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Abstract

In this paper we present a language for finite state con-
tinuous time Bayesian networks (CTBNs), which de-
scribe structured stochastic processes that evolve over
continuous time. The state of the system is decom-
posed into a set of local variables whose values change
over time. The dynamics of the system are described
by specifying the behavior of each local variable as a
function of its parents in a directed (possibly cyclic)
graph. The model specifies, at any given point in time,
the distribution over two aspects: when a local variable
changes its value and the next value it takes. These
distributions are determined by the variable’s current
value and the current values of its parents in the graph.
More formally, each variable is modelled as a finite
state continuous time Markov process whose transi-
tion intensities are functions of its parents. We present
a probabilistic semantics for the language in terms of
the generative model a CTBN defines over sequences
of events. We list types of queries one might ask of a
CTBN, discuss the conceptual and computational diffi-
culties associated with exact inference, and provide an
algorithm for approximate inference which takes ad-
vantage of the structure within the process.

1 Introduction

Consider a medical situation where you have administered
a drug to a patient and wish to know how long it will take
for the drug to take effect. The answer to this question will
likely depend on various factors, such as how recently the
patient has eaten. We want to model the temporal process
for the effect of the drug and how its dynamics depend on
these other factors. As another example, we might want
to predict the amount of time that a person remains unem-
ployed, which can depend on the state of the economy, on
their own financial situation, and more.

Although these questions touch on a wide variety of is-
sues, they are all questions about distributions over time.
Standard ways of approaching such questions — event his-
tory analysis (Blossfeld et al., 1988; Blossfeld & Rohwer,
1995; Anderson et al., 1993) and Markov process models
(Duffie et al., 1996; Lando, 1998) — work well, but do not
allow the specification of models with a large structured
state space where some variables do not directly depend on

others. For example, the distribution over how fast a drug
takes effect might be mediated by how fast it reaches the
bloodstream which may itself be affected by how recently
the person has eaten.

Bayesian networks (Pearl, 1988) are a standard approach
for modelling structured domains. With such a represen-
tation we can be explicit about the direct dependencies
which are present and use the independencies to our ad-
vantage computationally. However, Bayesian networks are
designed to reason about static processes, and cannot be
used directly to answer the types of questions that concern
us here.

Dynamic Bayesian networks (DBNs) (Dean &
Kanazawa, 1989) are the standard extension of Bayesian
networks to temporal processes. DBNs model a dynamic
system by discretizing time and providing a Bayesian net-
work fragment that represents the probabilistic transition
of the state at time t to the state at time t +1. Thus, DBNs
represent the state of the system at different points in time,
but do not represent time explicitly. As a consequence, it
is very difficult to query a DBN for a distribution over the
time at which a particular event takes place. Moreover,
since DBNs slice time into fixed increments, one must
always propagate the joint distribution over the variables
at the same rate. This requirement has several limitations.
First, if our system is composed of processes that evolve at
different time granularities, we must represent the entire
system at the finest possible granularity. Second, if we
obtain observations which are irregularly spaced in time,
we must still represent the intervening time slices at which
no evidence is obtained.

Hanks et al. (1995) present another discrete time ap-
proach to temporal reasoning related to DBNs which they
extend with a rule-based formalism to model endoge-
nous changes to variables which occur between exogenous
events. They also include an extensive discussion of vari-
ous approaches probabilistic temporal reasoning.

We provide the alternative framework of continuous time
Bayesian networks. This framework explicitly represents
temporal dynamics and allows us to query the network for
the distribution over the time when particular events of in-
terest occur. Given sequences of observations spaced irreg-



ularly through time, we can propagate the joint distribution
from observation to observation. Our approach is based
on the framework of homogeneous Markov processes, but
utilizes ideas from Bayesian networks to provide a graphi-
cal representation language for these systems. Endogenous
changes are modelled by the state transitions of the pro-
cess. The graphical representation allows compact models
for processes involving a large number of co-evolving vari-
ables, and an effective approximate inference procedure
similar to clique tree propagation.

2 Continuous Time

We begin with the necessary background on modelling with
continuous time.

2.1 Homogeneous Markov Processes

Our approach is based on the framework of finite state con-
tinuous time Markov processes. Such processes are gener-
ally defined as matrices of transition intensities where the
(i, j) entry gives the intensity of transitioning from state
i to state j and the entries along the main diagonal make
each row sum to zero. Specifically, our framework will be
based on homogeneous Markov processes — one in which
the transition intensities do not depend on time.

Let X be a local variable, one whose state changes con-
tinuously over time. Let the domain of X be Val(X) =
{x1,x2, . . . ,xn}. We present a homogeneous Markov pro-
cess X(t) via its intensity matrix:

QX =











−qx
1 qx

12 · · · qx
1n

qx
21 −qx

2 · · · qx
2n

...
...

. . .
...

qx
n1 qx

n2 · · · −qx
n











,

where qx
i = ∑ j 6=i qx

i j. Intuitively, the intensity qx
i gives the

‘instantaneous probability’ of leaving state xi and the inten-
sity qx

i j gives the ‘instantaneous probability’ of transition-
ing from xi to x j. More formally, as ∆t→ 0,

Pr{X(t +∆t) = x j | X(t) = xi} ≈ qx
i j∆t, for i 6= j

Pr{X(t +∆t) = xi | X(t) = xi} ≈ 1−qx
i ∆t

.

Given the QX matrix we can describe the transient behav-
ior of X(t) as follows. If X(0) = xi then it stays in state
xi for an amount of time exponentially distributed with pa-
rameter qx

i . Thus, the probability density function f and
corresponding distribution function F for X(t) remaining
equal to xi are given by

f (t) = qx
i exp(−qx

i t), t ≥ 0
F(t) = 1− exp(−qx

i t), t ≥ 0 .

The expected time of transitioning is 1/qx
i . Upon transi-

tioning, X shifts to state x j with probability qx
i j/qx

i .

Example 2.1 Assume that we want to model the behavior
of the barometric pressure B(t) discretized into three states

(b1 = falling, b2 = steady, and b3 = rising), we could write
the intensity matrix as

QB =





−.21 .2 .01
.05 −.1 .05
.01 .2 −.21



 .

If we view units for time as hours, this means that if the
pressure is falling, we expect that it will stop falling in a
little less than 5 hours (1/.21 hours). It will then transition
to being steady with probability .2/.21 and to falling with
probability .01/.21.

We can consider the transitions made between two con-
secutive different states, ignoring the time spent at each
state. Specifically, we can define the embedded Markov
chain E which is formed by ignoring the amount of time X
spends in its states and noting only the sequence of transi-
tions it makes from state to state. We can write out the n×n
transition probability matrix PE for this chain, by putting
zeros along the main diagonal and qx

i j/qx
i in the (i, j) entry.

We can also consider the distribution over the amount of
time X spends in a state before leaving again, ignoring the
particular transitions X makes. We can write out the n× n
state duration matrix M (which is often called the comple-
tion rate matrix or holding rate matrix), by putting the qi
values along the main diagonal and zeros everywhere else.
It is easy to see that we can describe the original intensity
matrix in terms of these two matrices:

Q = M(PE − I) .

Example 2.2 For our barometric pressure process B,

QB =





.21 0 0
0 .1 0
0 0 .21
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 .

2.2 Subsystems

It is often useful to consider subsystems of a Markov pro-
cess. A subsystem, S, describes the behavior of the process
over a subset of the full state space — i.e., Val(S)⊂Val(X).
In such cases we can form the intensity matrix of the sub-
system, US, by using only those entries from QX that cor-
respond to states in S.

Example 2.3 If we want the subsystem of the barometric
pressure process, B, corresponding to the pressure being
steady or rising (S = {b2,b3}), we get

US =

[

−.1 .05
.2 −.21

]

.

Note that, for a subsystem, the sums of entries along a
row are not, in general, zeros. This is because a subsystem
is not a closed system — i.e, from each state, there can be a
positive probability of entering states not in S and thus not
represented in the transition matrix for the subsystem.



Once we have formed a subsystem S of X , we can also
talk about the complement subsystem S, which is a subsys-
tem over the other states — i.e., Val(S) = Val(X)−Val(S).
In general, when examining the behavior of a subsystem,
we consider the entrance and exit distributions for the sub-
system. An entrance distribution is a distribution over the
states of S, where the probability of a state s is the prob-
ability that s is the state to which we first transition when
entering the subsystem S. An exit distribution describes
the first state not in Val(S) to which we transition when we
leave the subsystem.

2.3 Queries over Markov processes

If we have an intensity matrix, QX , for a homogeneous
Markov process X(t) and an initial distribution over the
value of X at time 0, P0

X , there are many questions about
the process which we can answer.

The conditional distribution over the value of X at time
t given the value at an earlier time s is

Pr{X(t) | X(s)}= exp(QX(t− s)) , for s < t .

Thus, the distribution over the value of X(t) is given by

PX (t) = P0
X exp(QX t) .

As t grows, PX (t) approaches the stationary distribution π
for X which can be computed by an eigenvalue analysis.
Additionally, we can form the joint distribution over any
two time points using the above two formulas:

PX (s, t) = PX(s)exp(QX(t− s)) .

Suppose we are interested in some subsystem S of X .
Given an entrance distribution P0

S into S, we can calculate
the distribution over the amount of time that we remain
within the subsystem. This distribution function is called
a phase distribution (Neuts 1975; 1981), and is given by

F(t) = 1−P0
S exp(USt)e .

where US is (as above) the subsystem intensity matrix and
e is the unit vector. The expected time to remain within the
subsystem is given by P0(−US)

−1e.

Example 2.4 In our barometric pressure example, if we
have a uniform entrance distribution for the subsystem in
Example 2.3, then the distribution in time over when the
pressure begins to fall is given by

F(t) = 1−
[

.5 .5
]

exp
([

−.1 .05
.2 −.21

]

t
)

e

≈ 1−1.0476(0.960t)+0.0476(0.7641t) .

Finally, given an entrance distribution, P0
S, to a subsys-

tem S of X , we can calculate the exit distribution. To do
so, we construct a new process X ′ by setting all intensities
to zero within rows corresponding to states not in S. This
transformation, in effect, makes every state which is not in

the subsystem an absorbing state. (Once the system has en-
tered an absorbing state, it can never leave that state.) If
we use our entrance distribution over the states of S for our
initial distribution to X ′ (setting the probability of starting
in other states to zero), we can see that the exit distribution
is given by the stationary distribution of X ′. This is because
the only way that we can enter the newly constructed ab-
sorbing states is by leaving S and so the probability with
which we end up in an absorbing state is the probability
that we entered that state by exiting the subsystem.

3 Continuous Time Bayesian Nets

Our goal in this paper is to model Markov processes over
systems whose momentary state is defined as an assign-
ment to some (possibly large) set of variables X . In prin-
ciple, we can simply explicitly enumerate the state space
Val(X), and write down the intensity matrix which spec-
ifies the transition intensity between every pair of these
states. However, as in Bayesian networks, the size of the
state space grows exponentially with the number of vari-
ables, rendering this type of representation infeasible for
all but the smallest spaces.

In this section, we provide a more compact factored rep-
resentation of Markov processes. We define a continuous
time Bayesian network — a graphical model whose nodes
are variables whose state evolves continuously over time,
and where the evolution of each variable depends on the
state of its parents in the graph.

3.1 Conditional Markov Processes

In order to compose Markov processes in a larger network,
we need to introduce the notion of a conditional Markov
process. This is a type of inhomogeneous Markov process
where the intensities vary with time, but not as a direct
function of time. Rather, the intensities are a function of
the current values of a set of other variables, which also
evolve as Markov processes. We note that a similar model
was used by Lando (1998), but the conditioning variables
were not viewed as Markov processes, nor were they built
into any larger structured model, as in our framework.

Let Y be a variable whose domain is Val(Y ) =
{y1,y2, . . . ,ym}. Assume that Y evolves as a Markov pro-
cess Y (t) whose dynamics are conditioned on a set V of
variables, each of which also can also evolve over time.
Then we have a conditional intensity matrix (CIM) which
can be written

QY |V =











−qy
1(V ) qy

12(V ) · · · qy
1m(V )

qy
21(V ) −qy

2(V ) · · · qy
2m(V )

...
...

. . .
...

qy
m1(V ) qy

m2(V ) · · · −qy
m(V )











.

Equivalently, we can view a CIM as set of intensity matri-
ces, one for each instantiation of values v to the variables V .
The set of variables V are called the parents of Y , and de-
noted Par(Y ). Note that, if the parent set Par(Y ) is empty,
then the CIM is simply a standard intensity matrix.
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Figure 1: Drug effect network

Example 3.1 Consider a variable E(t) which models
whether or not a person is eating (e1 = not eating, e2 =
eating) and is conditional on a variable H(t) which mod-
els whether or not a person is hungry (h1 = not hungry,
h2 = hungry). Then we can specify the CIM for E(t) as

QE|h1 =

[

−.01 .01
10 −10

]

QE|h2 =

[

−2 2
.01 −.01

]

.

Given this model, we expect a person who is hungry and
not eating to begin eating in half an hour (1/2 hour). We
expect a person who is not hungry and is eating to stop
eating in 6 minutes (1/10 hour).

3.2 The CTBN Model

Conditional intensity matrices provide us a way of mod-
elling the local dependence of one variable on a set of oth-
ers. By putting these local models together, we can define a
single joint structured model. As is the case with dynamic
Bayesian networks, there are two central components to de-
fine: the initial distribution and the dynamics with which
the system evolves through time.

Definition 3.2 Let X be a set of local variables X1, . . . ,Xn.
Each Xi has a finite domain of values Val(Xi). A continuous
time Bayesian network N over X consists of two compo-
nents: The first is an initial distribution P0

X , specified as a
Bayesian network B over X. The second is a continuous
transition model, specified as

• A directed (possibly cyclic) graph G whose nodes are
X1, . . . ,Xn; Par(Xi) denotes the parents of Xi in G.

• A conditional intensity matrix, QX|Par(X), for each
variable Xi ∈ X.

Unlike traditional Bayesian networks, there is no prob-
lem with cycles in the graph G. An arc X → Y in the graph
implies that the dynamics of Y ’s evolution in time depends
on the value of X . There is no reason why the dynamics of
X’s evolution cannot simultaneously depend on the value of
Y . This dependency is analogous to a DBN model where
we have arcs X t → Y t+1 and Y t → X t+1.

Example 3.3 Figure 1 shows the graph structure for a
CTBN modelling our drug effect example. There are nodes

for the uptake of the drug and for the resulting concentra-
tion of the drug in the bloodstream. The concentration is
affected by the how full the patient’s stomach is. The drug is
supposed to alleviate joint pain, which may be aggravated
by falling pressure. The drug may also cause drowsiness.
The model contains a cycle, indicating that whether a per-
son is hungry depends on how full their stomach is, which
depends on whether or not they are eating.

3.3 Amalgamation

In order to define the semantics of a CTBN, we must show
how to view the entire system as a single process. To do
this, we introduce a “multiplication” operation called amal-
gamation on CIMs. This operation combines two CIMs to
produce a single, larger CIM.

Amalgamation takes two conditional intensity matrices
QS1|C1 and QS2|C2 and forms from them a new product
CIM, QS|C = QS1|C1 ∗QS2|C2 where S = S1 ∪ S2 and C =
(C1∪C2)−S. The new CIM contains the intensities for the
variables in S conditioned on those of C. A basic assump-
tion is that, as time is continuous, variables cannot transi-
tion at the same instant. Thus, all intensities corresponding
to two simultaneous changes are zero. If the changing vari-
able is in S1, we can look up the correct intensity from the
factor QS1|C1 . Similarly, if it is in S2, we can look up the
intensity from the factor QS2|C2 . Intensities along the main
diagonal are computed at the end to make the rows sum to
zero for each instantiation to C.

Example 3.4 Assume we have a CTBN with graph W � Z
and CIMs

QW |z1 =

[

−1 1
2 −2

]

QW |z2 =

[

−3 3
4 −4

]

QZ|w1 =

[

−5 5
6 −6

]

QZ|w2 =

[

−7 7
8 −8

]

.

Let us consider the joint transition intensity of these two
processes. As discussed, intensities such as between
(z1,w1) and (z2,w2) are zero. Now, consider a transition
from (z1,w1) to (z1,w2). In this case, we simply use the ap-
propriate transition intensity from the matrix QW |z1 , i.e., 1.
Assuming that the states in the joint space are ordered as
(z1,w1),(z1,w2),(z2,w1),(z2,w2), this would be the value
of the row 1, column 2 entry of the joint intensity matrix.
As another example, the value of the row 4, column 2 entry
would be taken from QZ|w2 . The entries on the diagonal
are determined at the end, so as to make each row sum to
0. The joint intensity matrix is, therefore,

QWZ = QW |Z ∗QZ|W =





−6 1 5 0
2 −9 0 7
6 0 −9 3
0 8 4 −12



 .

To provide a formal definition, we need to introduce
some notation. Let QS|C(si→ s j | ck) be the intensity spec-
ified in QS|C for the variables in S changing from state si to
state s j conditioned on the variables of C having value ck.



We denote the set of variables whose values are different
between the instantiations si and s j as δ(i, j). We define
s[S`] to be the projection of the instantiation s onto the set
of variables S`. Finally, we use (si,ck) to denote the joint
instantiation over S,C consistent with si,ck.

QS|C(si→ s j | ck)

=



































QS1|C1
(si[S1]→ s j[S1] | (si,ck)[C1])

if |δ(i, j)|= 1 and δ(i, j)⊆ S1
QS2|C2

(si[S2]→ s j[S2] | (si,ck)[C2])

if |δ(i, j)|= 1 and δ(i, j)⊆ S2
−zi|k if i = j
0 otherwise

where zi|k = ∑ j 6=i QS|C(si→ s j | ck).

3.4 Semantics

Formally, let (Ω,F ,P) be our probability space, where
the space Ω consists of a set of infinite trajectories over
τ = [0,∞), and F is an appropriate σ-algebra. (See Gih-
man and Skorohod (1971) for a formal definition.)

We define the semantics of a CTBN as a single homo-
geneous Markov process over the joint state space, using
the amalgamation operation. In particular, the CTBN N is
a factored representation of the homogeneous Markov pro-
cess described by the joint intensity matrix defined as

QN = ∏
X∈X

QX|Par(X) .

From the definition of amalgamation, we see the states of
the joint intensity matrix are full instantiations to all of the
variables X of N . Moreover, a single variable X ∈ X tran-
sitions from xi to x j with intensity qx

i j(Par(X)).
An alternative view of CTBNs is via a generative se-

mantics. A CTBN can be seen as defining a generative
model over sequences of events, where an event is a pair
〈X ← x j,T 〉, which denotes a transition of the variable X
to the value x j at time T . Given a CTBN N , we can define
the generative model as follows.

We initialize σ to be an empty event sequence. We de-
fine a temporary event list E, which contains pairs of state
transitions and intensities; the list E is a data structure for
candidate events, which is used to compute the next event
in the event sequence. We also maintain the current time T
and the current state of the system x(T ). Initially, we have
T = 0, and the system state x(0) is initialized by sampling
at random from the Bayesian network B which denotes the
initial state distribution P0

X .
We then repeat the following steps, where each step se-

lects the next event to occur in the system, with the appro-
priate distribution.

For each variable X that does not have an event in E:
Let xi = x(t)[X ]
Choose the transition xi→ x j according to the

probabilities qx
i j(Par(X))/qx

i (Par(X))
Add 〈X ← x j,qx

i (Par(X))〉 to E

Let qE be the sum of all the q values for events in E
Choose the next event 〈X ← x j,qx〉 from E with

probability qx/qE
Choose the time tE for the next transition from an

exponential distribution with parameter qE .
Update T ← T + tE and X ← x j
Add 〈X ← x j,T 〉 to σ
Remove from E the transition for X and for all

variables Y for which X ∈ Par(Y ).

Definition 3.5 Two Markov processes are said to be
stochastically equivalent if they have the same state space
and transition probabilities (Gihman & Skorohod, 1973).

Theorem 3.6 The Markov process determined by the gen-
erative semantics is stochastically equivalent to the Markov
process determined by the joint intensity matrix.

As in a Bayesian network, the graph structure can be
viewed in two different yet closely related ways. The first
is as a data structure with which we can associate parame-
ters to define a joint distribution. The second is as a quali-
tative description of the independence properties of the dis-
tribution. To understand this notion, note that there are two
ways to think about a stochastic process X . For a fixed
time t ∈ τ, X can be viewed as a random variable X(t). For
a fixed ω ∈ Ω, we can view X as a function of time (over
τ) and X(ω) as a trajectory. The CTBN graph specifies a
notion of independence over entire trajectories.

Definition 3.7 Two Markov processes X and Y are inde-
pendent if, for any finite sets T,T ′ ⊂ τ, the joint distribu-
tion over the variables X(t), t ∈ T and the joint distribution
over the variables Y (t ′), t ′ ∈ T ′ are independent (Gihman
& Skorohod, 1971).

Definition 3.8 We say that Y is a descendants of X in the
(possibly cyclic) graph G if and only if there is a directed
path in G from X to Y . (Note that a variable can be its own
descendants according to this definition.)

Theorem 3.9 If X is a local variable in a CTBN N , then
X is independent of its non-descendants (in G) given tra-
jectories over the set of variables in Par(X).

For example, in our drug effect network, the joint pain is in-
dependent of taking the drug given the moment by moment
concentration of the drug in the bloodstream.

4 Reasoning in CTBNs

In this section, we describe some of the queries that we can
address using this type of representation. We then discuss
some of the computational difficulties that we encounter if
we try doing this type of inference exactly.

4.1 Queries over a CTBN

In the previous section, we showed that we can view a
CTBN as a compact representation of a joint intensity ma-
trix for a homogeneous Markov process. Thus, at least in



principle, we can use a CTBN to answer any query that we
can answer using an explicit representation of a Markov
process: We can form the joint intensity matrix and then
answer queries just as we do for any homogeneous Markov
process, as described above.

For example, in the drug effect network, we can set the
initial distribution such that the drug was administered at
t = 0 hours, compute the joint distribution over the state of
the system at t = 5, and then marginalize it to obtain a dis-
tribution over joint pain at t = 5. Additionally, because we
have the full joint distribution at this point in time, we can
calculate for t = 5 the distribution over drowsiness given
that the concentration of the drug is high.

Now, assume that we have a series of observations. We
can compute the joint distribution over the system state for
any point in time at or after the time of the last observa-
tion. We calculate the new joint distribution at the time of
the first observation, condition on the observation, and use
that as the initial distribution from which to compute the
joint distribution at the next observation time. This process
can be executed for an entire series of observations. For
example, assume that our patient took the drug at t = 0,
ate after an hour (t = 1) and felt drowsy three hours after
eating (t = 4). We can compute the distribution over joint
pain six hours after taking the drug (t = 6) by computing
the joint distribution at time 1, conditioning that distribu-
tion on the observation of eating, and using that as an ini-
tial distribution with which to compute the joint distribu-
tion 3 hours later. After conditioning on the observation
of drowsiness, we use the result as an initial distribution
with which to calculate the joint distribution 2 hours after
that. That joint distribution can be marginalized to give the
distribution over joint pain given the sequence of evidence.
The key is that, unlike in DBNs, we need only do one prop-
agation for each observation time, even if the observations
are irregularly spaced.

As noted in section 2.3 we can compute the joint distri-
bution between any two points in time. By conditioning on
evidence at the later time point, we can propagate evidence
backwards in time. Even more interestingly, we can calcu-
late the distribution over the first time a variable X takes on
a particular value x: X taking the value x is simply a subsys-
tem of the joint intensity matrix, and we can compute the
distribution over the entrance time into the subsystem. For
example, we could set our initial distribution to one where
the patient takes the drug and has joint pain. We could then
directly compute the distribution over the time at which the
joint pain goes away. Note that this type of query could also
be computed for the time after some sequence of evidence.

4.2 Difficulties with Exact Inference

The obvious flaw in our discussion above is that our ap-
proach for answering these queries requires that we gener-
ate the full joint intensity matrix for the system as a whole,
which is exponential in the number of variables. The graph-
ical structure of the CTBN immediately suggests that we
perform the inference in a decomposed way, as in Bayesian

networks. Unfortunately, as we now show, the problems
are significantly more complex in this setting.

Consider a simple chain X → Y → Z. It might appear
that, at any point in time, Z is independent of X given Y .
Unfortunately, this is not the case. Even though the transi-
tion intensity for Z depends only on the value of Y at any
instance in time, as soon as we consider temporal evolution,
their states become correlated. This problem is completely
analogous to the entanglement problem in DBNs (Boyen &
Koller, 1998), where all variables in the DBN typically be-
come correlated over some number of time slices. The pri-
mary difference is that, in continuous time, even the small-
est time increment ∆t results in the same level of entangle-
ment as we would gain from an arbitrary number of time
slices in a DBN.

In fact, as discussed in Section 3.4, the only conclusion
we can make about a structure X → Y → Z is that the Z
is independent of X given the full trajectory of Y . As a
consequence, we can fully reconstruct the distribution over
trajectories of Z, ignoring X , if we are given the full dis-
tribution over trajectories for Y . Of course, a full distri-
bution over continuous time processes is a fairly complex
structure. One might hope that we can represent it com-
pactly, e.g., using an intensity matrix. Unfortunately, even
when the distribution over the joint X ,Y process is a ho-
mogeneous Markov process, its projection over Y is not a
homogeneous Markov process.

A second potential avenue is the fairly natural conjecture
that we do not always need the full distribution over trajec-
tories. Perhaps, if our goal is only to answer certain types
of queries, we can make do with some summary over Y .
Most obviously, suppose we want to compute the station-
ary distribution over Z. It seems reasonable to assume that
Z’s stationary behavior might depend only on the stationary
behavior of Y . After all, the transitions for Z are governed
by two matrices QZ|y1 and QZ|y2 . As long as we know the
stationary distribution for Y , we know which fraction of the
time Z uses each of its transition matrices. So, we should
be able to compute the stationary distribution for Z from
this information. Unfortunately, this assumption turns out
to be unfounded.

Example 4.1 Consider the following intensity matrices.

QY =

[

−1 1
2 −2

]

QY ′ =

[

−10 10
20 −20

]

QZ|y1 =

[

−3 3
15 −15

]

QZ|y2 =

[

−5 5
4 −4

]

Note that Y and Y ′ both have the same stationary dis-
tribution,

[

.667 .333
]

. If we look at the CTBN with
the graph Y → Z we get a stationary distribution for Z
of
[

.7150 .2850
]

. But, if we look at the CTBN with
graph Y ′ → Z, we get a stationary distribution for Z of
[

.7418 .2582
]

.

Thus, even the stationary behavior of Z depends on the
specific trajectory of Y and not merely the fraction of time



it spends in each of its states. We can gain intuition for this
phenomenon by thinking about the intensity matrix as an
infinitesimal transition matrix. To determine the behavior
of Z, we can imagine that for each infinitesimal moment of
time we multiply it to get to the next time instance.1 At
each instance, we check the value of Y and select which
matrix we multiply for that instant. The argument that we
can restrict attention to the stationary distribution of Y im-
plicitly assumes that we care only about “how many” times
we use each matrix. Unfortunately, matrix multiplication
does not commute. If we are rapidly switching back and
forth between different values of Y we get a different prod-
uct at the end than if we switch between the values more
slowly. The product is different because the order in which
we multiplied was different — even if the number of times
we used one matrix or the other were same in both cases.

5 Approximate Inference

As we saw in the previous section, exact inference in
CTBNs is probably intractable. In this section, we de-
scribe an approximate inference technique based on the
clique tree inference algorithm. Essentially, the messages
passed between cliques are distributions over entire tra-
jectories, represented as homogeneous Markov processes.
These messages are not the correct distributions, but they
often provide a useful approximation.

For example, consider again our chain X → Y → Z. As
we mentioned, to reason about X , we need to pass to Z the
entire distribution over Y ’s trajectories. Unfortunately, the
projection of the entire process onto Y is not a homoge-
neous Markov process. However, we can build a process
over X ,Y , and approximate the distribution over Y ’s trajec-
tories as a homogeneous Markov process.

5.1 The Clique Tree Algorithm

Roughly speaking, the basic clique tree calibration step is
almost identical to the propagation used in the Shafer and
Shenoy (1990) algorithm, except that we use amalgamation
as a substitute for products and approximate marginaliza-
tion as a substitute for standard marginalization.

Initialization of the Clique Tree We begin by construct-
ing the clique tree for the graph G. This procedure is the
same as with ordinary Bayesian networks except that we
must deal with cycles. We simply connect all parents of a
node with undirected edges, and then make all the remain-
ing edges undirected. If we have a cycle, it simply turns
into a loop in the resulting undirected graph.

As usual, we associate each variable with a clique that
contains it and all of its parents, and assign its CIM to that
clique. Let Ai ⊆ Ci be the set of variables associated with
clique Ci. Let Ni be the set of neighboring cliques for Ci and
let Si j be the set of variables in Ci ∩C j. We also compute,
for each clique Ci, the initial distribution Pi(Ci). We can

1The product integral can be used to make this argument math-
ematically precise (Gill & Johansen, 1990).

implement this operation using standard BN inference on
the network B . Finally, we calculate the initial intensity
potential fi for Ci as:

fi = ∏
X∈Ai

QX|Par(X)

where our notion of product is amalgamation.

Message Passing The message passing process is used
purely for initial calibration. Its basic goal is to compute,
in each clique i, an approximate probability distribution
over the trajectories of the variables Ci. This approxima-
tion is simply a homogeneous Markov process, and is rep-
resented as an initial distribution (computed in the initial-
ization step) and a joint intensity matrix over Ci, computed
in the calibration step (described below). At this point in
the algorithm, no evidence is introduced.

To perform the calibration, cliques send messages to
each other. A clique Ci is ready to send message µi→ j to
clique C j when it has received messages µk→i from all the
neighboring cliques k ∈ Ni except possibly j. At that point,
we compute and send the message by amalgamating the
local intensity potential with the other messages and elimi-
nating all variables except those shared with C j. More for-
mally:

µi→ j = margPi
(Ci−Si j)

(

fi ∗

(

∏
k∈Ni,k 6= j

µk→i

))

,

where margP
Y (QS|C) denotes the operation of taking a CIM

QS|C and eliminating the variables in Y . As we discussed,
we cannot compute an exact representation of a Markov
process after eliminating some subset of the variables.
Therefore, we will use an approximate marginalization op-
eration, which we describe below.

Once clique Ci has received all of its incoming mes-
sages, we can compute a local intensity matrix as

QCi = fi ∗∏
k∈Ni

µ j→i

Answering queries After the calibration process, each
clique i has a joint intensity matrix over the variables in Ci,
which, together with the initial distribution, define a homo-
geneous Markov process. We can therefore compute the
approximate behavior of any of the variables in the clique,
and answer any of the types of queries described in Sec-
tion 4.1, for variables within the same clique.

Incorporating evidence is slightly more subtle. Assume
that we want to introduce evidence over some variable X
at time te. We can reason over each Markov process sepa-
rately to compute a standard joint distribution Pte(Ci) over
each clique Ci at the time point te. However, as our ap-
proximation is different in different cliques, the distribu-
tions over different cliques will not be calibrated: The same
variable at different cliques will typically have a different
marginal distribution. In order to calibrate the clique tree to



define a single coherent joint distribution, we must decide
on a root Cr for the tree, and do a standard downward pass
from Cr to calibrate all of the cliques to Cr. Once that is
done, we have a coherent joint distribution, into which we
can insert evidence, and which we can query for the proba-
bility of any variable of interest.

If we have a sequence of observations at times t1, . . . , tn,
we use the process described above to propagate the distri-
bution to time t1, we condition on the evidence, and then we
use the new clique distributions at time t1 as initial distri-
butions from which we propagate to t2. This process is re-
peated until we have propagated to time tn and incorporated
the evidence, after which we are ready to answer queries
that refer to time(s) after the last evidence point.

For evidence after the query time, we propagate the ev-
idence from the final evidence point backward, iterating to
the query time, constructing the probability of the later ev-
idence given the query. Multiplying this by the forward
propagation from the previous paragraph yields the proba-
bility of the query conditioned on all of the evidence.

5.2 Marginalization

The core of our algorithm is an “approximate marginal-
ization” operation on intensity matrices which removes a
variable (X in our example) from an intensity matrix and
approximates the resulting distribution over the other vari-
ables using a simpler intensity matrix. More formally, the
marginalization operation takes a CIM QS|C, a set of vari-
ables Y ⊂ S, and an initial distribution P over the vari-
ables of S. It returns a reduced CIM of the form QS′|C =

margP
Y (QS|C), where S′ = S−Y .

5.2.1 The Linearization Method
Ideally, the transition probabilities derived from the
marginalized matrix QS′|C would be equal to the actual
transition probabilities derived from the original matrix
QS|C. Let s′ ⊕ y be the full instantiation to S of s′ to S′

and y to Y . Consider the transition from s1 = s′1⊕ y1 to
s2 = s′2⊕ y2 over an interval of length ∆t. We would like
our marginalized process to obey

P(s′2|s
′
1,c) = ∑

y1,y2

P(s′2⊕ y1|s
′
1⊕ y2,c)P(y1|s

′
1,c)

for all ∆t, s1, s2, and c. As discussed above, this is generally
not possible.

Our linearization approach is based on two approxima-
tions. First, we assume that the value of the variables in Y
do not change over time, so that we can use the values of y
at the beginning of the interval:

P(s′2|s
′
1,c)≈∑

y
P(s′2⊕ y|s′1⊕ y,c)P0(y|s′1,c) ,

where P0 is the distribution at the beginning of the interval.
Second, we use a linear approximation to the matrix ex-

ponential:
exp(Q∆t)≈ I +Q∆t .

The resulting approximation is

QS′|C(s′1→ s′2 | c)

≈∑
y

QS|C(s′1⊕ y→ s′2⊕ y | c)P0(y | s′1,c)

We call this expression the linear approximation of the
marginal.

Example 5.1 Consider the CIMs from Example 4.1; amal-
gamated into a single system, we get:

QYZ =





−4 1 3 0
2 −7 0 5

15 0 −16 1
0 4 2 −6



 .

If P0
Y =

[

.3 .7
]

, P0
Z|y1

=
[

.7 .3
]

, and P0
Z|y2

=
[

.3 .7
]

, then the linear approximation is

margP0

Y (QY Z) =

[

−4 4
5.6101 −5.6101

]

.

5.2.2 The Subsystem Method
Unfortunately, unless we plan to do our inference with a
significant amount of time slicing, the assumptions under-
lying the above method do not hold. In particular, if we
want our approximation to work better over a longer time
interval, we need to account for the fact that the variables
we are eliminating can change over time. To do this, we
will sacrifice some accuracy over short time intervals —
which can be seen in Section 6.

To compute the subsystem approximation of the
marginal, we first consider each assignment of values s′ to
S′. We take all states s that are consistent with s′ (which
correspond to the different assignments to Y ), and collapse
them into a single state (or row of the intensity matrix). To
understand the approximation, we recall that our approxi-
mate intensity matrix Q can be written as M(PE− I) where
M is the matrix describing the distribution over how much
time we spend in a particular state and PE is the transition
matrix for the embedded Markov chain, which determines
the distribution over the value to which we transition. We
approximate these two distributions for each subsystem and
then form the new reduced matrix by multiplying.

Our reduced subsystem corresponding to X ′ has only a
single state, so its entry in the reduced holding matrix M
will be only a single parameter value corresponding to the
momentary probability of simply staying in the same state.
In our original intensity matrix, this parameter corresponds
to the probability of staying within the subsystem. Our ap-
proximation chooses this parameter so as to preserve the
expected time that we stay within the subsystem.

The transition matrix PE represents the transition matrix
for the chain. Again, as our collapsed system has only a
single state, we are only concerned with parameterizing the
intensities of transitioning from the new state to states out-
side the subsystem. These probabilities are precisely those
that characterize the exit distribution from the subsystem.



Before providing the exact formulas for these two com-
putations, we recall that both the holding time for a sub-
system and its exit distribution depend on the distribution
with which we enter the subsystem. Over time, we can en-
ter the subsystem multiple times, and the entrance distribu-
tion differs each time. For the approximation, however, we
must pick a single entrance distribution. There are several
choices that we can consider for an approximate entrance
distribution. One simple choice is to take the initial distri-
bution and use the portion which corresponds to being in
the subsystem at the initial time point. We could also use
the appropriate portion of the distribution at a later time, t∗.

Given an entrance distribution P0, we can now compute
both the holding time and the exit distribution. Recall that
the distribution function over the holding time within a sub-
system is given by:

F(t) = 1−P0 exp(USt)e

In order to preserve the expected holding time, we must set
our holding intensity value to be:

P0(−US)
−1e.

The approximation for the PE matrix is a single row vector
corresponding to the exit distribution from the subsystem,
using P0 as our entrance distribution.

Example 5.2 Consider again the system from Exam-
ple 5.1. The subsystem approximation for t∗ = 0 is

margP0

Y (QY Z) =

[

−3.7143 3.7143
5.7698 −5.7698

]

.

1/3.7143 = 0.2692 is the expected holding time in the sub-
system

US =

[

−4 1
2 −7

]

,

which corresponds to Z = z1. In particular,
P0

Y |z1
(−US)

−1e = 0.2692 where we have calculated

P0
Y |z1

=
[

.5 .5
]

.

6 Experimental Results

For our experiments, we used the example network de-
scribed in Figure 1. We implemented both exact inference
and our approximation algorithm and compared the results.
In our scenario at t = 0, the person modelled by the system
experiences joint pain due to falling barometric pressure
and takes the drug to alleviate the pain, is not eating, has an
empty stomach, is not hungry, and is not drowsy. The drug
is uptaking and the current concentration is 0.

We consider two scenarios. For both, Figure 2 shows the
resulting distribution over joint pain as a function of time
and the KL-divergence between the true joint distribution
and the estimated joint distribution. In the first scenario
(top row of plots), no evidence is observed. In the second
scenario (bottom row of plots), we observe at t = 1 that the
person is not hungry and at t = 3, that he is drowsy.

In both cases, (a) compares the exact distribution
with the approximate distribution for both marginalization
methods (linear and subsystem) and differing values of t∗

for the subsystem approximation. In both cases, we used a
single approximation for the entire trajectory between evi-
dence points. By contrast, (b) compares the same approx-
imations when the dynamics are repeatedly recalculated
at regular intervals by using the estimated distribution at
the end of one interval as the new entrance distribution for
the approximate dynamics of the next interval. The graph
shows this recomputation at both 1hr and 6min intervals.
The final graph (c) shows the average KL-divergence be-
tween the true joint distribution and the approximate joint
distributions, averaged over 60 time points between t = 0
and t = 6, as the number of (evenly spaced) recalculation
points grows for both marginalization methods.

As we can see in all of the results, the subsystem approx-
imation performs better for longer time segments. How-
ever, when the time-slicing becomes too fine, the errors
from this method grow. By comparison, the linear approx-
imation performs very poorly as an approximation for long
intervals, but its accuracy improves as the time granularity
becomes finer. These results are in accordance with the in-
tuitions used to build each approximation. The linear ap-
proximation makes two assumptions that only hold over
short time intervals: eliminated variables do not change
during the interval and the exponentiation of a matrix can
be linearly approximated. By comparison, the subsystem
approximation allows for multiple variables to change over
the interval of approximation but, in doing so, gives up ac-
curacy for small time scales.

7 Discussion

We have described a new modelling language for structured
stochastic processes which evolve in continuous time. Be-
cause time is explicitly represented in the model, we can
reason with it directly, and even answer queries which ask
for a distribution over time. Moreover, the continuous time
model enables us to deal with sequences of evidence by
propagating the distribution over the values from the time
of one observation to the next — even when the evidence
is not evenly spaced.

To compare the CTBN and DBN frameworks, suppose
we start with a non-trivial CTBN. For any finite amount
of time, probabilistic influence can flow between any vari-
ables connected by a path in the CTBN graph. Thus, if we
want to construct an “equivalent” DBN, the 2-TBN must
be fully connected regardless of the ∆t we choose for each
time slice. We can construct a DBN that approximates the
CTBN by picking a subset of the connections (e.g. those
which have the strongest influence). Yet, we still have the
standard problem of exponential blowup in performing in-
ference over time. So we would be led to perform approxi-
mate DBN inference in an approximate DBN. While this
could form the basis of an approximation algorithm for
CTBNs, we chose to work directly with continuous time,
making a direct approximation.
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Figure 2: For the case of no evidence (top) and evidence (bottom): (a) The distribution for joint pain for exact and
approximate inference without recalculation, (b) The distribution for joint pain for exact and approximate inference with
recalculation of the dynamics every hour and every 6 minutes, and (c) The KL-divergence between the true distribution
and the estimated distribution over all variables.

There are still several types of queries which we cannot
yet answer. We cannot deal with situations where the evi-
dence has the form “X stayed at the value x for the entire
period between t1 and t2.” Nor can we answer queries when
we are interested in the distribution over Y at the time when
X first transitions to x1.

There are also many other important open questions.
These include a theoretical analysis of the computational
properties of these models and a more systematic theoreti-
cal and empirical analysis of the nature of our approxima-
tion algorithm, leading perhaps to a more informed method
for choosing the entrance distribution for the marginaliza-
tion operation. As an alternative approach, the generative
semantics for CTBNs provides a basis for a stochastic sam-
pling based method to approximate, which we would like
to extend to situations with evidence using techniques such
as importance sampling or MCMC. Even more globally,
we would like to pursue parameter learning and structure
learning of CTBNs from data.
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