 – – – – 1 1 1 1 1 – – – –
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Figure 20: An example of an EV∗MDD encoding simultaneous transitions of multiple vari-
ables. Top: the 10 possible transitions and resulting states (dash indicates
disabled) from state (x, y, z) to state (x′, y′, z′). Bottom, left: worst case for
an arbitrary set of 10 rates for r(x, y, z). Bottom, right: best case when
r(x, y, z) = r1(x, y)r2(z). A dot indicates a positive value (used to encode the
particular rates). In each block of dots, one must be equal to 1 and the others
must be ≤ 1.

of Särkkä (2006) describes filtering and smoothing in such models. Yet, parameter estima-
tion is much more difficult and systems with both continuous and discrete state variables
have not been systematically addressed.

Finally, new approximate inference methods are always of interest (as with any prob-
abilistic model). Recent methods such as the auxiliary Gibbs sampler (Rao & Teh, 2013)
and belief propagation (El-Hay et al., 2010) demonstrate that exploiting the properties of
continuous time can lead to great benefits. We hope that further research explores more
such methods.
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7. Conclusions

Compared with discrete-time models, CTMPs are better suited for domains in which data
have real-valued time stamps (the time between events is not regular or well-approximated
by a single “clock step rate”). Thus, in selecting a value for the time-slice-width (∆t) for
a discrete-time model, either the time width will be large resulting in multiple events per
time window (obscuring temporal information), or it will be small resulting in unnecessary
computational burdens (propagating across many time windows). Further, the optimal
middle ground between too large and too small will differ depending on the data size, the
application, and the model component.

We have presented two different CTMP modeling languages. Edge-valued decision di-
agrams (of Section 4) are more general: They allow multiple variables to change simulta-
neously. By contrast, CTBNs directly encode independence assumptions (see Section 5).
Either an EV∗MDD or a CTBN might be more compact for a given situation, although any
CTBN can be compactly rerepresented as a sum of EV∗MDDs (see Section 5.1.3).

The models’ forms and histories have given rise to differences in available algorithms,
and here the distinctions are greater. The literature on exact solution methods is richer for
decision diagram models. Furthermore, this literature is more focused on computing the
model’s steady state. Approximate methods (especially for transients) and model estimation
are notably absent (from an artificial intelligence point-of-view). The literature for CTBNs
is more focused on model estimation and approximate inference conditioned on evidence.
The CTBN literature has paid no attention to issues of reachability (when much of the joint
state space is not reachable) and optimization of exact inference methods.

For processes with a natural synchronization clock (such as modeling daily high and low
temperatures), a discrete-time model is the best fit. For processes without such a natural
time-slice-width we recommend a continuous-time model. If the questions of interest are
about steady states of the system or an exact solution is necessary, an EV∗MDD is probably
the best choice. If the model must be built from data or approximate inference (especially
conditioned on data) is necessary, a CTBN is probably the best choice.

However, we have shown that the two models share much in common. Thus, we hope
that the efficient exact algorithms from EV∗MDDs can be applied to CTBNs and the approx-
imate inference and model estimation methods from CTBNs can be applied to EV∗MDDs.
If so, then the choice of model would depend more upon the model properties and not the
existing suite of algorithms. In particular, a CTBN makes the assumption that each vari-
able is distinct. In contrast, a disjunctive EV∗MDD encoding decomposes the system into
local events. The variable-level independencies are more easily read from a CTBN graph,
but they disallow simultaneous transition of multiple variables. The application domain
should guide whether variable-level explicit independences or simultaneous transitions are
more important.

Regardless of the model used, we believe time is a continuous quantity and best modeled
as such. While the introduction of the matrix exponential would at first seem to complicate
matters (compared with discrete time), we believe it makes the true coupling of variables
more obvious and opens up mathematical and algorithmic possibilities for more efficient
and precise solutions.
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Appendix A. NP-hardness of CTBN Inference

The theorem and proof of the NP-hardness of CTBN inference are straight-forward exten-
sions of the similar proof for Bayesian networks (Koller & Friedman, 2009). The literature
has widely accepted it to be true, but no proof has been formally presented. Thus, while
straight-forward, we present it here for completeness.

Definition 1. CTBN-Inf is the following decision problem. Given a CTBN specified as
a directed graph G over nodes {X1, X2, . . . , XL}, a set of conditional intensity matrices
Q = {QXi|pari}, and an initial distribution π in which each node is independent with
marginals {πXi}; a variable Xj; a value for Xj, xj; and a time t > 0, decide whether
PG,Q,π(Xj(t) = xj) > 0.

Theorem 1. CTBN-Inf is NP-hard.

Proof. The proof is a polynomial time reduction from 3-SAT, following the same lines as
the similar proof for Bayesian networks.

Given a 3-SAT problem with variables z1, z2, . . . , zm and clauses c1, c2, . . . , ck in which
zA(i,j) is the jth variable (j ∈ {1, 2, 3}) in clause i (i ∈ {1, 2, . . . , k}) with sign sA(i,j) ∈
{+,−}, we construct a CTBN with m + 2k − 1 binary variables (taking values F or T ):
Y1, Y2, . . . , Ym, C1, C2, . . . , Ck, B1, B2, . . . , Bk−2, and S.

Variable Yi has no parents, a uniform initial distribution πYi , and an intensity matrix
QYi|∅ that is all 0.

Variable Ci has three parents: YA(i,1), YA(i,2), and YA(i,3). If none of the truth value
of the parents (yA(i,1), yA(i,2), yA(i,3)) match the formula’s signs (sA(i,1), sA(i,2), sA(i,3)), the
conditional intensity matrix is all 0. For the other parent assignments (in which at least one

variable matches), the conditional intensity matrices are

[
−1 1
0 0

]
. The initial distribution

is
[
1 0

]
.

Variable B1 has parents C1 and C2. Variable Bi (for 1 < i < k − 1) has parents Bi−1

and Ci+1. Variable S has parents Bk−2 and Ck. For all of these variables, the conditional

intensity matrix if the two parents’ values are T is

[
−1 1
0 0

]
. Otherwise, the conditional

intensity matrix is all 0. All of these variables have an initial distribution of
[
1 0

]
.

This reduction is polynomial in size (all numeric values are small and there are a polyno-
mial number of variables, each with a maximum of 3 parents) and can obviously be output
in polynomial time. By construction, Yi selects at time 0 a truth value for zi and never
changes. Each Cj will then eventually change to T if and only if the clause is satisfied by
the selected truth values. Bj will eventually change to be T if and only if clauses 1 through
j + 1 are all T . S will similarly eventually change to be T if and only if all clauses are
satisfied.
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Because of the Markov nature of the process, for any time t > 0, PG,Q,π(S(t) = T ) > 0 if
the formula is satisfiable and the same probability is 0 if the formula is not satisfiable.

This demonstrates that determining whether a marginal is non-zero is NP-hard. By sim-
ilar construction as for Bayesian networks (Koller & Friedman, 2009), this can be extended
to show that absolute and relative error formulations of inference are also NP-hard.
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