
Visualization of Collaborative Data

Guobiao Mei
University of California, Riverside

gmei@cs.ucr.edu

Christian R. Shelton
University of California, Riverside

cshelton@cs.ucr.edu

Abstract

Collaborative data consist of ratings relating two
distinct sets of objects: users and items. Much
of the work with such data focuses on filtering:
predicting unknown ratings for pairs of users and
items. In this paper we focus on the problem of
visualizing the information. Given all of the rat-
ings, our task is to embed all of the users and
items as points in the same Euclidean space. We
would like to place users near items that they
have rated (or would rate) high, and far away
from those they would give low ratings. We pose
this problem as a real-valued non-linear Bayesian
network and employ Markov chain Monte Carlo
and expectation maximization to find an embed-
ding. We present a metric by which to judge the
quality of a visualization and compare our results
to Eigentaste, locally linear embeddingandco-
occurrence data embeddingon three real-world
datasets.

1 Introduction

Collaborative data, which are composed of correlatedusers
and items, are abundant: movie recommendations, music
rankings, and book reviews, for example. Most of the
work on such data has been in the area of collaborative fil-
tering: making predictions or recommendations based on
prior user ratings.

However, no previous algorithms have approached the
problem of visualizing collaborative information. In this
work, we initiate this problem and propose an approach.
Many visualization problems are “soft” in nature and it is
difficult to compare alternative methods. For this task, we
introduce a simple evaluation criterion which is natural and
allows for numeric comparisons of possible visualizations.

Using all the ratings, the visualization problem is to ex-
tract the intrinsic similarities or dissimilarities between all

the users and items involved, and represent them graphi-
cally. This has a wide range of applications, for example
guided on-line shopping. Traditional stores allow for easy
browsing by physically walking up and down the aisles and
visually inspecting the store’s contents. Such browsing is
not easy on-line.Amazon.com, for instance, has thousands
of items in many categories. While collaborative filtering
allows an on-line seller to recommend a list of objects that
the buyer might also like, it does not supply a good way of
browsing an on-line collection in a more free-form fashion.
We propose building an embedded graph of all the items
using the collaborative rating data, and allowing the shop-
per to zoom in on a portion of the graph and scroll around
as he or she searches for items of interest. If constructed
well, nearby items will also be of interest to the shopper
and local directions in the space will have “meaning” to
the user. Spatial layouts have been shown in the past to
increase interest in exploration and to aid in finding infor-
mation (Chennawasin et al., 1999).

We assume aD-dimensional Euclidean space, which we
call the embedded space(for most computer interfaces,
D = 2). Each user or item is represented by a point in
this space. Intuitively, if two user (or item) points are near
each other in the embedded space, the two users (items) are
likely to have similar preferences (properties). In the same
manner, the closer a user point is to an item point in the
embedded space, the higher the rating the user has given
(or would give) the item.

We formulate the visualization problem in Section 2, and
then propose with our approach in Section 3. In Section 4
we show our results on three real-world datasets.

1.1 Prior Work

There are many existing collaborative filtering algorithms
focusing on the task of prediction. We cannot review all
of them and they do not directly pertain to the task of vi-
sualization. Breese et al. (1998) classifies the approaches
into two major categories:memory basedandmodel based.
Memory based collaborative filtering algorithms make pre-

dictions according to all the existing preferences stored be-
forehand, while model based algorithms first try to learn the
parameters of a particular model for the existing user pref-
erences, and then make predictions according to the learned
model. Our work is mostly a model based approach.

Some of the filtering methods have a “geometric” flavor.
Pennock et al. (2000) propose a collaborative filter based
on personality diagnosis. They associate each user with
a vectorRtrue, indicating the true rating of this user for
every item in the system. The actual rating is assumed to
be a random variable drawn from a Gaussian distribution
with mean equals to the corresponding element of that item
in the user’sRtrue vector. If there is a missing rating, the
correspondingRtrue element is a uniform random variable.

Goldberg et al. (2001) propose Eigentaste (ET). It has two
phases: offline and online. It treats the entire rating matrix
as a high dimensional space and employs principal com-
ponent analysis for dimensionality reduction during the of-
fline phase. It projects the users into a low dimensional
space and then partitions the embedded space into sets of
users and uses the maximally rated items in a given set as
predictions during the online phase. While this algorithm
does place the users in a geometric space, it does not place
the items in the same space, and it requires that there be a
set of items (thegauge set) which every user has rated.

Saul and Roweis (2003) propose locally linear embedding
(LLE) as an algorithm for embedding points into a (low
dimensional) space. It is not geared to collaborative data: it
does not deal well with sparse data, and it can only embed
either users or items. However, it has had good success
with non-linear embeddings, so it is a candidate method
for the collaborative visualization problem.

Co-occurrence data have been used to produce embeddings
of two classes of objects in the same space. CODE (Glober-
son et al., 2005) is one such recent example. It tries to
embed objects of two types into the same Euclidean space
based on their co-occurrence statistics. Unfortunately, col-
laborative filtering data are usually given as ratings and
not co-occurrence statistics. Even if we take the ratings
to be proportional to the corresponding co-occurrences (an
unjustified assumption), we still have missing statistics
(which cannot be taken to be zero). Co-occurrence algo-
rithms do not currently deal with such missing values.

None of the above three algorithms (ET, LLE and CODE)
was developed for our task. However, there are no other
algorithms designed for collaborative visualization. There-
fore, we compare to them (to the extent possible) in Sec-
tion 4.

2 The Visualization Problem

We first introduce our notations in 2.1. In 2.2 we formulate
the visualization problem of collaborative data. We specify

our distributional assumptions in 2.3.

2.1 Notation

Let U = {u1, u2, . . . , um} andG = {g1, g2, . . . , gn} be
the sets of all users and items, respectively. Without ambi-
guity, we will useui to refer both to thei-th user and to the
corresponding point in the embedded space for that user.
We use the same notation forgj . We defineδij to be1 if ui

ratedgj and0 otherwise.

Let rij be the rating ofui of gj if δij = 1. Here we nor-
malize all the ratings to the range[0, 1] (i.e.1 is the highest
rating, and 0 is the lowest). LetR = {rij | δij = 1}.

We further denoteGi = {gj | δij = 1} andU j = {ui |
δij = 1}. Gi is the set of all the items thatui rated, andU j

is the set of all the users that ratedgj .

2.2 Formulation of the Problem

The visualization problem is to find an embedding of all the
pointsU andG in a Euclidean space we call theembedded
space. The embedding should be one in which the distance
between a user and an item is related to the corresponding
rating.

In the embedded space, we assume eachui and gj are
random variables drawn independently from prior distribu-
tions Pu(ui) andPg(gj). We introduce a rating function
f : <+

0 7→ [0, 1], which maps the distance between two
points (a user and an item) in the embedded space to a real
value on[0, 1]: the expected rating for the two points.f(x)
is a monotonically non-increasing function,f(0) = 1, and
f(∞) = 0. Intuitively, two points with a smaller mutual
distance should have a higher expected rating. At this point,
we will assume that the rating functionf(x) is given. In
Section 3.4 we will show how this function can be learned
from data. The actual ratingrij between two pointsui and
gj in the embedded space is a random variable drawn from
a distributionPf (rij | ui, gj) with meanf(‖ui − gj‖).

Given all the ratings,R, as evidence and the rating function,
f , our task is to put all the user pointsU and item pointsG
into the embedded space so that the likelihood of observed
ratingsR is maximized. That is, we want to find theU and
G points that maximize the posterior:

[U∗, G∗] = arg max
U,G

P (U,G | R) (1)

= arg max
U,G

∏
i,j|δij=1

Pf (rij |ui, gj)
∏

i

Pu(ui)
∏
j

Pg(gj) .

P (U,G, R) is a real-valued Bayesian network in which
each user and item variable has no parents and each rating
variable has two parents (one user and one item). The rat-
ings are given as evidence and the task is to determine the

most probable joint assignment to the user and item vari-
ables given the ratings.

2.3 Gaussian Assumptions

We assume that all the distributions are from the Gaussian
family. To be specific,

Pu = N (0,Σu)
Pg = N (0,Σg)

Pf (rij |ui, gj) = N (f(‖ui − gj‖), σr) .

Note that while these distributions are all normal, the func-
tion f is non-linear and therefore the resulting joint distri-
bution is not Gaussian.

3 Approach

It is intractable to compute the posterior in Equation 1 di-
rectly. We use Markov chain Monte Carlo sampling.

3.1 Metropolis-Hastings Algorithm

In particular, we use the Metropolis-Hastings (MH) algo-
rithm (Metropolis et al., 1953), which was extended to
graphical models. Given a graphical model over the ran-
dom variablesX = {x1, x2, . . . , xN}, assume a target dis-
tribution π over X. For each variablexi, there is an as-
sociated proposal distributionQxi

, the distribution of new
samples for that variable.

Given a current assignment toX, MH randomly picks a
variablexi and tries to replace its value with a new sample
x′i drawn from the proposalQxi . Let Y = X − {xi}.

The transition gain ratiofor changing the samplexi to x′i
is defined as

T Q(xi�x′i) =
Qx′

i
(xi)π(Y, x′i)

Qxi(x′i)π(Y, xi)
. (2)

The probability of accepting this new samplex′i is

A(xi�x′i) = min
{
1, T Q(xi�x′i)

}
. (3)

Using the local independencies of the graph, this can be
decomposed into a set of local probabilities.

3.2 Sampling Approach

In our visualization problem,π is the posterior distribution
of U andG givenR (Equation 1). Initially, we sample from
Pu for every ui and sample fromPg for every gj . This
jointly form a single starting sample (a joint assignment to
U andG) for our MCMC method.

We use proposal distributionsQui
for the nodeui andQgj

for the nodegj . We set the proposal distributions to be

Gaussian with means at the previous embedded position:

Qui
= N (ui,Σ′

u)
Qgj

= N (gj ,Σ′
g) .

If we choose the nodeui to be resampled, we drawu′i from
Qui

, and then compute the accept ratio for this change ac-
cording to Equation 3. Using the local independence prop-
erties, the transition gain ratio with respect to the rating
functionf is given by

T Q
f (ui�u′i) =

Qu′
i
(ui)Pu(u′i)

∏
j∈Gi

Pf (rij |u′i, gj)

Qui
(u′i)Pu(ui)

∏
j∈Gi

Pf (rij |ui, gj)
. (4)

Similarly, the transition gain ratio for an item node,gj is

T Q
f (gj�g′j) =

Qg′
j
(gj)Pg(g′j)

∏
i∈Uj

Pf (rij |ui, g
′
j)

Qgj
(g′j)Pg(gj)

∏
i∈Uj

Pf (rij |ui, gj)
. (5)

We repeat the above resampling phase until the process has
mixed. The stationary distribution of this procedure is the
true posteriorP (U,G|R).

3.3 Simulated Annealing

Recall that we want thearg maxU,G P (U,G|R). The
Metropolis-Hastings algorithm will give us joint samples
of U andG, drawn from that posterior. To get the samples
that maximize the posterior, we modify the standard MH
algorithm along the lines of the simulated annealing (SA)
algorithm (Kirkpatrick et al., 1983).

In particular, we modify Equation 2 to add an annealing
temperature,β:

T Q(xi�x′i) =
Qx′

i
(xi)π(Y, x′i)

β

Qxi(x′i)π(Y, xi)β

The transition gain ratios of equations 4 and 5 are then

T Q
f (ui�u′i) =

Qu′
i
(ui)

[
Pu(u′i)

∏
j∈Gi

Pf (rij |u′i, gj)

]β

Qui(u′i)

[
Pu(ui)

∏
j∈Gi

Pf (rij |ui, gj)

]β

T Q
f (gj�g′j) =

Qg′
j
(gj)

[
Pg(g′j)

∏
i∈Uj

Pf (rij |ui, g
′
j)

]β

Qgj
(g′j)

[
Pg(gj)

∏
i∈Uj

Pf (rij |ui, gj)

]β

The added temperature factorβ grows gradually from1 to
∞. Initially β = 1, and this method is the same as the

standard Metropolis-Hastings algorithm. Asβ grows, the
simulated annealing algorithm penalizes changes resulting
in lower likelihoods; the algorithm tends to only climb up-
hill in the posterior distribution.

3.4 Learn the Rating Function

Until now, we have assumed that the rating functionf was
known. However, we would like this function to adapt to
the collaborative data.

It would be straight-forward to selectf from a family (for
example the exponential,f(x) = e−λx). However, the ac-
tual rating function may have a very different shape. In-
stead we note that all collaborative datasets of which we are
aware have a finite number of values for the ratings. Many
are binary (“like” or “do not like”) and others are based on
a five- or ten-point scale. Continuous, real-valued ratings
are seldom used. We therefore letf be a step function with
discrete quantizations.

We discretizef into K quantizations. LetΘ = {θi | i =
1, . . . ,K} be the set ofK splitting points in sorted order,
with θK = ∞. Given the set of splitting pointsΘ, the
rating function is

f(x; Θ) = 1− i− 1
K − 1

, if θi−1 ≤ x < θi .

The problem of learningf is now transformed to the prob-
lem of learningΘ:

Θ∗ = arg min
Θ

∑
i,j|δij=1

E[(f(‖ui − gj‖; Θ)− rij)2] (6)

where the expectation is with respect to the posterior dis-
tribution overU andG. This formulation is equivalent to
maximizing the probability of the ratings; the squared er-
ror in the above equation comes directly from the Gaussian
assumption regarding the distributionPf .

We use expectation maximization (EM) algorithm (Demp-
ster et al., 1977) to learn the rating function. We initially
setΘ = Θ0, a random starting point that meets our require-
ments forf .

The E-step employs MH to sample from the expectations
in Equation 6 using the rating functionfk = f(·; Θk) at
thek-th iteration.

The M-step updatesΘk+1 based on the generated sample
configurations of the embedded space (which approximate
the expectations of Equation 6). Using all theui andgj

points, the optimal rating function is updated according to
Equation 6. LetN be the number of terms in the summa-
tion of Equation 6 (one for each rating for each sample).
The M-step optimization can be done efficiently (and ex-
actly) inO(NK) time using dynamic programming.

Before updating the rating function in the M-step, we
renormalize all the points in the embedding space. Due
to our assumptions thatPu andPg are fixed Gaussian dis-
tributions with zero mean and that we have the freedom to
changef , if the above procedure were run without modifi-
cation, all the points would collapse together toward the
origin. Consequently, the learned rating function would
have splitting points with smaller and smaller values. We
fix this by a simple normalization step that scales and trans-
lates the points to reset the mean of all of the points to zero
and the variance of their positions to one. Note that this is
not a general “whitening” step in that we only multiply the
points by a scalar, not a matrix.

Algorithm 1 [U,G] ⇐Embed-Graph(R,D)
Inputs: R: rating matrix,D: embedding dimensionality
Outputs: U andG: embedded points

β ⇐ 1
Pu ⇐ N (0,Σu), Pg ⇐ N (0,Σg)
Qui ⇐ N (ui,Σ′

u), Qgj ⇐ N (gj ,Σ′
g)

Pf (rij | ui, gj) ⇐ N (f(‖ui − gj‖), σr)
f ⇐ f(·; Θ0)
Sample{ui ∼ Pu}m

i=1

Sample{gj ∼ Pg}n
j=1

repeat
// E-Step:

S ⇐ ∅
for k = 1 to lb + ls do

Randomly pick a pointxi from samples in[U,G]
if xi is a user pointui then

Sampleu′i ∼ Qui

ui ⇐ u′i with probabilityAf (ui�u′i)
else ifxi is an item pointgj then

Sampleg′j ∼ Qgj

gj ⇐ g′j with probabilityAf (gj�g′j)
end if
if k > lb then // burn in for lb iterations

Add (U,G) to S // Save lastls iterations
end if
[U,G] ⇐normalize([U,G])

end for
β ⇐ (1 + ε)β

// M-Step:
f(·; Θ) ⇐learned rating function usingS

until The current sample[U,G] is stable

3.5 Overview of the Full Algorithm

To put everything together, the overall algorithm in our ap-
proach is listed in Algorithm 1. The parameters of this al-
gorithm arels (the number of samples used for estimating
the expectation),lb (the number of samples necessary for
the MCMC process to converge),ε (the amount by which
to increaseβ), and the variances of the Gaussian distribu-

tions. In Section 4.2 we specify these quantities for the
experiments we ran.

4 Experiments and Results

We discuss our three datasets, our methodology for com-
parison, and then compare our algorithm to three others.

4.1 Experiment Datasets

The SAT dataset contains SAT II subject examination
scores for 40 questions chosen from a study guide of his-
toric questions and 296 users. SAT II is a standard exam
taken by high school seniors applying to colleges in the
United States. All the scores are either0 or 1 (indicating
whether the student got the question correct), and there are
no missing values. The 40 questions are from the subjects
French, Mathematics, History and Biology. The exam was
administered on-line over the course of one week.

The BGG dataset comes fromwww.boardgamegeek.com
which contains ratings from thousands of game players
and thousands of board games. The ratings range, in half-
integer increments, from0 to 10. We picked the400 users
and80 games with the highest rating density. The rating

matrix density, which we define as
P

i,j δijP
i,j 1 , is 63.4% for

this subset. Our snapshot of the dataset is from January
2005. The ratings are available publicly from the website.

Finally, the MovieLens dataset contains ratings from users
on a variety of movies. All the ratings are integers from1 to
5. We picked400 users and50 movies, again to maximize
the rating density. The rating matrix density is41.0% on
this subset. This dataset is publicly available frommovie-
lens.umn.edu.

4.2 Algorithm Initialization

Because we are learning the rating functionf , the absolute
positions of the embedded points will not affect our ap-
proach directly. Rather, the relative positions of each point
matter. Therefore, the overall scale ofΣu andΣg do not
affect the result.

In particular, for all the three datasets, we setΣu,Σg,Σ′
u

andΣ′
g each to be the identity matrix. We setσr = 0.25

for SAT,σr = 0.1 for MovieLens, andσr = 0.05 for BGG.
These values directly reflect the discretization of the rating
scores. Our informal tests show that the algorithm is not
sensitive to these particular numbers and we have made no
effort to tune them.

For the rating functionf , we choose to setΘ0 directly us-
ing an M-step from the samples drawn from their priors.
For our experiments, we setls = 2000, lb = 1000, and
ε = 0.02 for all three datasets.

4.3 Implementation Issues

We compare our results withLocally Linear Embedding
(LLE) (Saul & Roweis, 2003),Eigentaste(ET) (Gold-
berg et al., 2001) andco-occurrence data embedding
(CODE) (Globerson et al., 2005). None of the algorithms
is exactly suited to our problem, so we discuss our adapta-
tions in this section.

If we consider the rating matrix as a set of points in the
high dimensional space, we can use LLE to embed them
into a lower dimensional space. The LLE algorithm re-
quires a full rating matrixR. This is not available for
the MovieLens and BGG datasets. We use linear regres-
sion to fill the missing ratings. To be specific, we first fill
each missing ratingrij with average rating ofui. This re-
sults in full rating matrix. To predict the missing rating
rij using linear regression, for each itemgk, let xk =
[r1k, . . . , r(i−1)k, r(i+1)k, . . . , rmk]>, i.e. xk is the vector
containing all the ratings forgk except fromui. We then
use linear regression to find[

ŵi, b̂i

]
= arg min

w,b

∑
k

(w>xk + b− rik)2

The predicted rating is then given by

r̂ij = ŵ>
i xj + b̂i .

Both LLE and ET can embed either users or items into an
Euclidean space. Yet, neither of them can embed both in
the same space. We tried several ways to extend them and
to make them comparable. One straight-forward way is to
embed all the user points first into the space. Then for every
item, find all the users who gave it its highest rating, and
place this item at the mean of those users points.

For our results, we used an alternative method, which per-
formed better than the one above. LetR̂ be the full rating
matrix filled in using linear regression. We introduce a cor-
relation matrixC among alln items. The diagonalCii is
set to1. Let Ri be thei-th column ofR̂,

Cij =
R>

i Rj

‖Ri‖ · ‖Rj‖
.

We then letX = [C R̂>] and use LLE or ET to embedX
into the target Euclidean space. The firstn points corre-
spond to the items and the lastm points to the users.

ET only works if there is agauge setof items which all
users have rated. However, in the MovieLens and BGG
datasets, no such gauge set exists. Using the above re-
gression technique to fill in a gauge set results in bad (and
misleading) results, so we omitted them and have only in-
cluded ET results for the SAT dataset.

The CODE algorithm requires co-occurrence statistics be-
tween users and items. The relationship between co-

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Users
Math
Biology
History
French

−1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Users
Math
Biology
History
French

−2.5 −2 −1.5 −1

−0.5

0

0.5

1

Users
Math
Biology
History
French

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Users
Math
Biology
History
French

MCMC-SA LLE ET CODE

Figure 1: 2-Dimensional embeddings for the SAT questions using a simulated annealing version of the MCMC algorithm,
local linear embedding, Eigentaste, and CODE.

occurrences and ratings is not clear. However, it is natu-
ral to assumerij is proportional to the probability of the
co-occurrence ofui andgj . Intuitively, a higher rating in-
dicates it is more likely that the user and item “occur” at the
same time. We set the empirical distribution of(u, g) to be
proportional to the rating matrix (filled by linear regression
if there are missing ratings). We initialize the mappings
uniformly and randomly from the set[−0.5, 0.5]D as the
starting point for the optimization.

Our linear regression method for filling in missing val-
ues has proven reasonable on the prediction task, but ad-
mittedly it is not the most sophisticated algorithm possi-
ble. Therefore, to distinguish embedding factors from data
completion factors, we also ran our MCMC algorithm on
the completed rating matrix from linear regression.

Both our method and CODE have variable running times
(number of EM iterations in our case, number of random
restarts for CODE). For the results reported here, we gave
each 30 seconds of CPU time on a 2.8 GHz processor.

4.4 Sample Results

The SAT data was selected because of our ability to ex-
tract a “ground truth.” In particular, we expect that when
embedded, the questions from the same subjects should be
grouped together. Figure 1 shows the embedding for di-
mension2 using the simulated annealing approach (along
with the three other approaches).

There are ten questions in each category. We can clearly
see that our method clusters all the French questions tightly
together. The same happens for the Math questions. (There
are eight Math questions that overlap in a small area.) The
other methods do not produce as tight clusters.

The History and Biology questions do not cluster as well.
Further data analysis has shown that there is very little pre-
dictability in the History and Biology questions, so this re-
sult is perhaps not surprising.1

1The French and Math questions tended to test a body of
knowledge that is often retained as a coherent block, where as the
History and Biology questions on this exam tended to test more

Figure 1 also shows that the user points and the item points
intermix more evenly with our approach. This meets our
expectation that for any user, we can always find things
they like or dislike (questions on which they perform well
or poorly). In the embedding results of LLE, ET, and
CODE, a large number of user points lie in parts of the
graph outside the convex hull of the the question points.
This makes it impractical to make recommendations to
those users based on the visualizations.

4.5 Evaluation Criteria

There are no prior standard metrics for evaluating the qual-
ity of the embedded graph. In this work, we introduce
Kendall’s tau(Kendall, 1955) as a suitable evaluation cri-
terion. Kendall’s tau is used to compute the correlation in
ordering between two sequencesX andY . It is especially
useful for evaluating the correlation between two sequences
that may have many ties.

Given two sequencesX andY of the same length, a pair
(i, j), i 6= j is calledconcordantif the ordering ofXi and
Xj is the same as the ordering ofYi andYj . By contrast,
if the relative ordering is different, this pair(i, j) is called
discordant. If Xi = Xj or Yi = Yj , then(i, j) is neither
concordant or discordant, and it is called anextra xpair or
extra ypair, respectively.

Kendall’s tau is defined as

τ =
C −D√

C + D + Ey

√
C + D + Ex

(7)

whereC is the number of all concordant pairs, andD is the
number of all discordant pairs.Ex andEy are the numbers
of extrax pairs and extray pairs.

It is easy to verify thatτ is always between−1 and1. τ = 1
indicates the two sequences have perfect positive correla-
tion, andτ = −1 indicates perfect negative correlation.
τ = 0 indicates their orderings are independent.

To evaluate the quality of the graph in the embedded space,
for each test we randomly select a set of users,Ū , and

isolated blocks of knowledge.

10 15 20 25 30 35 40
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Training size

Te
st

in
g

K
en

da
ll’

s
ta

u

Random
Eigentaste
CODE
LLE
MCMC
MCMC−SA
MCMC−REG

20 30 40 50 60 70 80
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Training size

Te
st

in
g

K
en

da
ll’

s
ta

u

10 15 20 25 30 35 40 45 50
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Training size

Te
st

in
g

K
en

da
ll’

s
ta

u

SAT BGG MovieLens

Figure 2: Performance of embedding algorithms on the three datasets as a function of training set size.

items, Ḡ, as testing users and items. All the ratings be-
tween users in̄U and items inḠ are held out for testing
and are not used in generating the embedding.

The embedding algorithms will produce the embedded
points for those nodes in̄U andḠ given some additional
ratings. In order to evaluate the embedding quality, we gen-
erate two sequences and compute Kendall’s tau between
them: sequenceX contains the actual ratings between all
the pairsui ∈ Ū andgj ∈ Ḡ such thatδij = 1, and se-
quenceY contains the distances between the correspond-
ing ui andgj in the embedded graph.

A good embedding will placeui far fromgj if rij is small,
and close ifrij is large. Kendall’s tau for the above two
sequences exactly evaluate this correlation. Denoteτ to
be the Kendall’s tau for the sequencesX andY . Nega-
tive values ofτ indicate good embeddings, and we expect
the values from embedding algorithms to be smaller than0
(that of a random embedding).

4.6 Experimental Results

We ran our MCMC algorithm both with and without simu-
lated annealing, along with LLE, ET and CODE. We ran-
domly selected one quarter of the users and one quarter of
the items for testing (̄U andḠ from above). We randomly
selected other users and items to form a training set (Ũ and
G̃). All ratings between members of̃G andŨ , G̃ andŪ ,
andḠ and Ũ are used for training. As stated previously,
the ratings between members ofḠ andŪ are used for test-
ing. It is necessary to include the ratings betweenG̃ and
Ū (and likewise between̄G andŨ) in order to connect the
test users and items with the training users and items.

Because the existence of the test set, there are always miss-
ing ratings in the rating matrices used. We use linear re-
gression to fill those ratings. We also ran the MCMC algo-
rithm on the same filled data as LLE, ET and CODE used
(MCMC-REG in the graphs).

For each dataset size (number of items inG̃), we ran25
independent experiments and recorded the means and stan-

dard deviations across the experiments for all algorithms.
Every algorithm was run on the same set of training and
testing sets.

For each of these datasets, Figure 2 shows the comparison
of our methods to LLE, ET, CODE, and a random embed-
ding, as a function of the size of the training set. We also
computed an “ideal embedding” value forτ . Because of
ties, Kendall’s tau cannot always reach−1, so we calcu-
late the lowest possible value forτ on the random dataset
drawn. This takes nothing into account except ties and it is
highly optimistic and probably not obtainable at such low
dimensions. The optimal values for SAT, BGG, and Movie-
Lens datasets are approximately−0.63, −0.87 and−0.90
respectively. We ran LLE algorithm with training size start-
ing at22 for SAT and24 for MovieLens because of matrix
inversion problems for smaller training sizes.

Figure 3 shows another experiment with the same evalua-
tion criteria. In this experiment, we fix the testing data as
usual, and use all the remaining data for training. The plot
shows Kendall’s tau as a function of the number of dimen-
sions of the embedding space.

4.7 Analysis of the Results

From the experiments above, we can see that when the rat-
ing matrix is denser, the embedding algorithm achieve bet-
ter results. Our sampling method, with (MCMC-SA) and
without (MCMC) simulated annealing, outperformed LLE,
ET and CODE. None of them were designed with this type
of data in mind, so we do not present these results to dispar-
age those methods, but there were no other methods avail-
able to test against. Note that our MCMC algorithm on
linear regression filled data (MCMC-REG) has similar per-
formance to directly applying our MCMC method on data
with missing ratings. This implies that it is not our regres-
sion that is causing the poor results from the other algo-
rithms, but rather their misfit to this problem. We would
also note that our method also seems more stable (smaller
variance) than the other algorithms compared.

2 3 4 5 6 7 8

−0.4

−0.3

−0.2

−0.1

0

0.1

Embedding dimension

Te
st

in
g

K
en

da
ll’

s
ta

u

Random
Eigentaste
CODE
LLE
MCMC
MCMC−SA
MCMC−REG

2 3 4 5 6 7 8
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Embedding dimension

Te
st

in
g

K
en

da
ll’

s
ta

u

2 3 4 5 6 7 8
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Embedding dimension

Te
st

in
g

K
en

da
ll’

s
ta

u

SAT BGG MovieLens

Figure 3: Performance of embedding algorithms on the three datasets as a function of embedding dimensions.

On the SAT dataset, which contains full density of ratings,
our algorithms show strong negative correlations which in-
dicate good visualization results. In most cases, using
simulated annealing helps improve the quality of embed-
ding (compared to “normal” MCMC). As the training size
grows, we have more information on the relations between
all the user and item points, and that leads to better perfor-
mance for all the algorithms.

The BGG and MovieLens datasets have many missing rat-
ings and the ratings values are more subjective and there-
fore noisier. Our algorithm is not as competitive with the
“ideal” value for Kendall’s tau, but we feel that this ideal
value is wildly optimistic in these settings. Our algorithm
does perform better than random embeddings, LLE, and
CODE.

5 Conclusions

We formulated a new problem of visualizing collaborative
data. This is a potentially very useful problem. Not only
are on-line databases of user ratings growing, but personal
databases are also becoming more common. We expect the
collaborative visualization problem to be useful in organiz-
ing personal music or photography collections as well as
on-line shopping.

We have not addressed the computational issues nor the
stability of the resulting embedding in this work. Both
are important problems for on-line deployment in chang-
ing databases. Because of the anytime nature of sampling
methods and the ease of introducing constraints, we are
hopeful that the solution presented here can be adapted to
provide stable and adaptive solutions.

Acknowledgments

We thank Titus Winters for collecting and sharing the SAT
dataset. This work was supported in part by a grant from
Intel Research and the UC MICRO program.

References

Breese, J., Heckerman, D., & Kadie, C. (1998). Empirical
analysis of predictive algorithms for collaborative filter-
ing. UAI ’98 (pp. 43–52).

Chennawasin, C., Cole, J., & Chen, C. (1999). An em-
perical study of memory and information retrieval with
a spatial user interface.21st Annual BCS-IRSG Collo-
quium on IR.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via the EM algo-
rithm. J. of the Royal Stat. Society B, 39, 1–38.

Globerson, A., Chechik, G., Pereira, F., & Tishby, N.
(2005). Euclidean embedding of co-occurrence data.
NIPS 17(pp. 497–504).

Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001).
Eigentaste: A constant time collaborative filtering algo-
rithm. Information Retrieval, 4, 133–151.

Kendall, M. G. (1955). Rank correlation methods. New
York: Hafner Publishing Co.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Op-
timization by simulated annealing.Science, 220, 671–
680.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., & Teller, E. (1953). Equation of state cal-
culations by fast computing machines.Journal of Chem-
ical Physics, 21, 1087–1092.

Pennock, D., Horvitz, E., Lawrence, S., & Giles, C. L.
(2000). Collaborative filtering by personality diagnosis:
A hybrid memory- and model-based approach.UAI ’00
(pp. 473–480).

Saul, L. K., & Roweis, S. T. (2003). Think globally, fit
locally: Unsupervised learning of low dimensional man-
ifolds. JMLR, 4, 119–155.

