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Abstract

Continuous time Bayesian networks (CTBNs)
describe structured stochastic processes with
finitely many states that evolve over continuous
time. A CTBN is a directed (possibly cyclic) de-
pendency graph over a set of variables, each of
which represents a finite state continuous time
Markov process whose transition model is a
function of its parents. We address the prob-
lem of learning the parameters and structure of
a CTBN from partially observed data. We show
how to apply expectation maximization (EM)
and structural expectation maximization (SEM)
to CTBNs. The availability of the EM algorithm
allows us to extend the representation of CTBNs
to allow a much richer class of transition dura-
tions distributions, known asphase distributions.
This class is a highly expressive semi-parametric
representation, which can approximate any dura-
tion distribution arbitrarily closely. This exten-
sion to the CTBN framework addresses one of
the main limitations of both CTBNs and DBNs
— the restriction to exponentially / geometri-
cally distributed duration. We present experi-
mental results on a real data set of people’s life
spans, showing that our algorithm learns rea-
sonable models — structure and parameters —
from partially observed data, and, with the use of
phase distributions, achieves better performance
than DBNs.

1 Introduction

Many applications involve reasoning about a complex sys-
tem that evolves over time. Standard frameworks, such
as hidden Markov models (HMMs) (Rabiner & Juang,
1986) and dynamic Bayesian networks (DBNs) (Dean &
Kanazawa, 1989), discretize time at fixed intervals, known
as time slices, and then model the system as evolving dis-
cretely from one time slice to the next. However, in many
systems, there is no natural time granularity: Some vari-
ables evolve quickly, whereas others change more slowly;

even the same variable can change quickly in some con-
ditions and slowly in others. In such systems, attempts to
model the system as evolving over uniform discrete time
intervals either lead to very coarse approximations, or re-
quire that the entire trajectory be modelled at a very fine
granularity, at a high computational cost. This problem
is even more acute in a learning setting, when little prior
knowledge might exist about the rate of evolution of differ-
ent variables in the system.

Another approach is to model such systems as evolving
over continuous time. For discrete state systems, such
representations include event history analysis (Blossfeld
et al., 1988; Blossfeld & Rohwer, 1995) and Markov pro-
cess models (Duffie et al., 1996; Lando, 1998). Nodelman
et al. (2002) extend these representations with ideas from
the framework of Bayesian networks, to definecontinuous
time Bayesian networks (CTBNs)— a structured represen-
tation for complex systems evolving over continuous time.

An important task for any model is constructing it. One
approach for acquiring models that fit the domain is by
learning them from data samples. Nodelman et al. (2003)
present an algorithm for learning a CTBN — both struc-
ture and parameters — from fully observed data. However,
in many real-world applications, we obtain only partial ob-
servations of the trajectory. This issue is likely to be even
more acute when learning continuous time models where
it is difficult to observe everything all the time. Therefore,
learning networks from partially observed data is an impor-
tant problem with real-world significance.

In this paper, we provide an algorithm, based on the Ex-
pectation Maximization (EM) algorithm (Dempster et al.,
1977), for learning CTBN parameters from partially ob-
servable data. We also provide an extension, based on
structural EM (Friedman 1997; 1998), for learning the net-
work structure from such data. Our algorithm also provides
us with a solution to one of the major limitations of both
CTBN and DBN models — their use of a transition model
which evolves exponentially (or geometrically) with time.
In particular, we build on the rich class ofphase distribu-
tions (Neuts 1975; 1981), showing how to integrate them
into a CTBN model, and how to use our EM algorithm to
learn them from data. We present results of our learning al-
gorithm on real world data related to people’s life histories,



and show that our learned CTBN model with phase distri-
bution transitions is a better model of the data than both
learned DBN and learned CTBN models.

2 EM for Markov Processes

We begin by reviewing the process of EM for homo-
geneous Markov processes, on which our algorithm for
CTBNs is strongly based. Variants of this problem have
been addressed by various authors, including Sundberg
(1974; 1976), Dembo and Zeitouni (1986), Asmussen et al.
(1996), and Holmes and Rubin (2002). Our presentation is
based on the formulation of Asmussen et al. (1996).

2.1 Homogeneous Markov Processes

A finite state, continuous time, homogeneous Markov pro-
cessXt with state spaceVal(X) = {x1, . . . , xn} is de-
scribed by an initial distributionP 0

X and ann×n matrix of
transitionintensities:

QX =
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,

whereqxixj
is the intensity of transitioning from statexi

to statexj andqxi
=

∑

j 6=i qxixj
. The intensityqxi

gives
the “instantaneous probability” of leaving statexi and the
intensityqxixj

gives the ‘instantaneous probability’ of tran-
sitioning fromxi to xj . More formally, as∆t → 0,

Pr{X(t + ∆t) = xj | X(t) = xi} ≈ qxixj
∆t, for i 6= j

Pr{X(t + ∆t) = xi | X(t) = xi} ≈ 1 − qxi
∆t .

The transient behavior ofXt is as follows. VariableX
stays in statex for time T exponentially distributed with
parameterqx. The probability density functionf for Xt

remaining atx is f(qx, t) = qx exp(−qxt) for t ≥ 0,and
the expected time of transition is1/qx. Upon transitioning,
X shifts to statex′ with probabilityqxx′/qx.

The distribution over transitions ofX factors into two
pieces — exponential forwhenthe next transition occurs
and multinomial forwhere the state transitions, i.e., the
next state. The natural parameters areqx for the exponen-
tial distribution andθxx′ = qxx′/qx, x′ 6= x for the multi-
nomial distribution.

The distribution over the state of the processX at some
future timet, PX(t), can be computed directly fromQX .
If P 0

X is the distribution overX at time 0, then

PX(t) = P 0
X exp(QXt) ,

whereexp is matrix exponentiation.

2.2 Incomplete Data

For a Markov processX , our data are a set of partially
observed trajectoriesD = {σ[1], . . . , σ[w]} that describe

the behavior ofX . A complete trajectory can be specified
as a sequence of statesxi of X , each with an associated
duration. This means we observe every transition of the
system from one state to the next and the time at which it
occurs. In contrast, a partially observed trajectoryσ ∈ D
can be specified as a sequence ofsubsystemsSi of X , each
with an associated duration. A subsystem is simply a non-
empty subset of states ofX , in which we know the system
stayed fur the duration of the observation. Some transitions
are partially observed — we know only that they take us
from one subsystem to another. Transitions from one state
to another within the subsystem are wholly unobserved —
hence we do not know how many there are nor when they
occur.

Note that momentary observation of the state of the sys-
tem, orpoint evidencecan also described in this frame-
work. In particular, in the sequence of observed subsys-
tems, durations can zero.

For each trajectoryσ[i] we can consider a spaceH[i] of
possible completions of that trajectory. Each completion
h[i] ∈ H [i] specifies, for each transition ofσ[i], which
underlying transition ofX occurred and also specifies all
the entirely unobserved transitions ofX . Combiningσ[i]
andh[i] gives us a complete trajectoryσ+[i] overX . Note
that, in a partially observed trajectory, the number of pos-
sible unobserved transitions is unknown. Moreover, there
are uncountably many times at which each transition can
take place. Thus, the set of possible completions of a par-
tial trajectoryσ is, in general, the union of a countably in-
finite number of spaces, which are real-valued spaces of
unbounded dimension. Nevertheless, the notion of all pos-
sible completions is well-defined. We can define the set
D+ = {σ+[1], . . . , σ+[w]} of completions of all of the
partial trajectories inD.

Example 2.1 Suppose we have a processX whose state
space is Val(X) = {y1, y2} × {z1, z2}. Consider the fol-
lowing exampleσ+ of a fully observed trajectory over the
time interval[0, 2): X starts in〈y1, z2〉 at time0; at time
0.5 it transitions to〈y2, z2〉; at time 1.7 it transitions to
〈y2, z1〉.

Note we can write〈·, zi〉 for the subsystem consisting of
the states〈y1, zi〉 and 〈y2, zi〉. An example partially ob-
served trajectoryσ over the interval[0, 2) is: X starts in
〈·, z1〉; at time 1.7 it transitions to〈·, z2〉. Note thatσ+

is a completion ofσ. Another possible completion ofσ is:
X starts in〈y2, z1〉 at time0; at time1.0 it transitions to
〈y1, z1〉; at time1.7 it transitions to〈y1, z2〉.

We can describe a partially observed trajectoryσ′ with
point evidence at time0.7 and1.8: X starts in〈·, ·〉; at time
0.7 we observe〈·, z2〉; from time0.7 to 1.8 we observeX in
〈·, ·〉; at time1.8 we observeX in 〈·, z1〉; from time1.8 on,
we observeX in 〈·, ·〉. Note thatσ+ is also a completion
of σ′.



2.3 Expected Sufficient Statistics and Likelihood

The sufficient statistics of a set of complete trajectoriesD+

for a Markov process areT [x] — the total amount of time
thatX = x, andM [x, x′] — the number of timesX transi-
tions fromx to x′. If we let M [x] =

∑

x′ M [x, x′] we can
write the log-likelihood forX (Nodelman et al., 2003):

ℓX(q, θ : D+) = ℓX(q : D+) + ℓX(θ : D+)

=
∑

x

(

M [x] ln(qx) − qxT [x]+
∑

x′ 6=x

M [x, x′] ln(θxx′)
)

.

Let r be a probability density over each completionH[i]
which, in turn, yields a density over possible completions
of the dataD+. We can write the expectations of the
sufficient statistics with respect to the probability density
over possible completions of the data:T̄ [x], M̄ [x, x′], and
M̄ [x]. These expected sufficient statistics allow us to write
the expected log-likelihood forX as

Er[ℓX(q, θ : D+)] = Er[ℓX(q : D+)] + Er[ℓX(θ : D+)]

=
∑

x

(

M̄ [x] ln(qx) − qxT̄ [x]+
∑

x′ 6=x

M̄ [x, x′] ln(θxx′)
)

.

2.4 The EM Algorithm

We use the expectation maximization (EM) algorithm
(Dempster et al., 1977) to find maximum likelihood param-
etersq, θ of X . The EM algorithm begins with an arbitrary
initial parameter assignment,q0, θ0. It then repeats the two
steps below, updating the parameter set, until convergence.
After thekth iteration we start with parametersqk, θ

k:

Expectation Step. Using the current set of parameters,
we define for eachσ[i] ∈ D, the probability density

rk(h[i]) = p(h[i] | σ[i], qk, θk) (1)

We then compute expected sufficient statisticsT̄ [x],
M̄ [x, x′], and M̄ [x] according to this posterior density
over completions of the data given the data and the model.
Maximization Step. Using the expected sufficient statis-

tics we just computed as if they came from a complete data
set, we setqk+1, θk+1 to be the new maximum likelihood
parameters for our model as follows

qk+1
x = M̄ [x]

T̄ [x]
; θk+1

xx′ = M̄ [x,x′]

M̄ [x]
. (2)

The difficult part in this algorithm is the Expectation Step.
As we discussed, the space over which we are integrating
is highly complex, and it is not clear how we can compute
the expected sufficient statistics in a tractable way. This
problem is the focus of the next section.

3 Computing Expected Sufficient Statistics

Given ann-state homogeneous Markov processXt with
intensity matrixQX , our task is to compute the expected

sufficient statistics with respect to the posterior probability
density over completions of the data given the observations
and the current model. For simplicity, we omit the explicit
dependence on the parametersqk, θk. Our analysis follows
the work of Asmussen et al. (1996), who utilize numerical
integration via the Runge-Kutta method. Holmes and Ru-
bin (2002) provide an alternative approach using the eigen-
value decomposition of the intensity matrix.

3.1 Notation

In order to compute the expected sufficient statistics over
D, we compute them for each partially observed trajectory
σ ∈ D separately and then combine the results.

A partially observed trajectoryσ is given as a sequence
of N subsystems so that the state is restricted to subsystem
Si during interval[ti, ti+1) for 0 ≤ i ≤ (N − 1). Without
loss of generality, we assume thatσ begins at time 0 and
ends at timeτ sot0 = 0 andtN = τ .

For subsystemS, let QS be then × n intensity matrix
QX with all intensities zeroed out except those correspond-
ing to transitions within the subsystemS (and associated
diagonal elements). For subsystemsS1, S2, let QS1S2

be
then × n intensity matrixQX with all intensities zeroed
out except those corresponding to transitions fromS1 to
S2. Note that this means all the intensities corresponding
to transitions withinS1 and withinS2 are also zeroed out.

Sometimes it is convenient to refer to evidence by pro-
viding an arbitrary time interval. Letσt1:t2 denote the evi-
dence provided byσ over the interval[t1, t2). (So,σ0:τ is
the evidence provided by all ofσ.) Let σt1:t+

2

denote the
evidence over the interval[t1, t2], andσt−

1
:t2

the evidence
over the interval(t1, t2).

Let e be a (column)n-vector of ones. Letej be ann-
vector of zeros with a one in positionj. Let ∆j,k be an
n × n matrix of zeros with a one in positionj, k. (So
∆j,k = eje

′
k.) Note that all multiplications below are stan-

dard vector and matrix multiplications as opposed to factor
multiplications.

Define the vectorsα−
t andβ+

t component-wise as

α−
t [i] = p(Xt− = i, σ0:t)

β+
t [i] = p(σt+:τ | Xt+ = i),

where, ifX transitions att, Xt− is the value ofX just prior
to the transition, andXt+ the value just afterward. (If there
is no transition,Xt− = Xt+ .) Moreover, recall thatσ0:t

represents the evidence over interval[0, t) not includingt
andσt+:τ represents evidence over interval(t, τ) not in-
cluding t. Thus, neither of these vectors include evidence
of a transition at timet. We also define the vectors

αt[i] = p(Xt = i, σ0:t+)

βt[i] = p(σt:τ | Xt = i)

both of which include evidence of any transition at timet.



3.2 Expected Amount of Time

The sufficient statisticT [j] is the amount of time thatX
spends in statej over the course of trajectoryσ. We can
write the expectation ofT [j] according to the posterior
probability density given the evidence as

E[T [j]] =

∫ τ

0

p(Xt | σ0:τ )ejdt

=

N−1
∑

i=0

∫ ti+1

ti

p(Xt | σ0:τ )ejdt

=
1

p(σ0:τ )

N−1
∑

i=0

∫ ti+1

ti

p(Xt, σ0:τ )ejdt .

The constant fraction at the beginning of the last line serves
to make the total expected time over allj sum toτ .

We must show how to compute the above integrals over
intervals of constant evidence. Let[v, w) be such an in-
terval, and letS be the subsystem to which the state is re-
stricted on this interval. Then we have
∫ w

v

p(Xt, σ0:τ )ejdt (3)

=

∫ w

v

p(Xt, σ0:t)∆j,jp(σt:τ | Xt)dt

=

∫ w

v

αvp(Xt, σv:t | Xv)∆j,jp(Xw, σt:w | Xt)βwdt

=

∫ w

v

αv exp(QS(t − v))∆j,j exp(QS(w − t))βwdt .

The code accompanying Asmussen et al. (1996) is eas-
ily extendable to this more general case and can compute
the above integral via the Runge-Kutta method of fourth
order. This method traverses the interval in small discrete
steps each of which has a constant number of matrix mul-
tiplications. Thus, the main factor in the complexity of this
algorithm is the number of steps which is a function of the
step size. Importantly, the integration uses a step size that
is adaptiveand not fixed. The intensities of theQS matrix
represent rates of evolution for the variables in the cluster,
so larger intensities mean a faster rate of change which usu-
ally requires a smaller step size. We begin with a step size
proportional to the inverse of the largest intensity inQS .
The step size thus varies across different subsystems and
is sensitive to the current evidence. Also, following Press
et al. (1992), we use a standard adaptive procedure that al-
lows larger steps to be taken when possible based on error
estimates.

We can calculate the total expected time,E[T [j]], by
summing the above expression over all intervals of constant
evidence.

3.3 Expected Number of Transitions

The sufficient statisticM [j, k] (j 6= k) is the number of
timesX transitions from statej to statek over the course

of trajectory σ. Following the derivation in Asmussen
et al. (1996), we consider discrete time approximations of
M [j, k] and take the limit as the size of our discretization
goes to zero, yielding an exact equation. Forǫ > 0, let

Mǫ[j, k] =

τ/ǫ−1
∑

t=0

1{Xtǫ = j, X(t+1)ǫ = k} .

Note that our discrete approximation is dominated by the
actual value, i.e.,|Mǫ[j, k]| ≤ M [j, k], and also that asǫ ↓
0, Mǫ[j, k] → M [j, k]. Hence, by dominated convergence
for conditional expectations, we have

E[M [j, k]] = lim
ǫ↓0

E[Mǫ[j, k]] .

This last expectation can be broken down as

E[Mǫ[j, k]] =

τ/ǫ−1
∑

t=0

p(Xtǫ = j, X(t+1)ǫ = k, σ0:τ )

p(σ0:τ )
.

Note that, forǫ small enough, we observe at most one tran-
sition per interval. Thus, each of the intervals in the sum
falls into one of two categories: either the interval contains
a (partially observed) transition, or the evidence is constant
over the interval. We treat each of these cases separately.

Let [tǫ, (t + 1)ǫ) be an interval containing a partially ob-
served transition at timeti. We observe only that we are
transitioning from one of the states ofSi to one of the states
of Si+1. We can calculate the contribution of this interval
to the expected sufficient statistics (ignoring the constant
1/p(σ0:τ )) as

p(Xtǫ = j, X(t+1)ǫ = k, σ0:τ )

= p(Xtǫ = j, σ0:tǫ)p(X(t+1)ǫ = k, σtǫ:(t+1)ǫ | Xtǫ = j)

p(σ(t+1)ǫ:τ | X(t+1)ǫ = k) .

As ǫ ↓ 0, we have the probability of the state and the ev-
idence up to, but not including, timeti, times the instan-
taneous probability of transitioning from statej to statek,
times the probability of the evidence given the state just
afterti. Thus, at the limit, this transition’s contribution is

α−
ti
ejqjke

′
kβ+

ti
= qjkα−

ti
∆j,kβ+

ti
. (4)

Now consider the case when we are within an interval
[v, w) = [ti, ti+1) of constant evidence — i.e., it does not
contain a partially observed transition and will generally
be of length much larger thanǫ. Let ∆t = w − v and let
S be the subsystem to which the state is restricted on this
interval. Asǫ grows small, the contribution of this interval



to the sum (again, ignoring1/p(σ0:τ )) is

∑∆t/ǫ−1

t=0
p(Xv+tǫ = j, Xv+(t+1)ǫ = k, σ0:τ )

=

∆t/ǫ−1
∑

t=0

∑

Xv ,Xw

p(Xv, σ0:v)p(Xv+tǫ = j, σv:v+tǫ | Xv)

p(Xv+(t+1)ǫ = k, σv+tǫ:v+(t+1)ǫ | Xv+tǫ = j)

p(Xw, σv+(t+1)ǫ:w | Xv+(t+1)ǫ = k)p(σw:τ | Xw)

=
∑∆t/ǫ−1

t=0
αv exp(QStǫ)ej

e′jp(Xv+(t+1)ǫ, σv+tǫ:v+(t+1)ǫ | Xv+tǫ)ek

e′k exp(QS(w − (v + (t + 1)ǫ)))βw .

As in the case with observed transitions, asǫ ↓ 0, the mid-
dle term becomesqjkdt, the instantaneous probability of
transitioning. Sinceexp(QSt) is continuous, we can ex-
press the limit as a sum of integrals of the form

qjk

∫ w

v

αv exp(QS(t − v))∆j,k exp(QS(w − t)βwdt (5)

We have one such term for each interval of constant ev-
idence. Essentially we are integrating the instantaneous
probability of transitioning from statej to k over the in-
terval given the evidence. Note that this is very similar to
the form of Eq. (3) — the only difference is the matrix∆j,k

and the termqjk.

To obtain the overall sufficient statistics, we have a sum
with two types of terms: a term as in Eq. (4) for each ob-
served transition, and an integral as in Eq. (5) for each in-
terval of constant evidence. The overall expression is

qjk

p(σ0:τ )

[

N−1
∑

i=1

α−
ti
∆j,kβ+

ti

+

N−1
∑

i=0

∫ w

v

(

αv exp(QS(t − v))∆j,k

× exp(QS(w − t))βw

)

dt

]

.

3.4 Computingαt and βt

One method of computingαt and βt is via a forward-
backward style algorithm (Rabiner & Juang, 1986) over the
entire trajectory to incorporate evidence and get distribu-
tions over the state of the system at every timeti.

We have already defined the forward and backward prob-
ability vectors,αt and βt. To initialize the vectors, we
simply let α0 be the initial distribution over the state and
βτ = e, a vector of ones. To update the vectors from their
previously computed values, we calculate

αti+1
= αti

exp(QSi
(ti+1 − ti))QSiSi+1

βti
= QSi−1Si

exp(QSi
(ti+1 − ti))βti+1

To exclude incorporation of the evidence of the transition
from either forward or backward vector (or if the time in
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Eating Hungry

Figure 1: Drug effect network

question is not a transition time), one can simply remove
the subsystem transition intensity matrix (QSiSi+1

) from
the calculation. For example, as time 0 andτ are not tran-
sition times, we have

ατ = αtN−1
exp(QSN−1

(τ − tN−1))

β0 = exp(QS0
(t1 − 0))βt1 .

We can also compute

α−
ti+1

= αti
exp(QSi

(ti+1 − ti))

β+
ti

= exp(QSi
(ti+1 − ti))βti+1

.

We can then write the distribution over the state of the sys-
tem at timet given all the evidence as

P (Xt = j | σ0:τ ) =
1

p(σ0:τ )
α−

t ∆j,jβt .

4 CTBNs

We can now extend the EM algorithm to continuous time
Bayesian networks which are a factored representation for
homogeneous Markov processes.

4.1 Continuous Time Bayesian Networks

We briefly review continuous time Bayesian networks as
presented in Nodelman et al. (2003). A CTBN repre-
sents a stochastic process over a structured state space,
consisting of assignments to some set of local variables
X = {X1, X2, . . . , Xk}.

We model the joint dynamics of these local variables by
allowing the transition model of each local variable to be a
Markov process whose parameterization depends on some
subset of other variablesU. The key building block is a
conditional Markov process:

Definition 4.1 A conditional Markov processX is an
inhomogeneous Markov process whose intensity matrix
varies with time, but only as a function of the current val-
ues of a set of discrete conditioning variablesU. Its inten-
sity matrix, called aconditional intensity matrix(CIM), is



written QX|U and can be viewed as a set of homogeneous
intensity matricesQX|u — one for each instantiation of
valuesu to U.

The parameters ofQX|U areqX|u = {qx|u : x ∈ Val(X)}
andθX|u = {θxx′|u : x, x′ ∈ Val(X), x 6= x′}.

We can now combine a set of conditional Markov pro-
cesses to form a CTBN:

Definition 4.2 A continuous time Bayesian networkN
overX consists of two components: aninitial distribution
P 0

X
, specified as a Bayesian networkB over X, and a

continuous transition model, specified as

• A directed (possibly cyclic) graphG whose nodes are
X1, . . . , Xk; PaG(Xi), often abbreviatedUi, denotes
the parents ofXi in G.

• A conditional intensity matrix,QXi|Ui
, for each vari-

ableXi ∈ X.

Example 4.3 Figure 1 shows the graph structure for
a modified version of the drug effect CTBN network
from Nodelman et al. (2002) modelling the effect of a drug
a person might take to alleviate pain in their joints. There
are nodes for the uptake of the drug and for the resulting
concentration of the drug in the bloodstream. The concen-
tration is affected by how full the patient’s stomach is. The
pain may be aggravated by changing pressure. The model
contains a cycle, indicating that whether a person is hun-
gry depends on how full their stomach is, which depends
on whether or not they are eating, which in turn depends
on whether they are hungry.

4.2 Expected Log-likelihood

Extending the EM algorithm to CTBNs involves making
it sensitive to a factored state space. Our incomplete data,
D, are now partially observed trajectories describing the
behavior of a dynamic system factored into a set of state
variablesX.

As shown by Nodelman et al. (2003), the log-likelihood
decomposes as a sum of local log-likelihoods for each vari-
able. Specifically, given variableX , let U be its parent set
in N . Then the sufficient statistics ofD+ for our model are
T [x|u], the total amount of time thatX = x while U = u,
andM [x, x′|u], the number of timesX transitions fromx
to x′ while U = u. If we let M [x|u] =

∑

x′ M [x, x′|u]
the likelihood for each variableX further decomposes as

ℓX(q, θ : D+) = ℓX(q : D+) + ℓX(θ : D+)

=

[

∑

u

∑

x

M [x|u] ln(qx|u) − qx|u · T [x|u]

]

+





∑

u

∑

x

∑

x′ 6=x

M [x, x′|u] ln(θxx′|u)



 . (6)

By linearity of expectation, the expected log-likelihood
function also decomposes in the say way, and we can

write the expected log-likelihoodEr[ℓ(q, θ : D+)] as a
sum of terms (one for each variableX) in the same form
asEq. (6), except using the expected sufficient statistics
T̄ [x|u], M̄ [x, x′|u], andM̄ [x|u].

4.3 EM for CTBNs

The EM algorithm for CTBNs is essentially the same as
for homogeneous Markov processes. We need only spec-
ify how evidence in the CTBN induces evidence on the in-
duced Markov process, and how expected sufficient statis-
tics in the Markov process give us the necessary sufficient
statistics for the CTBN.

A CTBN is a homogeneous Markov process over the joint
state space of its constituent variables. Any assignment of
values to a subset of the variables forms a subsystem of
the CTBN — it restricts us to a subset of the joint state
space (as shown with binary “variables”Y andZ in Ex-
ample 2.1). Just as before, our evidence can be described
as a sequence of subsystemsSi, each with an associated
duration.

Recall that, in a CTBN, the expected sufficient statistics
have the formT̄ [x|u] andM̄ [x, x′|u]. We can thus replace
Eq. (2) in the maximization step of EM with:

qk+1
x|u = M̄ [x|u]

T̄ [x|u]
; θk+1

xx′|u = M̄ [x,x′|u]

M̄ [x|u]
. (7)

The expectation step of EM can, in principle, be done by
flattening the CTBN into a single homogeneous Markov
process with a state space exponential in the number of
variables and following the method described above. In
this case, we can computēT [x|u] by summing up all of the
expected sufficient statistics̄T [j] for any statej consistent
with X = x,U = u. Similarly, M̄ [x|u] can be computed
by summing up all ofM̄ [j, k] for statej consistent with
X = x,U = u andk consistent withX = x′,U = u.

However, as the number of variables in the CTBN grows,
that process becomes intractable, so we are forced to use
approximate inference. The approximate inference algo-
rithm must be able to compute approximate versions of
the forward and backward messagesαt, βw. It must also
be able to extract the relevant sufficient statistics — them-
selves a sum over an exponentially large space — from the
approximate messages efficiently.

A companion paper (Nodelman et al., 2005) provides a
cluster graph inference algorithm which can be used to per-
form this type of approximate inference. For each segment
[ti, ti+1) of continuous fixed evidence, we construct a clus-
ter graph data structure, whose nodes correspond to clus-
ters of variablesCk, each encoding a distribution over the
trajectories of the variablesCk for the duration[ti, ti+1).
A message-passing process calibrates the clusters. We can
then extract from the clusterCk both beliefs about the mo-
mentary state of the variablesCk at timeti andti+1, as well
as a distribution over the trajectories ofCk during the in-
terval. The former provide a factored representation of our



forward messageαti+1
and backward messageβti

, and are
incorporated into the cluster graphs for the adjoining clus-
ter in a forward-backward message passing process. The
cluster distributions are represented as local intensity ma-
trices, from which we can compute the expected sufficient
statistics over familiesXi,Ui, as above. This, this algo-
rithm allows us to perform the steps required for the E-step,
and the M-step can be performed easily as described above.

4.4 Structural EM for CTBNs

We can also learn structure from incomplete data by apply-
ing the structural EM (SEM) algorithm of Friedman (1997)
to our setting. We start with some initial graph structure
G0, initial parametersq0, θ0, and datasetD.

At each iteration, as with SEM for Bayesian networks, we
choose between taking a step to update the parameters and
taking a step to modify the structure.

Parameter Update Step. Run the EM algorithm, com-
puting new expected sufficient statistics and updating the
parameters as in Eq. (7).

Structure Modification Step. Using the current parame-
terization and expected sufficient statistics, choose a struc-
ture modification that increases the score. SEM is used
with a variety of scores, most commonly the BIC score or
the Bayesian score with expected sufficient statistics as if
real. In both cases, the score can be written in terms of ex-
pected sufficient statistics, allowing SEM to be used with
our algorithm above.

SEM leaves unspecified the issue of how many greedy
search steps one takes before recomputing the expected
sufficient statistics and parameters. Nodelman et al. (2003)
showed that, for CTBNs, structure search for a fixed num-
ber of parents per node can be done in polynomial time.
Thus, it is possible, in this setting, to find the globally
optimal structure given the current parametrization in the
structure modification step. If one does this, SEM for
CTBNs becomes an iterated optimization algorithm with
a full maximization step for both structure and parameters.

5 Complex Duration Distributions

An important limitation to the expressive power in contin-
uous time Bayesian networks has been the restriction to
modelling durations in a single state as exponential distri-
butions over time. With the extension of the EM to CTBNs,
we can now address this limitation.

5.1 Phase Distributions

Phase distributionsare a rich, semi-parametric class of dis-
tributions over durations, that use the exponential distribu-
tion as a building blcok. A phase distribution is modeled
as a set ofphases, through which a process evolves. Each
of these phases is associated with an exponential distribu-
tion, which encodes the duration that a process stays in that
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Figure 2: (a): Phase transition diagrams for (i) a single expo-
nential phase, (ii) an Erlang (chain), (iii) a mixture, and (iv) a
loop. (b): The probability density of the first time to leave state 1
(the phase distribution), for three example binary variable with 3
phases for both states. All examples have an expected time of1
to leave state 1.

phase. That is, we enter a phasek, and then leave in timet
exponentially distributed with the parameterqk associated
with that phase. We can view the process as moving over a
directed, possibly cyclic graph, consisting of these phases.
Thus, we can create combinations of chains, mixtures, and
loops of such exponentially distributed phases linked to-
gether in a variety of ways. We spend some amount of time
going from one phase to another, but eventually we leave
the set of phases altogether. The distribution over when we
leave such a system of phases is called aphase distribution.

Example 5.1 Consider a 4-state homogeneous Markov
process PHt with intensity matrix

QPH =

2

6

4

−q1 q12 q13 q14

q21 −q2 q23 q24

q31 q32 −q3 q34

0 0 0 0

3

7

5
.

If the intensities of states 1, 2, and 3 are non-zero, then re-
gardless of the initial phase, PHt will end up in state 4 and
remain there. Thus, state 4 is called anabsorbingstate and
the others are calledtransientstates. We call the transient
statesphasesand the distribution over when PHt reaches
state 4 is called aphasedistribution. In this particular case
it has 3 phases. If we wanted to encode a chain1 → 2 → 3,
we would have all off-diagonal entries equal to 0, except
q12, q23, q34. If we wanted to encode a loop, we would also
allow q31 6= 0. Figure 2 shows some simple distribution
shapes that can be formed with 3 phases. Note that, while
a chain distribution always begin in phase 1 and ends in
some final phasep, general phase distributions might start
and end in any phase (e.g., the mixture distribution shown).

Definition 5.2 A phase distribution ofp phasesis defined
as the distribution over time when a homogeneous Markov
process with a single absorbing state andp transient
phases reaches absorption (Neuts 1975; 1981).

We can specify ap-phase distribution with ap×p matrix,
QP , by including only the subsystem of transient phases
without losing any information. The rows of the new inten-
sity matrix will have a (possibly) negative row sum, where



the missing intensity corresponds exactly to the intensity
with which we leave the entire system.

Phase distributions with a single phase are simply expo-
nential distributions. The general class is highly expres-
sive: any distribution can be approximated with arbitrary
precision by a phase distribution with some finite number
of phases (Neuts, 1981). A commonly used subclass of
phase distributions is theErlangian-p which can be con-
structed with a chain-structured subsystem ofp phases,
where all phases have the same exit intensity.

5.2 CTBN Durations as Phase Distributions

One can directly model the distribution in statex of vari-
ableX in CTBN N as anyphase distributioninstead of
an exponential distribution. This idea is first described
by Nodelman and Horvitz (2003) and subsequently in
Gopalratnam et al. (2005). The former focuses on Erlang
distributions and the latter on Erlang-Coxian distributions
both of which are limited subclasses of general phase dis-
tributions. In particular neither allow for the exponential
phases to be looped. Restriction to subclasses makes learn-
ing from data easier; in particular, EM is not required nec-
essary to learn distributions in these classes; however, these
subclasses have several drawbacks, including reduced ex-
pressivity, especially with small numbers of phases (As-
mussen et al., 1996). Our method, as it is based on a general
EM algorithm, allows the use of general phase distributions
in CTBNs without restriction.

When using thisphase modellingmethod, the structure
of the intensity matrix must be altered by addingphasesas
additional rows (and columns). We use the termphasesto
distinguish additional hidden state in the intensity matrix
from states of the variable. Thus, a subsystem of several
phases is used to implement a single state of a variable. In
this context there is no absorption and the “final” transition
of the phase distribution is the transition of the variable to
its the next state.

Example 5.3 To make a binary variableW have the du-
ration in each of its 2 states beErlangian-3distributions
(with distinct parameters), we write its intensity matrix as

QW =

2

6

6

6

4

−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −2 2 0
0 0 0 0 −2 2
2 0 0 0 0 −2

3

7

7

7

5

.

The top three rows correspond to statew1 and the bottom
three to statew2. Note that when restricted to modelling
with Erlang distributions for a fixed number of phases, the
number of free parameters is the same as a regular (expo-
nentially distributed) CTBN.

Using phase modellinggreatly extends the expressive
power of CTBNs and fits naturally within the existing
CTBN framework. The basic structure of existing algo-
rithms for CTBNs remains unaltered.

The child of a variable with complex durations sees only
the state of its parent and so does not, in general, depend on
the current phase of a parent. There are a number of design
choices to make in implementing phase distributions for
durations in CTBNs. Different choices may be appropriate
for different applications. One can add phases in a uniform
way to each state of each variable — as in example 5.3
where each state gets three phases. Alternatively, one might
allow some states of some variables to be modelled with
more phases than others.

When the parent instantiation changes, one might allow
the child in its current state to stay in the same phase or to
reset. Care must be taken when allowing the child to stay
in the same phase — it requires consistency at least in the
number of phases allowed for each state across all parent
instantiations. When the phase distribution does not have
a distinguished start phase, there is also a choice about the
distribution over phases with which one enters a state. In
particular, there might be a fixed distribution over phases
with which one always enters a particular state or that dis-
tribution might depend upon the previous state or the cur-
rent parent instantiation.

Our observations of a phase-distributed variable are al-
ways partial in that we might observe the currentstateof
a variable but never its associatedphase. We can learn the
parameters for a CTBN with phase distributions using the
EM algorithm described above by viewing it as a regular
partially observed process.

5.3 Using Hidden Variables

An alternate method of allowing complex duration distribu-
tions for the states of a variableX in CTBN N is to intro-
duce a special hidden variableHX as a parent ofX . This
has the advantage of being a very clean way to add expres-
sive power to CTBNs. Without this technique, the parents
of X must be other variables that we are modelling in our
domain which means that the intensities which control the
evolution ofX can only change when a regular modelled
variable changes. The addition of a hidden parent allows us
to describe more complex distributions over trajectories of
X by allowing the intensities which control the evolution
of X to change more frequently.

There are different ways to add a hidden variableHX

as a parent ofX . We might forceHX to have no par-
ents, or allow it to have parents in addition toX having
parents. However, while adding an explicit hidden vari-
able with clear semantics might be useful, it is important to
realize that all complex duration distributions expressible
through use of hidden variables are expressible by direct
phase modelling of the state. For example, supposeHX

has 3 states andX has 2 states. Using direct phases, we
can rewrite a6 × 6 intensity matrix forX having 3 phases
for each of its 2 states corresponding to the hidden state
of HX . More generally, we can amalgamate a set of hid-
den parentsHX andX into a single cluster nodeS, whose
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Figure 3:(a) Learning results for drug effect net. (b) Learning results for British Household Panel Survey. (c) Learned BHPS network
(200 training points).

parents are the union ofX ’s parents other thanHX and the
parents ofXX . Each state ofX now corresponds to a set
of instantiations toS. We can reinterpret the amalgamated
CIM for S (given its parents) as a phase distribution forX ,
with |Val(HX)| phases per state ofX . Thus, we can show:

Theorem 5.4 For a fixed number of phasesp, a CTBN
variableX with direct phase modelling for durations, i.e.,
using|X | · p rows forQX , is strictly more expressive than
a variable with complex durations modelled by using a hid-
den parentHX with p states.

Conversely, many complex duration distributions ex-
pressible by direct phase modelling cannot be expressed
using hidden variables. In particular, the joint behavior of
HX andX is restricted in thatX andHX cannot transition
simultaneously. This corresponds to the constraint thatQS

must have zeros in locations that correspond to a simulta-
neous shift in the state ofX andHX . No such constraint
holds in direct phase modelling which means that we have
more free parameters to describe the distribution.

6 Results

We implemented the EM and SEM algorithms described
above. We used exact inference by constructing the flat-
tened state space. While this prevents us from solving large
problems, it also keeps the analysis of EM separate from
that of approximate inference. To verify our algorithms’
correctness, we used the drug effect network from Exam-
ple 4.3, where all of the variables were binary-valued, for
tractability. We sampled increasing numbers of trajecto-
ries of 5 time lengths. We ran both EM and SEM, giving
the former the true network structure and hiding the struc-
ture from the latter. For each data example, we hid parts
of the trajectory by selecting time windows of length 0.25
uniformly at random and hiding the value of one variable
during the window. We kept dropping data in this fashion
until all variables had lost either 1/4 or 1/2 of their total tra-
jectory, depending on the experiment. The results of these
experiments are shown in Figure 3(a). In some cases SEM
outperforms EM because the true structure with learned pa-

rameters yields a lower log-likelihood given the amount of
data at those points. Note that the horizontal axis represents
the amount of data prior to dropping any of it.

The SEM algorithm worked well in this setting. As noted,
removing the restriction on acyclicity allows CTBN struc-
ture search to decompose. Therefore, at each iteration, we
performed a full structure search, which provided marked
improvement over a greedy one-step optimization.

We also ran SEM on the British Household Panel Survey
(ESRC Research Centre on Micro-social Change, 2003).
This data is collectedyearly asking thousands of residents
of Britain about important events in their lives.We ran-
domly divided this set into 4000 training examples and
4000 testing examples (each example is a trajectory of a
different person). Because we are employing exact infer-
ence, we had to keep the variable set small and chose 4 vari-
ables: employ (ternary: student, employed, unemployed),
married (binary: not married, married), children (ternary:
0, 1, 2+), and smoking (binary: non-smoker, smoker). The
average number of events per person is 5.6.

We learned structures and parameters for a time-sliced
DBN with a time-slice width of 1 year, a standard CTBN,
and a CTBN with 2 phases for every state of every vari-
able. No restrictions were placed on the structure of these
2 phases (so, in general, they form a loop). In order to
compare CTBNs to DBNs, we sampled the testing data at
the same yearly rate and calculated the probability of these
sampled trajectories.The results are shown in Figure 3(b).
The DBN and plain CTBN models are comparable, with
the DBN doing better with more data due to its increased
flexibility (due to intra-time slice arcs, DBNs have more
potential parameters). However, the phase distributions in-
crease the performance of the CTBN model; the trajecto-
ries are approximately twice as likely as with the other two
models. Figure 3(c) shows a learned exponential CTBN
network. The parameters are interesting. For example, the
rate (intensity) with which a person stops smoking given
that they have two or more children is three times the rate at
which a childless person quits smoking. The rate at which
a person begins smoking given that they have no children



is 300 times the rate of a person with two or more children.
The rate at which a person becomes unemployed (after hav-
ing been employed) tends to decrease with more children
(unless the person does not smoke and is not married). The
rate of becoming unemployed also tends to be less if one
smokes (unless one is married and has a child).

7 Discussion

In this paper, we provided an algorithm for learning both
structure and parameters of CTBNs from partially observed
data. Given the scarcity of fully-observed data, particularly
in the continuous-time setting, we believe that this devel-
opment is likely to greatly increase the applicability of the
CTBN framework to real-world problems.

Our experimental results were limited due to the reliance
on exact inference. To scale up to larger problems, approx-
imate inference algorithms must be employed. Our com-
panion paper (Nodelman et al., 2005) pursues this topic.

This paper addresses one of the primary limitations of
both CTBN and DBN models. Both models essentially as-
sume an exponential (or geometric) model for state transi-
tions. Although reasonable in some cases, an exponential
model is a poor fit for many real-life domains (such as the
interval between getting married and having children). In-
deed, our experimental results show that CTBNs parame-
terized with the richer class of phase distributions signifi-
cantly outperform both CTBNs and DBNs on a real-world
domain. An important extension is to investigate the ap-
plicability of different phase distribution transition models,
and to construct efficient algorithms for selecting an appro-
priate transition model automatically.

More globally, it would be interesting to apply phase-
distribution CTBNs in other domains, and see whether this
rich class of continuous-time models achieves improved
performance over discrete-time models more broadly. In
particular, many systems do not have a single natural time
granularity; for example, in traffic modeling, locations of
vehicles evolve more rapidly than driver intention, which
evolves more quickly than the weather. Although one can
learn discrete-time models that use the finest level of gran-
ularity, the geometric duration distribution of such models
(which is particularly marked in fine-grained time models)
can be a poor fit to the true duration distribution. Con-
versely, using an overly coarse granularity can also lead to
artifacts in the learned model (Nodelman et al., 2003). We
believe that the modeling flexibility resulting from contin-
uous time models, augmented with the efficient structure
learning made possible in CTBNs, will allow us to better
tackle multiple applications, ranging from modeling peo-
ple’s activity to learning evolutionary models of DNA se-
quences.
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