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Abstract

Collaborative data consist of ratings relating two
distinct sets of objects: users and items. Much
of the work with such data focuses on filtering:
predicting unknown ratings for pairs of users and
items. In this paper we focus on the problem of
visualizing the information. Given all of the rat-
ings, our task is to embed all of the users and
items as points in the same Euclidean space. We
would like to place users near items that they
have rated (or would rate) high, and far away
from those they would give low ratings. We pose
this problem as a real-valued non-linear Bayesian
network and employ Markov chain Monte Carlo
and expectation maximization to find an embed-
ding. We present a metric by which to judge the
quality of a visualization and compare our results
to Eigentastelocally linear embeddingnd co-
occurrence data embeddiran three real-world
datasets.
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the users and items involved, and represent them graphi-
cally. This has a wide range of applications, for example
guided on-line shopping. Traditional stores allow for easy
browsing by physically walking up and down the aisles and
visually inspecting the store’s contents. Such browsing is
not easy on-lineAmazon.confor instance, has thousands
of items in many categories. While collaborative filtering
allows an on-line seller to recommend a list of objects that
the buyer might also like, it does not supply a good way of
browsing an on-line collection in a more free-form fashion.
We propose building an embedded graph of all the items
using the collaborative rating data, and allowing the shop-
per to zoom in on a portion of the graph and scroll around
as he or she searches for items of interest. If constructed
well, nearby items will also be of interest to the shopper
and local directions in the space will have “meaning” to
the user. Spatial layouts have been shown in the past to
increase interest in exploration and to aid in finding infor-
mation (Chennawasin et al., 1999).

We assume @-dimensional Euclidean space, which we
call the embedded spac@or most computer interfaces,

D = 2). Each user or item is represented by a point in
this space. Intuitively, if two user (or item) points are near
each other in the embedded space, the two users (items) are
likely to have similar preferences (properties). In the same

Collaborative data, which are composed of correlatsets  manner, the closer a user point is to an item point in the
anditems are abundant: movie recommendations, musicembedded space, the higher the rating the user has given
rankings, and book reviews, for example. Most of the(or would give) the item.

work on such data has been in the area of collaborative filw

L . o ) e formulate the visualization problem in Section 2, and
tering: making predictions or recommendations based Ohen propose with our approach in Section 3. In Section 4
prior user ratings.

we show our results on three real-world datasets.
However, no previous algorithms have approached the

problem of y!suallz[ng collaborative information. In this 11 Prior Work

work, we initiate this problem and propose an approach:

Many visualization problems are "Soft” in nature and it is There are many existing collaborative filtering algorithms

difficult to compare alternative methods. For this task, Wefocusing on the task of prediction. We cannot review all

introduce a simple evaluation criterion which is natural andOf them and they do not directly pertain to the task of vi-

allows for numeric comparisons of possible VlsualIzatlons'sualization. Breese et al. (1998) classifies the approaches
Using all the ratings, the visualization problem is to ex-into two major categoriesnemory basedndmodel based
tract the intrinsic similarities or dissimilarities between all Memory based collaborative filtering algorithms make pre-



dictions according to all the existing preferences stored beeur distributional assumptions in 2.3.

forehand, while model based algorithms first try to learn the

parameters of a particular model for the existing user pref, 1 Notation

erences, and then make predictions according to the learned

model. Our work is mostly a model based approach. LetU = {u1,us,...,um} andG = {g1,92,...,9,} be

Some of the filtering methods have a “geometric” flavor. the_ sets of _aII users and items, respectively. Without ambi-
Pennock et al. (2000) propose a collaborative filter base@Uity; we will useu; to refer both to the-th user and to the

on personality diagnosis. They associate each user witRorreésponding point in the embedded space for that user.
a vector R'™<, indicating the true rating of this user for Ve use the same notation fgy. We definej;; to bel if u;

every item in the system. The actual rating is assumed t§2tedg; ando otherwise.
be a random variable drawn from a Gaussian distribution gt r;; be the rating ofu; of g; if 6;; = 1. Here we nor-
with mean equals to the corresponding element of that itenfnalize all the ratings to the rand 1] (i.e. 1 is the highest
in the user'sR'"“¢ vector. If there is a missing rating, the rating, and O is the lowest). Lét = {r;; | ;; = 1}.
correspondindz!™“¢ element is a uniform random variable. , ,

_ We further denotes* = {g; | ¢;; = 1} andU’ = {u; |
Goldberg et al. (2001) propose Eigentaste (ET). It has WG, = 1}. G' is the set of all the items that rated, andJ”
phases: offline and online. It treats the entire rating matrixs the set of all the users that rated
as a high dimensional space and employs principal com-
ponent analysis for dimensionality reduction during the of-
fline phase. It projects the users into a low dimensiona

space and then part|t|on.s the embe(jded space .|nto sets ‘Plf1e visualization problem is to find an embedding of all the
users a}nd uses the max'”.‘a”y rated |tem§ In a given §et apsointsU andd in a Euclidean space we call teenbedded
predictions during the online phase. While this algorithm ace The embedding should be one in which the distance

: . . S
doe; plac_e the users in a geometrl_c space, it does not pla%%tween a user and an item is related to the corresponding
the items in the same space, and it requires that there bergting

set of items (th@auge setwhich every user has rated.

?.2 Formulation of the Problem

. . ._In the embedded space, we assume eachnd g; are
Saul and Roweis (2003) propose locally linear embeddin andom variables drawn independently from prior distribu-

STLE) as ar; algonthrl?'for ?mbed?;r:g pflillnés mttp ad(l?\'\_l.ions P,(u;) and Py(g;). We introduce a rating function
imensional) space. Itis not geared to collaborative data: it, ", R{ — [0,1], which maps the distance between two

gi(:re]zrng;:éa:)‘:vﬁgr\ggh Z%?/Z?/(Srati?'hzr?sdr::;ago%r:jlysir::: oints (a user and an item) in t.he embedded space to areal
with non-linear embe.ddings so’ it is a candidate metho alue ono, 1]:. the expegted ratmgfor th? two pointstz)
for the collaborative visualiza{tion problem sa monotonlca!ly non-increasing fqnctlofngo) =1, and

' f(oco) = 0. Intuitively, two points with a smaller mutual
Co-occurrence data have been used to produce embeddingistance should have a higher expected rating. At this point,
of two classes of objects in the same space. CODE (Globewe will assume that the rating functiof{x) is given. In
son et al., 2005) is one such recent example. It tries t&ection 3.4 we will show how this function can be learned
embed objects of two types into the same Euclidean spadeom data. The actual rating,; between two points; and
based on their co-occurrence statistics. Unfortunately, colg; in the embedded space is a random variable drawn from
laborative filtering data are usually given as ratings anda distributionPy (r;; | u;, g;) with meanf(|ju; — g;|).

not co-occurrence statistics. Even_|f we take the ralindSsiven all the ratingsk, as evidence and the rating function,
to be proportional to the corresponding co-occurrences (a? our task i to put all the user poinisand item point<?

unjustified assumption), we still have missing StatIStICS‘into the embedded space so that the likelihood of observed

(WhICh cannot be taken to be_ zero). Cc_>-o.ccurrence algoFatings:R is maximized. That is, we want to find théand
rithms do not currently deal with such missing values.

G points that maximize the posterior:
None of the above three algorithms (ET, LLE and CODE)
was developed for our task. However, there are no othefU™, G*] = argmax P(U,G | R) (1)
algorithms designed for collaborative visualization. There- ve
fore, we compare to them (to the extent possible) in Sec- = arg max H Py(rijlui, g5) HPu(uq:) HPg(gj) :
tion 4. T ,j16:=1 i j

2 The Visualization Problem P(U,G, R) is a real-valued Bayesian network in which
each user and item variable has no parents and each rating

We first introduce our notations in 2.1. In 2.2 we formulate variable has two parents (one user and one item). The rat-

the visualization problem of collaborative data. We specifyings are given as evidence and the task is to determine the



most probable joint assignment to the user and item variGaussian with means at the previous embedded position:
ables given the ratings.

Quz = N(ulv 2{1)
2.3 Gaussian Assumptions Qq, = Ng;, Zg) -
We assume that all the distributions are from the Gaussiaff we choose the node; to be resampled, we draw from
family. To be specific, Q.,, and then compute the accept ratio for this change ac-
cording to Equation 3. Using the local independence prop-
P, =N(0,%y) erties, the transition gain ratio with respect to the rating
P, =N(0,%,) function f is given by
Py(rigluis 9 = NI (lui = g5), ov) - Quy(us) Pulf) T Py(rijlus g5)
. o Q no_ JjeG?
Note that while these distributions are all normal, the func- 7 (ui—u;) = Np Fz -4
tion f is non-linear and therefore the resulting joint distri jec

bution is not Gaussian.
Similarly, the transition gain ratio for an item nodg,is

Approach
3 Approac Qu;(95)Po(a}) T1 Pr(rislus,g})
It is intractable to compute the posterior in Equation 1 di- 77 (9;-0;) = 7 = - (®
pute the p que Qg;(97)Py(9;) 1 Pyrlrizlus, g5)
rectly. We use Markov chain Monte Carlo sampling. ieyd

We repeat the above resampling phase until the process has
mixed. The stationary distribution of this procedure is the

In particular, we use the Metropolis-Hastings (MH) algo- true posterio?(U, G|R).

rithm (Metropolis et al., 1953), which was extended to

graphical models. Given a graphical model over the ran3.3 Simulated Annealing

dom variablesX = {z1,xs,...,x N}, assume a target dis-

tribution = over X. For each variable:;, there is an as- Recall that we want thewg maxy ¢ P(U,G|R). The

sociated proposal distributiaf,,, the distribution of new Metropolis-Hastings algorithm will give us joint samples
samples for that variable. of U andG, drawn from that posterior. To get the samples

that maximize the posterior, we modify the standard MH

Given a current assignment &, MH randomly picks &  4jgorithm along the lines of the simulated annealing (SA)
variablex; and tries to replace its value with a new Samplealgorithm (Kirkpatrick et al., 1983).

x} drawn from the proposd),,. LetY = X — {x;}.

3.1 Metropolis-Hastings Algorithm

Thetransition gain ratiofor changing the sample; to 2/ In particular, we modify Equation 2 to add an annealing
9 ging p Ti  temperatures:

is defined as
Qo ()7 (Y, 2})P

Qu (z)m(Y, 2}) T(zo0)) = 25 ) T
TQ(xi—KU;) = m . (2 ( ) Qu; ()7 (Y, ;)P
The probability of accepting this new sampleis The transition gain ratios of equations 4 and 5 are then
A(z;~z}) = min {1, 79 (xl—m:;)} ) 3) [

B
Quy (ui) | Pu(ui) VH‘Pf(ijug,gj)]
Using the local independencies of the graph, this can be TfQ(uﬁu;) = L jed

decomposed into a set of local probabilities.

- 3
Qu, (u}) | Pu(ui) 1] Pf’(7'ij|ui79j)]

. JEG?
3.2 Sampling Approach

B
In our visualization problemy is the posterior distribution Qg (95) | Pylgy) 11 Py (Tij|ui’9})]
of U andG given R (Equation 1). Initially, we sample from ’]}.Q(gj%g;) = = e 3
P, for everyu; and sample fromP, for everyg;. This ,
jointly form a single starting sample (a joint assignment to Qy,(95) | Py(95) ,H]_ Pf(”ﬂ“i’gj)]
U andG) for our MCMC method. L v

We use proposal distributiord3,,, for the nodeu; and@,, The added temperature fact@igrows gradually from to
for the nodeg;. We set the proposal distributions to be co. Initially 5 = 1, and this method is the same as the




standard Metropolis-Hastings algorithm. Asggrows, the Before updating the rating function in the M-step, we
simulated annealing algorithm penalizes changes resultingenormalize all the points in the embedding space. Due
in lower likelihoods; the algorithm tends to only climb up- to our assumptions thdt, and P, are fixed Gaussian dis-
hill in the posterior distribution. tributions with zero mean and that we have the freedom to
changef, if the above procedure were run without modifi-
cation, all the points would collapse together toward the
origin. Consequently, the learned rating function would

Until now, we have assumed that the rating functfo,vas have Spllttlng pOintS with smaller and smaller values. We

known. However, we would like this function to adapt to fix this by a simple normalization step that scales and trans-
the collaborative data. lates the points to reset the mean of all of the points to zero

] ) and the variance of their positions to one. Note that this is
It would be straight-forward to seleg¢tfrom a family (for 15t 5 general “whitening” step in that we only multiply the
example the exponentiaf(z) = e~**). However, the ac- points by a scalar, not a matrix.

tual rating function may have a very different shape. In-

stead we note that all collaborative datasets of which we arggorithm 1 [U, G] <Embed-Graphg,D)
aware have a finite number of values for the ratings. Many
are binary (“like” or “do not like") and others are based on
a five- or ten-point scale. Continuous, real-valued ratings
are seldom used. We therefore febe a step function with 31

3.4 Learn the Rating Function

Inputs: R: rating matrix,D: embedding dimensionality
Outputs: U andG: embedded points

discrete quantizations. Py = N(0,34), P, < N(0,%,)
We discretizef into K quantizations. Le® = {6, | i = Qu; = N(ui, 3y,), Qq, <= N (g5, 2g)
1,...,K} be the set o< splitting points in sorted order,  Pr(r; | ui, g;) < N(f(|lwi — g5l), o)
with 8 = oo. Given the set of splitting point®, the f< f(0°%
rating function is Sample{u; ~ Py},
L Sample{g; ~ P,}7_;
1 — . repeat
. — 1 _ . < 7 .
flz;0)=1 7k if 0,1 <x<6,; /I E-Step:
S<0
The problem of learning is now transformed to the prob- for k =1tol, +1s,do _
lem of learning®: Randomly pick a point; from samples iU, G|
if ; is a user point;; then
o — . El(f(lui — g:]:0) —r:,)%] (6 Sampleu, ~ @,
arg H%ni%::l (Sl = g511:©) = r33)7] (©) u; <= o, with probability A (u;—u/)
e else ifz; is an item poiny; then
where the expectation is with respect to the posterior dis- Sampl?g; ~ Qg )
tribution overU andG. This formulation is equivalent to g5 < gj with probability A (g;-g;)
maximizing the probability of the ratings; the squared er- gnd if . ) .
ror in the above equation comes directly from the Gaussian if k> 1l,then  //bumn inforl, iterations
assumption regarding the distributiét. gd;j (U,G)toS [/ Save last, iterations
endi
We use expectation maximization (EM) al_gorithm (_D.e_mp— [U, G] <normalize(U, G])
ster et al., 1977) to learn the rating function. We initially end for
set® = ©°, arandom starting point that meets our require- B<(1+¢€)p
ments forf. // M-Step:
The E-step employs MH to sample from the expectations ~ /(; ©) <learned rating function usin§
in Equation 6 using the rating functioff = f(-;©%) at until The current samplg/, G is stable

the k-th iteration.

The M-step update®*+! based on the generated sample3 5 QOverview of the Full Algorithm

configurations of the embedded space (which approximate

the expectations of Equation 6). Using all thgand g; To put everything together, the overall algorithm in our ap-
points, the optimal rating function is updated according toproach is listed in Algorithm 1. The parameters of this al-
Equation 6. LetN be the number of terms in the summa- gorithm arel, (the number of samples used for estimating
tion of Equation 6 (one for each rating for each sample)the expectation)}, (the number of samples necessary for
The M-step optimization can be done efficiently (and ex-the MCMC process to converge)(the amount by which
actly) in O(N K) time using dynamic programming. to increase’), and the variances of the Gaussian distribu-



tions. In Section 4.2 we specify these quantities for the4.3 Implementation Issues

experiments we ran.
We compare our results withocally Linear Embedding

) (LLE) (Saul & Roweis, 2003),Eigentaste(ET) (Gold-
4 Experiments and Results berg et al., 2001) ando-occurrence data embedding
(CODE) (Globerson et al., 2005). None of the algorithms
We discuss our three datasets, our methodology for conis exactly suited to our problem, so we discuss our adapta-
parison, and then compare our algorithm to three others. tions in this section.

If we consider the rating matrix as a set of points in the
4.1 Experiment Datasets high dimensional space, we can use LLE to embed them

into a lower dimensional space. The LLE algorithm re-
The SAT dataset contains SAT Il subject examinationquires a full rating matrix?. This is not available for
scores for 40 questions chosen from a study guide of histhe MovieLens and BGG datasets. We use linear regres-
toric questions and 296 users. SAT Il is a standard exangion to fill the missing ratings. To be specific, we first fill
taken by high school seniors applying to colleges in thesach missing rating;; with average rating ofi;. This re-

United States. All the scores are eitlteor 1 (indicating  sults in full rating matrix. To predict the missing rating
whether the student got the question correct), and there arg; using linear regression, for each itegn, let x;, =

no missing values. The 40 questions are from the subjectﬁlk, e T (1) T (i 1)k - - - Tmk] |, 1.€. X IS the vector
French, Mathematics, History and Biology. The exam wascontaining all the ratings fog;, except fromu;. We then
administered on-line over the course of one week. use linear regression to find

The BGG dataset comes fromww.boardgamegeek.com s . - 5
which contains ratings from thousands of game players {Wi’bi} =arg fg{gz(w Xk + b —1ik)
and thousands of board games. The ratings range, in half- k

integer increments, frord to 10. We picked thet00 users  The predicted rating is then given by

and 80 games with the highest rating density. The rating

matrix density, which we define a% is 63.4% for

this subset. Our snapshot of the dataset is from Januar
2005. The ratings are available publicly from the website.

~ ~T 7
Tij:Wi Xj+b7

oth LLE and ET can embed either users or items into an
Euclidean space. Yet, neither of them can embed both in
Finally, the MovieLens dataset contains ratings from usershe same space. We tried several ways to extend them and
on a variety of movies. Allthe ratings are integers froto  to make them comparable. One straight-forward way is to
5. We picked400 users and0 movies, again to maximize embed all the user points first into the space. Then for every
the rating density. The rating matrix density4is.0% on  jtem, find all the users who gave it its highest rating, and

this subset. This dataset is publicly available froravie-  place this item at the mean of those users points.

lens.umn.edu . .
For our results, we used an alternative method, which per-

_ o formed better than the one above. Lizbe the full rating
4.2 Algorithm Initialization matrix filled in using linear regression. We introduce a cor-

. . . relation matrixC among alln items.AThe diagonal’;; is
Because we are learning the rating functjorthe absolute ot 141 | et R, be thei-th column of,

positions of the embedded points will not affect our ap-

proach directly. Rather, the relative positions of each point R/ R;

matter. Therefore, the overall scale¥f, and X, do not Cij = Rl 1B,

affect the resuilt.

We then letX = [C R"] and use LLE or ET to embedl
into the target Euclidean space. The firspoints corre-
spond to the items and the lastpoints to the users.

In particular, for all the three datasets, we Egt, ¥, 3,
andE’g each to be the identity matrix. We sgt = 0.25
for SAT, o,- = 0.1 for MovieLens, andr,, = 0.05 for BGG.
These values directly reflect the discretization of the ratingeT only works if there is ggauge sebf items which all
scores. Our informal tests show that the algorithm is notusers have rated. However, in the MovieLens and BGG
sensitive to these particular numbers and we have made rdatasets, no such gauge set exists. Using the above re-
effort to tune them. gression technique to fill in a gauge set results in bad (and
misleading) results, so we omitted them and have only in-

. . 0 )
For the rating functiory, we choose to séb" directly us cluded ET results for the SAT dataset.

ing an M-step from the samples drawn from their priors.
For our experiments, we sét = 2000, I, = 1000, and  The CODE algorithm requires co-occurrence statistics be-
e = 0.02 for all three datasets. tween users and items. The relationship between co-
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Figure 1: 2-Dimensional embeddings for the SAT questions using a simulated annealing version of the MCMC algorithm,
local linear embedding, Eigentaste, and CODE.

occurrences and ratings is not clear. However, it is natuFigure 1 also shows that the user points and the item points
ral to assume;; is proportional to the probability of the intermix more evenly with our approach. This meets our
co-occurrence ofi; andg;. Intuitively, a higher rating in-  expectation that for any user, we can always find things
dicates it is more likely that the user and item “occur” at thethey like or dislike (questions on which they perform well
same time. We set the empirical distribution(af g) tobe  or poorly). In the embedding results of LLE, ET, and
proportional to the rating matrix (filled by linear regression CODE, a large number of user points lie in parts of the
if there are missing ratings). We initialize the mappingsgraph outside the convex hull of the the question points.
uniformly and randomly from the sét-0.5,0.5]” as the  This makes it impractical to make recommendations to
starting point for the optimization. those users based on the visualizations.

Our linear regression method for filling in missing val-
ues has proven reasonable on the prediction task, but a
mittedly it is not the most sophisticated algorithm possi-
ble. Therefore, to distinguish embedding factors from dat
completion factors, we also ran our MCMC algorithm on
the completed rating matrix from linear regression.

4:5 Evaluation Criteria

There are no prior standard metrics for evaluating the qual-
a}ty of the embedded graph. In this work, we introduce
Kendall's tau(Kendall, 1955) as a suitable evaluation cri-
terion. Kendall's tau is used to compute the correlation in
Both our method and CODE have variable running timesordering between two sequencEsandY'. It is especially
(number of EM iterations in our case, number of randomuseful for evaluating the correlation between two sequences
restarts for CODE). For the results reported here, we gavehat may have many ties.

each 30 seconds of CPU time on a 2.8 GHz processor. Given two sequenced andY’ of the same length, a pair

(i,4),4 # j is calledconcordantf the ordering ofX; and

4.4 Sample Results X; is the same as the ordering Bf andY;. By contrast,

- if the relative ordering is different, this pat, ;) is called
The SAT data was selected because of our ability to eXgiscordant If X; = X; orY; = Yj, then(i, j) is neither
tract a “ground truth.” In particular, we expect that when concordant or discordant, and it is calledeadra xpair or
embedded, the questions from the same subjects should Bg4 ypair, respectively.
grouped together. Figure 1 shows the embedding for di-
mension2 using the simulated annealing approach (along<endall’'s tau is defined as

with the three other approaches). C—-D @)

T =
There are ten questions in each category. We can clearly vVC+D+E,C+D+E,
see that our method clusters all the French questions tightl ) .
together. The same happens for the Math questions. (The%éhefc |s%th|;adr.1umb§r OJ all_c;ncorg%nt palrtsr,], ahds g\e
are eight Math questions that overlap in a small area.) Thg:fmter oral 'chr a;n pairs:; andt, are the numoers
other methods do not produce as tight clusters. ofextraz pairs and extrg pairs.
Itis easy to verify that is always between1 andl. 7 = 1

The History and Biology questions do not cluster as well.. dicates the tw h toct i |
Further data analysis has shown that there is very little pre'-n icates the two sequences have periect positive correla-

dictability in the History and Biology questions, so this re- tlo_n,oa}ngj t: _tr11 |-nd|0§te.s perfec_t gegatl\(/je ctorrelatlon.
sult is perhaps not surprisirlg. 7 = 0 indicates their orderings are independent.

[ To evaluate the quality of the graph in the embedded space,
1The French and Math questions tended to test a bOdy Ofor each test we randomly Select a set Of usé}S,and

knowledge that is often retained as a coherent block, where as the

History and Biology questions on this exam tended to test mordsolated blocks of knowledge.



Random
-~ Eigentaste

o1 § E @ CODE
=-=-- LLE

§ -e—- MCMC

A —A- MCMC-SA

—— MCMC-REG

b

|
L ©
o o
Z 8

Testing Kendall's tau
Testing Kendall's tau
Testing Kendall's tau
s
@

!
o L <
N9
o

-0.3

PRRSTYES
FSESY YN
i\’l\!lyz:‘m\.:\.l

|
e
w

-0.35

!
=3
~

10 15 20 25 30 35 40 _O'%O 30 40 50 60 70 80 10 15 20 25 30 35 40 45 50
Training size Training size Training size

SAT BGG MovielLens

Figure 2: Performance of embedding algorithms on the three datasets as a function of training set size.

items, G, as testing users and items. All the ratings be-dard deviations across the experiments for all algorithms.
tween users i/ and items inG are held out for testing Every algorithm was run on the same set of training and
and are not used in generating the embedding. testing sets.

The embedding algorithms will produce the embedded-or each of these datasets, Figure 2 shows the comparison
points for those nodes il and G given some additional of our methods to LLE, ET, CODE, and a random embed-
ratings. In order to evaluate the embedding quality, we gending, as a function of the size of the training set. We also
erate two sequences and compute Kendall's tau betweetomputed an “ideal embedding” value fer Because of
them: sequenc& contains the actual ratings between all ties, Kendall's tau cannot always reaeti, so we calcu-
the pairsu; € U andg; € G such thaty;; = 1, and se- late the lowest possible value foron the random dataset
guenceY contains the distances between the corresponddrawn. This takes nothing into account except ties and it is
ing u; andg; in the embedded graph. highly optimistic and probably not obtainable at such low
dimensions. The optimal values for SAT, BGG, and Movie-
Lens datasets are approximatel.63, —0.87 and—0.90
respectively. We ran LLE algorithm with training size start-
ing at22 for SAT and24 for MovieLens because of matrix
inversion problems for smaller training sizes.

A good embedding will place; far from g; if r;; is small,
and close ifr;; is large. Kendall's tau for the above two
sequences exactly evaluate this correlation. Denote

be the Kendall's tau for the sequenc&sandY. Nega-
tive values ofr indicate good embeddings, and we expect
the values from embedding algorithms to be smaller than Figure 3 shows another experiment with the same evalua-

(that of a random embedding). tion criteria. In this experiment, we fix the testing data as
usual, and use all the remaining data for training. The plot
4.6 Experimental Results shows Kendall’s tau as a function of the number of dimen-

sions of the embedding space.
We ran our MCMC algorithm both with and without simu-
lated annealing, along with LLE, ET and CODE. We ran-
domly selected one quarter of the users and one quarter g7 Analysis of the Results
the items for testingl{ andG from above). We randomly
selected other users and items to form a trainingetr(d  From the experiments above, we can see that when the rat-
G). All ratings between members 6f andU, G andU,  ing matrix is denser, the embedding algorithm achieve bet-
andG andU are used for training. As stated previously, ter results. Our sampling method, with (MCMC-SA) and
the ratings between members@fandU are used for test-  without (MCMC) simulated annealing, outperformed LLE,
ing. It is necessary to include the ratings betwétand  ET and CODE. None of them were designed with this type
U (and likewise betweed andU) in order to connect the of data in mind, so we do not present these results to dispar-
test users and items with the training users and items.  age those methods, but there were no other methods avail-

Because the existence of the test set, there are always miﬁast—’Ie to test against. Note that our MCMC algorithm on

: . ) ; : ) inear regression filled data (MCMC-REG) has similar per-
ing ratings in the rating matrices used. We use linear re: mance to directly applying our MCMC method on data
gression to fill those ratings. We also ran the MCMC algo-

rithm on the same filled data as LLE, ET and CODE usedgg: E';ts'i';gcgjggs' tﬂ;'s :)rgflizljn:tf'rtolrsnntﬁzogtrhgggfsc;_
(MCMC-REG in the graphs). 9 b 9

3 rithms, but rather their misfit to this problem. We would
For each dataset size (number of itemsd)) we ran25 also note that our method also seems more stable (smaller
independent experiments and recorded the means and starariance) than the other algorithms compared.
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Figure 3: Performance of embedding algorithms on the three datasets as a function of embedding dimensions.
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