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Abstract. We propose a method which can visually explain the clas-
sification decision of deep neural networks (DNNs). Many methods
have been proposed in machine learning and computer vision seeking
to clarify the decision of machine learning black boxes, specifically
DNNs. All of these methods try to gain insight into why the network
“chose class A” as an answer. Humans search for explanations by
asking two types of questions. The first question is, “Why did you
choose this answer?” The second question asks, “Why did you not
choose answer B over A?” The previously proposed methods are not
able to provide the latter directly or efficiently.

We introduce a method capable of answering the second question
both directly and efficiently. In this work, we limit the inputs to be
images. In general, the proposed method generates explanations in the
input space of any model capable of efficient evaluation and gradient
evaluation. It does not require any knowledge of the underlying clas-
sifier nor use heuristics in its explanation generation, and it is compu-
tationally fast to evaluate. We provide extensive experimental results
on three different datasets, showing the robustness of our approach,
and its superiority for gaining insight into the inner representations of
machine learning models. As an example, we demonstrate our method
can detect and explain how a network trained to recognize hair color
actually detects eye color, whereas other methods cannot find this bias
in the trained classifier.

1 Introduction
Deep neural networks (DNN) have shown extraordinary performance
on computer vision tasks such as image classification [34, 32, 33, 10],
image segmentation [5], and image denoising [38]. The first example
of such a performance was on image classification, where it outper-
formed other computer vision methods which were carefully hand-
crafted for image classification [18]. Following this success, DNNs
continued to grow in popularity. Even with DNNs achieving testing
accuracy close to human expertise [26] and in some cases surpassing
them [33], there is hesitation to use them when interpretability of the
results is important. Accuracy is a well-defined criterion but does not
provide useful understandings of the concept captured by the network.
If the deployment of a network may result in inputs whose distribu-
tion differs from that of the training or testing data, interpretability or
explanations of the network’s decisions can be important for securing
human trust in the network.

Explanations are important in settings such as medical treatments,
system verification, and human training and teaching. Naturally, one
way of getting an explanation is asking the direct question, “Why
did the DNN choose this answer?” Yet, humans often also seek con-
trasting explanations. For instance, they may be more familiar with
the contrasting answer, or they want to find the subtle differences in
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input which change the given answer to the contrasting one. This way
of questioning can be phrased as, “Why did the DNN not choose B
(over A)?” In this work, we present a framework to answer this type
of question.

To present the explanation in the space of natural images, with
which humans are accustomed, we assume a generative model on the
input space exists. This model, which is trained on the input space
and not necessarily on the input dataset of the DNN, is able to provide
synthetic samples similar to the input. Then, we ask how we can alter
this synthetic input to change the classification outcome. Our proposed
framework is not based on heuristics, does not need to change the
given network, is applicable as long as the given model can handle
backpropagation (no further requirements for layers), and can run
much faster than methods with input perturbation. The only overhead
of this method is the assumed availability of a latent model over the
input. If this latent model is not available, we can learn such a model
using a generative adversarial network (GAN) or variational auto
encoder (VAE). Learning this latent space needs to be done only a
single time and is independent of the learned classifier to be explained.

2 Related Work

Some past work has mapped queries back to the training set of the ex-
amined network [17, 19]. This can be effective in providing guidance
on dataset changes. However, training methods or network architec-
tures may also be responsible for the network’s effects. Further, the
resulting network is its own object and its decisions can be explain
irrespective of how it was trained to produce them. To that end, our
work and the work we describe below treat the network as a given and
seek explanations of the function given, not of the learning method
that produced the function.

Our problem is distinct from work on adversarial examples in that
we are not interested in how to break the classifier, but rather what
concept the classifier has learned. For instance, an adversarial ex-
ample which adds small amounts of speckled noise is not helpful
for understanding the concept in the space of natural image varia-
tion. This drives our use of latent-space representation of the input
(through GANs or VAEs). There are uses of interpretations to secure
classifiers against adversarial examples. However, our focus is on
non-adversarial explanations.

There are different ways to categorize interpretability methods [30].
Here we categorize the existing approaches into three overlapping
categories, focused on methods for deep neural networks.

2.1 Network Visualizers

The first group of methods try to understand units of the network
[7, 36, 2]. These methods test each individual network unit or a set of
units to gain insight into what network has learned.



The disadvantage of these methods is that they need to check all
the units to see which one (or combination of units) is responsible
for a concept. The method proposed in [22] showed it is unlikely
that only a single unit learns a concept. Rather, a set of units usually
combine to represent a concept. This, in turn, makes these methods
inapplicable in practice when the network contains thousands of units.
These methods are example-based explanations. That is, they generate
an explanation for a single input. By contrast, [8] proposed a method
to determine whether the network learned a concept based on a set of
probe images and pixel-level annotated ground truth which may not
be readily available or easy to obtain for many tasks.

2.2 Input Space Visualizers

The second category corresponds to networks that try to explain the
network’s decision in the space of the input image. Authors of [27]
proposed a method to find out which parts of the image have the
largest contribution to the decision of the network by making changes
to the image and forwarding the new image through network. The
method by [40] proposed a similar approach with a more clever way of
sampling the image parts. These methods need to consider changing
each dimension of the image and find an explanation for each change
in order that the aggregated results are visually coherent. In [6] a
method proposed which also takes into account the middle layers of
the network to produce the explanation. [39] proposed a method which
forwards the image through the network, records the activations in
the last pooling or convolution layer, and uses them as an explanation.
[29] propose a similar method which uses the back-propagated signal
for a more accurate explanation. There are two potential difficulties
with these approaches. First, they assume that the explanation can
be summarized in the last layer which has a broad receptive field
which may not be appropriate for fine-grained datasets. Second, these
methods are restricted to use in convolutional networks.

[31] used the gradient of the output with respect to the pixels of the
input to generate a heat map. They showed that their proposed method
is closely related to DeconvNets [37]. The difference is in the handling
of backpropagation of ReLU units. The weakness of these methods is
that the generated backpropagated signal in image space is not visually
specific. They need to use heuristics in backpropagation to make the
results more specific and useful to humans, such as changing the
backpropagation rules for ReLU unit [33]. These methods have been
shown to be unreliable with respect to shifts in the input [15]. Some
of these methods need a reference input image [30] whose choice
can greatly change the generated explanation [15]. In [13], authors
discussed the issue of learning a surface statistics rather than a high
level concept. In 4 Section, we examine that how much of this claim
might be true. [23] propose a method to find a sparse combination
of filter responses which are the most responsible for the network’s
classification. [4] explores how the network behavior changes if some
part of the image changes based on a Bernoulli prior, but do not create
a real counter-factual as we do.

The most similar work to ours is the unpublished xGEMs [14], a
preprint available on arXiv. xGEMs is similar to our work in that it
uses a GAN to regularize the explanation and also seeks to find a “why
not” explanation. Their work is different in that it does not formulate
a constrained optimization problem as we do (our results show the
importance of our constraints), and they focus on producing a “morph”
from one class to another, rather than highlighting the differences
directly in the input image (as we do).

Input space visualizers (including our own) produce one example
of how the input might be changed to change the classification or

output of the network being analyzed. If the demonstrated change
does not match the human’s understanding of the task, this example
explains a problem with the classifier. However, there may be other
examples of input changes which similarly modify the classifier’s
output. Therefore, if the demonstrated change matches the human’s
understanding of the task, this does not guarantee that there are not
other undesirable properties of the analyzed network.

2.3 Justification Explanations

Finally, there are methods that learn to justify the classification of a
network by producing textual or visual justifications from training
explanations. [11, 24]. Although related to image descriptions or
definitions, they differ in that their goal is to explain why in a general
sense. Because the justification network is trained to match human
explanations, they are not direct explanations of how the learned
classification network makes its decisions, but rather what humans
would like as the explanation. If the explanation is “correct,” we
cannot be certain this is because the network learned the concept
correctly, or because the explanation network learned to mimic what
we want to hear.

2.4 Summary

Existing methods have one or more of these downsides:
I They are only applicable to specific architectures. [39, 29]

II They use heuristics during backpropagation. [33, 37]
III They need of a set of probe images or concepts. [30]
IV They need network alteration to record the activations. [37, 2, 30]
V They need considerable computational time. [40, 27]

VI They learn an explanation, and are trained to produce the expla-
nations we desire, rather than faithful ones. [24]

We have replaced these downsides (assumptions, heuristics, probe
images, or other black-boxes) with a generative latent-space model
(built with a GAN or VAE). We submit that this latent-space model
imposes less bias on the explanations, while still providing a human-
understandable explanation. The unbiased, true explanation for any
classification is the (long) sequence of calculations performed. For
human understanding, these must be filtered through some type of
lens.

We believe the latent input space is a natural bridge between the
network’s understanding and the human’s understanding, as it is com-
mon data (or language) to both, unlike raw pixels or activation values
(which are natural for the network, but not for the human). Other
bridges, like natural language or scene objects, require assumptions
about how the network works (which call into question whether the
explanation is valid) or training up other networks to make the bridge.
While we also require another network, there is less bias imposed by
modeling the space of natural images than by modeling the mapping
from neural network concepts to natural language or other higher-level
concepts.

Our lens, of the latent-space parameterization of the input domain,
can be trained on completely different data than that used for the
classifier to be analyzed (Section 4.6), can be shared across multiple
classifiers with the same input domain (thus providing a standard
testing tool), and can be improved and tested externally and indepen-
dently from the classifier-to-be-analyzed. We further show experi-
ments demonstrating that the generative model does not project its
own training set (Section 4.2) onto the explanations for a network
trained on different data.
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Figure 1: The schematics of the proposed approach. (a) First, in the case
of using a GAN, find z0 which gives G (z0) ≈ I. (If using a VAE, the z0
that best approximates I can be generated directly.) Then, let ∆z0 to be the
difference between the input image I and reconstructed one, G (z0). (b) Last,
generate the final explanation by optimization over z. z0 and ∆z0 are fixed.

3 Proposed Method

First, we introduce the notation used in this work. Then, we describe
how to learn a latent space capable of generating natural looking
images similar to the input space. Last, we describe our method on
how to generate explanations from the latent representation of input
space. The overall framework is summarized in Algorithm 1 and
Figure 1.

3.1 Terminology

D : Rn → Rc is the given and fixed discriminator network, for which
we want to generate explanations. G : Rk → Rn generates natural
looking images in the input domain. It should be able to generate
images similar to those being queried, but need not be directly related
to D. I ∈ Rn is the input image; z ∈ Rk is a latent variable; and
Iz is the output of G, i.e. Iz = G (z). We define ytrue as the label
produced by D for image I , and yprobe as the class label for the class
of interest. Note that ytrue may not be the true label from an accuracy
point-of-view, but it is the true label produced by the discriminator
network D (compared with yprobe which is a counter-factual label not
actually produced by D).

Thus, the question we would like to answer is “Why didD produce
label ytrue and not label yprobe for input I?”

Algorithm 1 Generating the explanation on given D and I

1: Learn a function G : Rk → Rn . if necessary
2: Find a representation for input I using Algorithm 2
3: Find ze from Equation 2
4: Return the explanation G (z0)−G (ze)

Algorithm 2 Generate the latent representation on the input I
1: procedure LEARN z0 (G, I, η, loss (.))
2: z0 ∼ N (0, 1)
3: while G (z0) 6≈ I do
4: z0← z0 −η∇zloss (I, G (z))

5: ∆z0 = G (z0)− I
6: return z0,∆z0

3.2 Learning the Input Distribution
The question “why not class yprobe?” implies a query image about
which the question is being asked. We need to capture the manifold
of natural looking images similar to this input to be able to answer
this question in a meaningful way for a human. Learning a compact
manifold enables us to move along this manifold instead of directly
optimizing in the input space of raw pixels.

There are different ways to find this mapping including varia-
tional auto encoders (VAEs) [16] and generative adversarial networks
(GANs) [9]. In this work, we use both GANs and VAEs to map latent
space into input space. We used the method proposed by [1] to train
the GAN. The structure of the networks is similar to that proposed by
[25]. It worth noting that unlike [19], the generated explanation must
not include in the training set. We want to create explanation about
the black-box model itself and not how it was created.

3.3 Generating Explanations
First, we need to find an initial point in the latent space which repre-
sents the input image, i.e., G (z0) ≈ I. If G was generated by a VAE,
this can be done by feeding I into the encoder half of the VAE. If G
was generated by a GAN, we find this initial point by solving z0 as

z0 = arg min
z

loss (G (z) , I) (1)

in which loss (.) is a suitable loss function, e.g. ||.||2 distance for
images.

Since the generated image G(z) may be classified into a different
class by the discriminator, we add a bit of the misclassification cost
for G(z) to our loss function to insure that the resulting image not
only looks similar, but is also classified the same way as I by D. We
only add this extra cost for the GAN generators. As the final fit will
not be exact, we define ∆z0 to be the residual error: ∆z0 = G(z0)− I.
This residual makes the latent space generated image exactly equal to
the input image. See Algorithm 2 for more details.

Next, we find a change in latent space for which the change in the
input space explains why, for this particular image, class yprobe is not
the answer. In particular, we seek the closest point (in the latent space
of z) for which yprobe would be equally likely as ytrue, and all other
classes are less probable. This is a point which is most like the input,
yet would be class yprobe. Thus, the answer to the question is, “It is
not like this.”

To do so, we solve a constrained optimization problem:

ze = arg min
z
||z− z0||22 (2)

s.t. llh (D(Iz,z0), ytrue)− llh (D(Iz,z0), yprobe) = 0

llh (D(Iz,z0), ytrue)− llh
(
D(Iz,z0), y′

)
≥ ε

llh (D(Iz,z0), yprobe)− llh
(
D(Iz,z0), y′

)
≥ ε

∀y′ 6= ytrue, y
′ 6= yprobe

in which Iz,z0 = G(z) + ∆z0 and llh(f, y) is log-likelihood of class
y for classifier output f . Our visual explanation is the difference
between I and Ize,z0 .

The first constraint forces the explanation to be on the boundary
of the two classes. However, because D is complex, this can lead
to solutions in which the likelihood of yprobe and ytrue are equal, but
another class has an even higher likelihood. To overcome this, we
impose the last two constraints which enforce that the class produced
by D and the probe class remain the most likely. We further illustrate
the necessity of these constraints in Section 4.



3.3.1 Optimization Method

Using the method of augmented Lagrangian multiplier, we can convert
the constrained optimization problem into a series of unconstrained
ones. Complete details of the optimization procedure are discussed
by [3]. In summary, we convert Equation 2 into the augmented La-
grangian

Lc (z, λ, µ) = ||z− z0||22 (3)

+ λTh (z, ytrue, yprobe) +
c

2
‖h (z, ytrue, yprobe)‖22

+
1

2c

∑
y′ 6=ytrue
y′ 6=yprobe

{(
max

{
0, µy′ + ch

(
z, ytrue, y

′)})2 − µ2
y′

}

+
1

2c

∑
y′ 6=ytrue
y′ 6=yprobe

{(
max

{
0, µ̃y′ + ch

(
z, yprobe, y

′)})2 − µ̃2
y′

}

where

h(z, y1, y2) = llh (D(Iz,z0), y1)− llh (D(Iz,z0), y2) = 0

and λ, µy′ , and µ̃y′ are Lagrange multipliers for the constraints of
Equation 2. We solve the constrained optimization problem by solving
a series of unconstrained optimizations of Equation 3 for a series of c
values. Each individual optimization we solve with standard gradient
descent. The update rule for c is

ck+1 = ckβ1(‖h(zk,ytrue,yprobe)‖>γ‖h(zk−1,ytrue,yprobe)‖) (4)

in which 1 is the indicator function, γ is 0.24, β is 1.01 and initial
value of c is 1.

4 Experimental Results
We compared our method, contrastive deep explanation (CDeepEx),
with those of [27, 29, 40, 28]. Some of these methods try to answer the
question “why class A?” instead of our contrastive question. However,
it would be natural to try use the difference of the answers to “why
class A?” and “why class B?” as a contrastive answer. Thus, we
compare to them to demonstrate the need for a different method to
answer these contrastive questions.

First, we tested these methods on two datasets: MNIST [20] and
fashion-MNIST [35]. Although MNIST seems to be a very simple
dataset, it has its own challenges when it comes to contrasting two
outputs. This dataset has ambiguities that are hard even for humans to
identify. We also expect the reader to has prior knowledge of the digits
(compared to, perhaps, birds or skin cancers), thus making the results
easier to interpret. We conducted experiments using two different
generative models (GANs) and Variational Auto Encoders (VAEs).
We show that our method works well regardless of the choice of the
generator.

4.1 MNIST
In this section, we find explanations for contrasting categories using
our method (CDeepEx), Lime [27], GradCam [29], PDA [40], LRP
[28] and xGEMs [14]. The network architecture for D is similar to
that used by the original MNIST papers, consisting of two sets of
Conv/MaxPool/ReLU layers following by two fully connected layers.
The input is resized to 64x64. The kernel size for each convolution
layer is 5x5 and the first fully connected layer is 3380x50.

true
vs.

probe

CDeepEx
(GAN)

CDeepEx
(VAE) PDA GradCam Lime LRP

4 vs. 9

0 vs. 6

5 vs. 6

3 vs. 8

Figure 2: Generated explanations for MNIST for examples correctly classified
by the network. The input image is in gray. Red indicates regions that should
be added and blue regions that should be removed (to move from the true label
to the probe label). Thus, the absence of the red regions and the presences of
the blue regions is the explanation.

GradCam, Lime and LRP were not designed to answer this type
of question directly. However, these methods could be shoe-horned
into trying to answer the question of“why A and not B?” and so we
figured we should demonstrate that they were not sufficient and that
a new method (like ours) was necessary. Therefore, we generate the
explanation by first extracting the explanations for the true and probe
classes. Then we assign different weights to each of these explanations
and subtract them from each other. If imposing this explanation on
the input image decreases the network probability for the true class
and increases it for the probe class, we keep this explanation. The
weights for the probe explanation we used are from 0.005 to 2 with
increments of 0.005. The final explanation is the average of all the
maps that satisfies the mentioned condition. We tried multiple other
methods to contrast the explanations of the true and probe classes
and this method produced the best and most reliable results, although
clearly GradCam and Lime were not designed for this scenario.

GAN structure follows the guidelines of [25]. It has 5 set of Con-
vTranspose2d/BatchNorm2d/ReLU operations. The size of z is 100.
The VAE has four convolutional layers and two fully connected layers,
one for µ and one for σ. The size of the latent code is 400 for each of
the mean and standard deviation.

4.1.1 General Comparisons

Figure 2 shows explanations generated using CDeepEx, PDA, Grad-
Cam, Lime and LRP. We trained the discriminator on the unmodified
MNIST dataset with a resulting success rate of 99% in testing phase.
For testing examples, we asked why the output was not the second-
highest likelihood class. (That is, the probe class is the second-most
likely class, according to the classifier.)

The first example shows why D believes the class to be a 4 and
not a 9. Our method shows that this is because the gap on the top of
the digit is not closed. The second row is the explanation for why a
0 and not a 6. The only meaningful explanation is generated from
CDeepEx: because the circle is thicker and the top extending line
is not more pronounced. The third row is for why a 5 and not a 6.
Although Lime shows that the opening gap would have to be closed,
it produces many other changes that detract from the central reason.
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Figure 3: Comparison of CDeepEx to xGEMs. Colors are as in Figure 2.
Please check Figure 5 for more qualitative results.

For the last row, the only correct explanation for why a 3 and not
an 8 comes from our method. Note that GradCam and Lime were
not designed for this type of explanation, but we tried hard to find
the best way to make contrasting explanations from their single-class
explanations (see above).

4.1.2 Comparisons to xGEMs and Optimization

In the next experiment, we show the importance of having the con-
straints in the optimization and how it affects the explanation com-
pared to xGEMs. In Figure 3, we compare our results with our imple-
mentation of xGEMs. The primary difference between the methods is
the last two sets of constraints in Equation 2 (which are present in our
method, but lacking from theirs). This figure shows that without the
constraints, the explanation are not correct or are of worse quality.

In Figure 4 we show the optimization path to find the explanation,
with (CDeepEx) and without (xGEMs) constraints. The program has
a non-linear objective with non-linear constraints, so the path is partic-
ularly important, as we will not (generally) find the global optimum.
Without the constraints, the found z results in equal likelihood for ytrue

and yprobe, but a third class consistently has even higher likelihood,
thus generating an explanation more suitable to this third class than
the requested probe class. This is typical for xGEMs and explains
the xGEMs row of Figure 3, where frequently a third random class is
superimposed on the explanation.

4.1.3 Generator Model and Starting Point

In this section, we experiment with different generator models and
different starting points for GANs to see if the results change sig-
nificantly or not. We used a GAN and a VAE as examples of these
generator models. In Figure 5 we show that for three different z0 as
starting points for GANs, our results are visually consistent for most
of the inputs while there are inconsistencies for xGEMs method. We
believe the source of the inconsistencies are: a) ∆z0 can be visually
noticeable for GANs, and, b) the nature of the GAN itself. It worth
noting that ∆z0s in our experiments are so minuscule that a human
cannot distinguish between the original image and the synthetic image.
As it is clear, we do all of our experiments in such a datasets that can
be seen as fine-grained classification. For instance, changing a 0 to
an 8, is just adding a horizontal line in the middle of the image. By
contrast, we are not interested on producing explanations on dataset
such as ImageNet since changing an instance of class chair to a dog
consists of entirely changing the image.

4.2 Selection of the Generator Model
Although we showed the results on three different datasets using
AE (see 4.4), VAE and GAN, one might argue that the explanation
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Figure 4: Examples of the optimization path for Equation 2. CDeepEx is our
method. xGEMs is similar, but without the last pair of constraints. The opti-
mization goal is to find a z such that G(z) is maximally confused between the
two classes. (a) Examples from G(z) along the optimization path of z, using
a GAN. (b) Average class likelihood from D(G(z)) for all examples (probe
is second-most-likely class). Both demonstrate that without the constraints
(xGEMs), the optimization finds an example for which the true and probe
likelihoods are equal, but another class has an even higher likelihood. Our
method with the constraints keeps the explanation targeted to the true and
probe classes.

solely comes from the generator network. To address this, we de-
signed another experiment, to show the explanation comes from the
discriminator network and not the generative model.

Using the MNIST dataset, first, we train the network without show-
ing it any images from class “8.” This drops the testing accuracy on
that class to 0. Then, we show some samples of the class “8” to the
network, increasing its accuracy on class “8” to 0.3. We repeat this
procedure by showing more and more samples to the network, saving
its parameters at 0.6 and 0.99 accuracy. Then, we run experiments,
using the same generator network G, asking why D did not choose
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Figure 5: Additional experiments comparing our method using a GAN or
a VAE with xGEMs. The multiple columns for the GAN methods are for
different random starting points for z0.

the class “8.” The results are shown in Figure 6. While the same
latent-space representation is used, the explanations are particular to
the network trained.

4.3 Biased MNIST

To test to see if our method could provide clear explanations of the
bias of a classifier, we trained a network with the same structure as
the previous experiments, but on modified data. In this experiment we
added a 6x6 gray square to the top left of all the images for class “8.”
If tested on the true data (without the modifications), the network only
recognizes 5% of the 8s correctly. Also, if we add the square to all the
testing images, the network recognized 77% of other classes as “8.”

We then compared our method to others in explaining the predic-
tions of this biased network. Our results are shown in Figure 7. Our
method is clearly able to articulate that adding a square in the upper
left makes something an 8, whereas the other methods are not able to
explain this undesirable bias.

class 8
accuracy input z1 z2 z3

0%

30%

60%

99%

Figure 6: The explanations of “why not 8?” using the same latent space
model for networks training at different accuracies. Right three columns are
for different starting points of the optimization for z. As the accuracy of the
network for class “8” increases, the generated explanations are getting closer
truth as well.

input CDeepEx PDA Lime GradCam

Figure 7: Explanations for “why not 8?” for a network trained on data in
which every 8 has a small square in the upper-left.

4.4 CelebA Dataset

We ran experiments on the CelebA dataset [21]. We trained a Vgg16
network on a subset of the images with target labels of “blonde fe-
male,” “dark-haired male,” and “dark-haired female.” (There were
not sufficient numbers of blonde males in the training set.) The re-
sulting classifier achieves 95% accuracy. For the generator network,
we trained an auto encoder (AE) to generate images. The encoder
consists of five convolutional layers with a kernel size of 3, a stride of
2, and a ReLU non-linearity. The number of filters for each layer are
16, 64, 128, 256, 512, and 1024.

We asked questions about why the network chose the hair color it
did, and not the other hair color for the same gender. Our goal is to
discover if the network learned the correct concept class. The right
column of Figure 9 shows that xGEMs produces a diffuse explanation
that covers most of the face. This is because it is missing the necessary
constraints to keep the explanation just between the classes of blonde
females and dark-haired females. It produces explanations that change
the result to male (changing the facial structure), despite that the
question does not ask about this class. The middle column shows
that our method is more targeted to the real difference learned by the
classifier: The difference learned by the classifier is in the eyes! This
example shows that the model learned the wrong features compared
with those we expected to associate with the label.

The top row of Figure 8 shows experiments with imposed changes



(a, as suggested by CDeepEx) (b, as suggested by xGEMs)

(c, true class change) (d, probe class change)

2 4 6 8 10

level of change

0.91

0.915

0.92

0.925

0.93

0.935

0.94

c
la

s
s
 p

ro
b
a
b
ili

ty

CDeepEx

xGEMs

2 4 6 8 10

level of change

0.04

0.05

0.06

0.07

0.08

c
la

s
s
 p

ro
b
a
b
ili

ty

CDeepEx

xGEMs

Figure 8: (a) we manually increase eye intensity from its original value to maximum, as suggested by our method, CDeepEx. (b) we decrease eye intensity from its
original value to minimum, as suggested by xGEMs. (c) and (d) show the plots of how the discriminator network d’s outputs change for the probe (blonde female)
and reported/true (dark-haired female) classes. this demonstrates that xGEMs generates the wrong explanation of the correlation of the hair with the eyes, whereas
the change suggested by CDeepEx correctly moves the reported class of the discriminator network from the true class (dark hair) to the probe class (blonde).

Input CDeepEx xGEMs

Figure 9: CDeepEX vs xGEMs experiments. The top row is the result of a
query “why is the person not dark-haired?” on a blonde female. We see that
the network pays more attention to the eye color than the hair color. In the
second row, the probe class is blonde and true class is dark-haired, for the
inverse query. We can see generated explanations from xGEMs and CDeepEx
disagree over the “sign” of change in the eyes. See Figure 8 for more details.

that demonstrate that the learned discriminative network learned eye
color and not hair color. In particular, lightening the eyes changes
the reported hair color to blonde. However, xGEMs (which does not
have the constraint on non-probe, non-true classes), gave the reverse
explanation (darkening the eyes would produce a blonde classification)
which was not borne out by our experiment.

Clearly, with better training or a more complete dataset, D could
probably have learned the “correct” concept. The purpose of CDeepEx
is not to find the “correct” differences in the classes, but rather the

T-shirt vs. shirt trousers vs. coat
CDeepEx xGEMs CDeepEx xGEMs

ResNet101

Vgg16

(a) (b) (c) (d)

Figure 10: Top and bottom rows are the results for ResNet101 and VGG16
respectively. (a) Change from T-shirt to a Shirt with constraints. (b) T-shirt to
shirt without constraints. (c) Change from trousers to coat with constraints. (d)
Change from trousers to coat without constraints.

differences that the network D has decided on. Most critically, our
method can identify when the classifierD has not properly generalized
the training set. This CelebA result directly shows such an example,
and our method is able to clearly explain what the classifier did detect
(eye color). This information can be used to build (or erode) trust
in the classifier and to suggest training or deployment changes that
would help correct discovered errors.

4.5 Fashion MNIST
We trained two different networks for D on the Fashion MNIST
dataset: Vgg16 [32] and ResNet101 [10]. The testing accuracy for
both networks is 92%. For the generating network, G, we used the
structures and learning method presented by [1] with latent space of
size 200. We then illustrate our method’s ability to gain insight into
the robustness of the classifiers through contrastive explanations. The
generator network’s structure is the same as the MNIST’s generator
network’s structure.



(a)
CDeepEx xGEMs CDeepEx xGEMs
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Figure 11: Cross-dataset comparison, latent-space model learned on a different
dataset than the discriminative network. (a) Samples from latent-space training
dataset. (b) Comparison between CDeepEx and xGEMs. See Figure 9.

Figure 10 shows the generated explanations with and without con-
straints. Comparing CDeepEx with xGEMs, we can see the impor-
tance of the constraints. Without them (xGEMs), the results refer to
other irrelevant classes.

Using CDeepEx, it is clear that Vgg16 learned more general con-
cepts than ResNet101. The first column shows that ResNet101 learned
very subtle differences on the surface of the T-shirt to distinguish it
from a (long-sleeved) shirt. By contrast, Vgg16 understands removing
the short sleeves makes the appearance of a shirt with long sleeves.
In the “trousers vs. coat” example, ResNet101 believes that adding a
single sleeve will change the trouser into a coat, while Vgg16 requires
both sleeves.

4.6 Training on Different Datasets

Finally, we show that the generator model can be trained on different
dataset and still be robust for generating explanations. We train our
AE generator model on Adult10Kfaces [12] dataset and test it on a
VGG16 network learned on the CelebA dataset. Figure 11a shows
some samples from Adult10Kfaces. Each picture is inside an oval
which is faintly visible when generating explanations, confirming that
the generator is trained on Adult10Kfaces dataset. Looking at the
results for CDeepEx in Figure 11b shows that the explanations are
consistent with those from Figure 9, in which the latent-space model
was estimated from the CelebA dataset itself.

5 Conclusions

Our formulation draws on three ideas: The explanation should be in
the space of natural inputs to aid communication with humans, should
be an example that is maximally ambiguous between the true and
probe classes, and should not be confused with other classes. The
method does not require knowledge of or heuristics related to the
architecture or modality of the network. The explanations can point
to unintended correlations in the input data that are expressed in the
resulting learned network.

Our contrastive explanation method (CDeepEx) provides an effec-
tive method for querying a network to discover its representations and
biases. We demonstrated the quality of our method, compared to other
current methods and illustrated how these contrastive explanations
can shed light on the robustness of a learned network.
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