
Automated, Highly-Accurate, Bug Assignment Using
Machine Learning and Tossing Graphs

Pamela Bhattacharyaa,∗, Iulian Neamtiua, Christian R. Sheltona

aDepartment of Computer Science and Engineering, University of California, Riverside,
CA, 92521, USA.

Abstract

Empirical studies indicate that automating the bug assignment process has
the potential to significantly reduce software evolution effort and costs. Prior
work has used machine learning techniques to automate bug assignment but
has employed a narrow band of tools which can be ineffective in large, long-
lived software projects. To redress this situation, in this paper we employ a
comprehensive set of machine learning tools and a probabilistic graph-based
model (bug tossing graphs) that lead to highly-accurate predictions, and lay
the foundation for the next generation of machine learning-based bug assign-
ment. Our work is the first to examine the impact of multiple machine learning
dimensions (classifiers, attributes, and training history) along with bug tossing
graphs on prediction accuracy in bug assignment. We validate our approach on
Mozilla and Eclipse, covering 856,259 bug reports and 21 cumulative years of
development. We demonstrate that our techniques can achieve up to 86.09%
prediction accuracy in bug assignment and significantly reduce tossing path
lengths. We show that for our data sets the Näıve Bayes classifier coupled with
product–component features, tossing graphs and incremental learning performs
best. Next, we perform an ablative analysis by unilaterally varying classifiers,
features, and learning model to show their relative importance of on bug assign-
ment accuracy. Finally, we propose optimization techniques that achieve high
prediction accuracy while reducing training and prediction time.

Keywords: Bug assignment, bug tossing, machine learning, empirical studies

1. Introduction

Software evolution has high associated costs and effort. A survey by the
National Institute of Standards and Technology estimated that the annual cost
of software bugs is about $59.5 billion [1]. Some software maintenance studies

∗Corresponding author
Email addresses: pamelab@cs.ucr.edu (Pamela Bhattacharya), neamtiu@cs.ucr.edu

(Iulian Neamtiu), cshelton@cs.ucr.edu (Christian R. Shelton)

Preprint submitted to Journal of Systems and Software May 2, 2012

indicate that maintenance costs are at least 50%, and sometimes more than
90%, of the total costs associated with a software product [2, 3], while other
estimates place maintenance costs at several times the cost of the initial software
version [4]. These surveys suggest that making the bug fixing process more
efficient would reduce evolution effort and lower software production costs.

Most software projects use bug trackers to organize the bug fixing process
and facilitate application maintenance. For instance, Bugzilla is a popular
bug tracker used by many large projects, such as Mozilla, Eclipse, KDE, and
Gnome [5]. These applications receive hundreds of bug reports a day; ideally,
each bug gets assigned to a developer who can fix it in the least amount of time.
This process of assigning bugs, known as bug assignment1, is complicated by
several factors: if done manually, assignment is labor-intensive, time-consuming
and fault-prone; moreover, for open source projects, it is difficult to keep track of
active developers and their expertise. Identifying the right developer for fixing
a new bug is further aggravated by growth, e.g., as projects add more compo-
nents, modules, developers and testers [6], the number of bug reports submitted
daily increases, and manually recommending developers based on their exper-
tise becomes difficult. An empirical study by Jeong et al. [7] reports that, on
average, the Eclipse project takes about 40 days to assign a bug to the first
developer, and then it takes an additional 100 days or more to reassign the
bug to the second developer. Similarly, in the Mozilla project, on average, it
takes 180 days for the first assignment and then an additional 250 days if the
first assigned developer is unable to fix it. These numbers indicate that the
lack of effective, automatic assignment and toss reduction techniques results in
considerably high effort associated with bug resolution.

Effective and automatic bug assignment can be divided into two sub-goals:
(1) assigning a bug for the first time to a developer, and (2) reassigning it to
another promising developer if the first assignee is unable to resolve it, then
repeating this reassignment process (bug tossing) until the bug is fixed. Our
findings indicate that at least 93% of all “fixed” bugs in both Mozilla and Eclipse
have been tossed at least once (tossing path length ≥ 1). Ideally, for any bug
triage event, the bug should be resolved in a minimum number of tosses.

In this paper, we explore the use of machine learning toward effective and
automatic bug assignment along three dimensions: the choice of classification
algorithms, the software process attributes that are instrumental to constructing
accurate prediction models, and the efficiency–precision trade-off. Our thorough
exploration along these dimensions have lead us to develop techniques that
achieve high levels of bug assignment accuracy and bug tossing reduction.

Similar to prior work, we test our approach on the fixed bug data sets for
Mozilla and Eclipse. Our techniques achieve a bug assignment prediction ac-

1In the software maintenance literature, “bug triaging” is used as a broader term referring
to bug assignment, bug validation, marking duplicate bugs, etc. In this paper, by bug triaging
we mean bug assignment only, i.e., given a bug report that has been validated as a real bug,
find the right developer whom the bug can be assigned to for resolution.

2

Best Results: Naïve‐Bayes, Product‐Component, Bug Tossing Graphs, Incremental Learning

Classifier Feature

SelecDon

Bug Tossing

Graphs

Incremental

Learning

N
a
ïv
e
‐B
a
y
e
s

B
a
y
e
si
a
n
 N
e
tw

o
rk

C
4
.5

S
V
M
‐P
o
ly
n
o
m
ia
l

N
o
 a
L
ri
b
u
te
s

P
ro
d
u
ct

C
o
m
p
o
n
e
n
t

P
ro
d
u
ct
 ‐
 C
o
m
p
o
n
e
n
t

Y
e
s

N
o

Y
e
s

N
o

S
V
M
‐R
B
F

(Sec%on 5.2) (Sec%on 5.5) (Sec%on 5.2) (Sec%on 5.6)

Figure 1: Overview our approach to ablative analysis for automating bug assignment: best
case (boxed vertical text), attributes varied (unboxed vertical text), and the corresponding
sections where the attributes and their importance are discussed.

curacy of up to 85% for Mozilla and 86% for Eclipse. We also find that using
our approach reduces the length of tossing paths by up to 86% for correct
predictions and improves the prediction accuracy by up to 10.78 percentage
points compared to previous approaches. We demonstrate that on average,
the highest prediction accuracy is achieved using a Näıve Bayes classifier, with
products/components as attributes, with bug triaging graphs, and with incre-
mental learning (aka intra-fold updates) as shown in Figure 1. We then follow
a standard machine learning ablative analysis: 2 we take our best case (top of
the figure) and unilaterally vary the underlying attributes to show their rela-
tive importance in Section 5—the corresponding subsections are shown on the
bottom of the figure. The primary goal of our work is to find the optimal set
of machine learning techniques (classifiers, features, tossing graphs and incre-
mental learning) to improve bug assignment accuracy in large projects and we
show this optimal set for our data sets, Mozilla and Eclipse. The optimal set of
techniques we report can change with changes in data sets for the same project
or across other projects, or with changes in the underlying supervised learning
algorithm and we address these issues as potential threats to validity of our
approach in Section 6.

We now proceed to presenting the three main contributions of this work.

2Ablative analysis is a methodology to quantify the effects of each attribute in a multi-
attribute model.

3

Wide range of classification algorithms. Machine learning is used for
recommendation purposes in various areas such as climate prediction, stock
market analysis, or prediction of gene interaction in bioinformatics [8]. Ma-
chine learning techniques, in particular classifiers,3 have also been employed
earlier for automating bug assignment. These automatic bug assignment ap-
proaches [9, 10, 11, 12] use the history of bug reports and developers who fixed
them to train a classifier. Later, when keywords from new bug reports are
given as an input to the classifier, it recommends a set of developers who have
fixed similar classes of bugs in the past and are hence considered potential bug-
fixers for the new bug. Prior work that has used machine learning techniques
for prediction or recommendation purposes has found that prediction accuracy
depends on the choice of classifier, i.e., a certain classifier outperforms other
classifiers for a specific kind of a problem [8]. Previous studies [7, 9, 10, 11]
only used a subset of text classifiers and did not aim at analyzing which is the
best classifier for this problem. Our work is the first to examine the impact of
multiple machine learning dimensions (classifiers, attributes, and training his-
tory) on prediction accuracy in bug assignment and tossing. In particular, this
is the first study in the area of bug assignment to consider, and compare the
performance of, a broad range of classifiers along with tossing graphs: Näıve
Bayes Classifier, Bayesian Networks, C4.5 and Support Vector Machines.

Effective tossing graphs. Jeong et al. [7] have introduced tossing graphs for
studying the process of tossing, i.e., bug reassignment; they proposed automat-
ing bug assignment by building bug tossing graphs from bug tossing histories.
While classifiers and tossing graphs are effective in improving the prediction
accuracy for assignment and reducing tossing path lengths, their accuracy is
threatened by several issues: outdated training sets, inactive developers, and
imprecise, single-attribute tossing graphs. Prior work [7] has trained a classifier
with fixed bug histories; for each new bug report, the classifier recommends a
set of potential developers, and for each potential developer, a tossing graph—
whose edges contain tossing probabilities among developers—is used to predict
possible re-assignees. However, the tossing probability alone is insufficient for
recommending the most competent active developer (see Section 4.6.3 for an
example). In particular, in open source projects it is difficult to keep track
of active developers and their expertise. To address this, in addition to toss-
ing probabilities, we label tossing graph edges with developer expertise and
tossing graph nodes with developer activity, which help reduce tossing path
lengths significantly. We demonstrate the importance of using these additional
attributes in tossing graphs by performing a fine-grained per-attribute ablative
analysis which reveals how much each attribute affects the prediction accuracy.
We found that each attribute is instrumental for achieving high prediction ac-
curacy, and overall they make pruning more efficient and improve prediction

3A classifier is a machine learning algorithm that can be trained using input attributes
(also called feature vectors) and desired output classes; after training, when presented with a
set of input attributes, the classifier predicts the most likely output class.

4

accuracy by up to 22% points when compared to prediction accuracy obtained
in the absence of the attributes.

Accurate yet efficient classification. Anvik’s dissertation [13] has demon-
strated that choosing a subset of training data can reduce the computation time
during the classification process, while achieving similar prediction accuracies
to using the entire data set; three methods—random, strict and tolerant, were
employed for choosing a subset of training data set as we explain in Section 2.
In our work, in addition to classification, we also use a probabilistic ranking
function based on bug tossing graphs for developer recommendation. Since bug
tossing graphs are time-sensitive, i.e., tossing probabilities change with time, the
techniques used by Anvik are not applicable in our case (where bug reports were
not sorted by time for selection). Therefore, in this paper, we propose to shorten
the time-consuming classification process by selecting the most recent history
for identifying developer expertise. As elaborated in Section 5.7 we found that
by using just one third of all bug reports we could achieve prediction accura-
cies similar to the best results of our original experiments where we used the
complete bug history. Therefore, our third contribution in this paper is showing
how, by using a subset of bug reports, we can achieve accurate yet efficient bug
classification that significantly reduces the computational effort associated with
training.

Our paper is structured as follows. In Section 2 we discuss prior work and
how it relates to our approach. In Section 3 we define terms and techniques used
in bug assignment. In Section 4 we elaborate on our contributions, techniques
and implementation details. We present our experimental setup and results in
Section 5. Finally, we discuss threats to validity of our study in Section 6.

2. Related Work

2.1. Machine Learning and Information Retrieval Techniques
Cubranic et al. [10] were the first to propose the idea of using text classifica-

tion methods (similar to methods used in machine learning) to semi-automate
the process of bug assignment. They used keywords extracted from the title
and description of the bug report, as well as developer ID’s as attributes, and
trained a Näıve Bayes classifier. When presented with new bug reports, the
classifier suggests one or more potential developers for fixing the bug. Their
method used bug reports for Eclipse from January 1, 2002 to September 1,
2002 for training, and reported a prediction accuracy of up to 30%. While we
use classification as a part of our approach, in addition, we employ incremental
learning and tossing graphs to reach higher accuracy. Moreover, our data sets
are much larger, covering the entire lifespan of both Mozilla (from May 1998 to
March 2010) and Eclipse (from October 2001 to March 2010).

Anvik et al. [9] improved the machine learning approach proposed by Cubranic
et al. by using filters when collecting training data: (1) filtering out bug reports
labeled “invalid,” “wontfix,” or “worksforme,” (2) removing developers who no

5

longer work on the project or do not contribute significantly, and (3) filtering
developers who fixed less than 9 bugs. They used three classifiers, SVM, Näıve
Bayes and C4.5. They observed that SVM (Support Vector Machines) performs
better than the other two classifiers and reported prediction accuracy of up to
64%. Our ranking function (as described in Section 4) obviates the need to filter
bugs. Similar to Anvik et al., we found that filtering bugs which are not “fixed”
but “verified” or “resolved” leads to higher accuracy. They report that their
initial investigation in incremental learning did not have a favorable outcome,
whereas incremental learning helps in our approach; in Section 5 we explain the
discrepancy between their findings and ours.

Anvik’s dissertation [13] presented seminal work in building recommenda-
tion systems for automating the bug assignment process using machine learning
algorithms. His work differentiated between two kinds of triage decisions: (1)
repository-oriented decisions (determining whether a bug report is meaningful,
such as if the report is a duplicate or is not reproducible), and (2) development-
oriented decisions (finding out whether the product/component of a bug report
determines the developer the report is assigned to). They used a wide range
of machine learning algorithms (supervised classification: Näıve Bayes, SVM,
C4.5, Conjunctive Rules, and Nearest Neighbor and unsupervised classification:
Expectation Maximization) for evaluating the proposed model and suggested
how a subset of the bug reports chosen randomly or user-selected threshold
could be used for classifier training. Similar to Anvik, we show how using four
supervised classifiers (Näıve Bayes, Bayesian Networks, SVM, and C4.5) and a
subset of training data can be used to improve bug assignment accuracy. In
addition to classification, we also use a ranking function based on bug toss-
ing graphs for developer recommendation and perform an ablative analysis to
determine the significance of the attributes in the ranking function; Anvik’s dis-
sertation neither employ bug tossing graphs nor performs any ablative analysis.
Anvik proposed three types of subset training data selection: random (100 bug
reports where chosen in each iteration until desired prediction accuracy was
achieved), strict (number of bug reports for each developer where determined
depending on his lifetime contribution) and tolerant (number of bug reports
were chosen randomly and was proportional to a developer’s contribution); in
contrast, we used a chronologically-backtracking method to find out the subset
of bug reports that can be used to efficiently predict bug triagers instead of
random selection. For evaluating their framework, they used bug reports from
5 projects: Firefox, Eclipse, gcc, Mylyn, Bugzilla. Their prediction accuracy
is as follows: 75% for Firefox (by using 6,356 bug reports for training and 152
bug reports for validation) and 70% for Eclipse (by using 3,338 bug reports
for training and 64 bug reports for validation). Our work differs significantly
from theirs in two ways: first, we use a different data set for our training and
validation and we use all Mozilla products instead of Firefox alone, and second,
we propose incremental machine learning based and probabilistic graph-based
approach for bug assignment. By using all products in Mozilla and Eclipse, we
can prune developer expertise further by our ranking function which leads to
higher prediction accuracy.

6

Canfora et al. used probabilistic text similarity [12] and indexing develop-
ers/modules changed due to bug fixes [14] to automate bug assignment. When
using information retrieval based bug assignment, they report up to 50% Top
1 recall accuracy and when indexing source file changes with developers they
achieve 30%–50% Top 1 recall for KDE and 10%–20% Top 1 recall for Mozilla.

Podgurski et al. [15] also used machine learning techniques to classify bug
reports but their study was not targeted at bug assignment; rather, their study
focused on classifying and prioritizing various kinds of software faults.

Lin et al. [16] conducted machine learning-based bug assignment on a pro-
prietary project, SoftPM. Their experiments were based on 2,576 bug reports.
They report 77.64% average prediction accuracy when considering module ID
(the module a bug belongs to) as an attribute for training the classifier; the
accuracy drops to 63% when module ID is not used. Their finding is similar to
our observation that using product-component information for classifier training
improves prediction accuracy.

Lucca et al. [17] used information retrieval approaches to classify mainte-
nance requests via classifiers. However, the end goal of their approach is bug
classification, not bug assignment. They achieved up to 84% classification ac-
curacy by using both split-sample and cross-sample validation techniques.

Matter et al. [18] model a developer’s expertise using the vocabulary found
in the developer’s source code. They recommend potential developers by ex-
tracting information from new bug reports and looking it up in the vocabulary.
Their approach was tested on 130,769 Eclipse bug reports and reported predic-
tion accuracies of 33.6% for top 1 developers and 71% for top 10 developers.

2.2. Incremental Learning
Bettenburg et al. [11] demonstrate that duplicate bug reports are useful in

increasing the prediction accuracy of classifiers by including them in the training
set for the classifier along with the master reports of those duplicate bugs. They
use folding to constantly increase the training data set during classification, and
show how this incremental approach achieves prediction accuracies of up to 56%;
they do not need tossing graphs, because reducing tossing path lengths is not
one of their goals. We use the same general approach for the classification
part, though we improve it by using more attributes in the training data set; in
addition, we evaluate the accuracy of multiple text classifiers; and we achieve
higher prediction accuracies.

2.3. Tossing Graphs
Jeong et al. [7] introduced the idea of using bug tossing graphs to predict

a set of suitable developers for fixing a bug. They used classifiers and tossing
graphs (Markov-model based) to recommend potential developers. We use fine-
grained, intra-fold updates and extra attributes for classification; our tossing
graphs are similar to theirs, but we use additional attributes on edges and nodes
as explained in Section 4. The set of attributes we use help improve prediction
accuracy and further reduce tossing lengths, as described in Sections 5.2 and 5.3.

7

We also perform an ablative analysis to demonstrate the importance of using
additional attributes in tossing graphs and tossee ranking.

3. Preliminaries

We first define several machine learning and bug assignment concepts that
form the basis of our approach.

3.1. Machine Learning for Bug Categorization
Classification is a supervised machine learning technique for deriving a gen-

eral trend from a training data set. The training data set (TDS) consists of pairs
of input objects (called feature vectors), and their respective target outputs. The
task of the supervised learner (or classifier) is to predict the output given a set
of input objects, after being trained with the TDS. Feature vectors for which the
desired outputs are already known form the validation data set (VDS) that can
be used to test the accuracy of the classifier. A bug report contains a descrip-
tion of the bug and a list of developers that were associated with a specific bug,
which makes text classification applicable to bug assignment. Machine learning
techniques were used by previous bug assignment works [9, 10, 11]: archived
bug reports form feature vectors, and the developers who fixed the bugs are the
outputs of the classifier. Therefore, when a new bug report is provided to the
classifier, it predicts potential developers who can fix the bug based on their
bug fixing history.

Feature vectors. The accuracy of a classifier is highly dependent on the feature
vectors in the TDS. Bug titles and summaries have been used earlier to extract
the keywords that form feature vectors. These keywords are extracted such that
they represent a specific class of bugs. For example, if a bug report contains
words like “icon,” “image,” or “display,” it can be inferred that the bug is
related to application layout, and is assigned to the “layout” class of bugs. We
used multiple text classification techniques (tf-idf, stemming, stop-word and
non-alphabetic word removal [19]) to extract relevant keywords from the actual
bug report; these relevant keywords constitute a subset of the attributes used
to train the classifier.

3.1.1. Text Classification Algorithms
We now briefly describe each classifier we used.

Näıve Bayes Classifier. Näıve Bayes is a probabilistic technique that uses Bayes’
rule of conditional probability to determine the probability that an instance
belongs to a certain class. Bayes’ rule states that “the probability of a class
conditioned on an observation is proportional to the prior probability of the
class times the probability of the observation conditioned on the class” and can
be denoted as follows:

8

P (class|observation) =
P (observation|class) ∗ P (class)

P (observation)
(1)

For example, if the word concurrency occurs more frequently in the reports
resolved by developer A than in the reports resolved by developer B, the classi-
fier would predict A as a potential fixer for a new bug report containing the word
concurrency. “Näıve Bayes” is so called because it makes the strong assumption
that features are independent of each other, given the label (the developer who
resolved the bug). Even though this assumption does not always hold, Näıve
Bayes-based recommendation or prediction performs well in practice [20].

Bayesian Networks. A Bayesian Network [21] is a probabilistic model that is
used to represent a set of random variables and their conditional dependencies by
using a directed acyclic graph (DAG). Each node in the DAG denotes a variable,
and each edge corresponds to a potential direct dependence relationship between
a pair of variables. Each node is associated with a conditional probability table
(CPT) which gives the probability that the corresponding variable takes on a
particular value given the values of its parents.

C4.5. The C4.5 algorithm [22] builds a decision tree based on the attributes
of the instances in the training set. A prediction is made by following the
appropriate path through the decision tree based on the attribute values of
the new instance. C4.5 builds the tree recursively in a greedy fashion. Each
interior node of the tree is selected to maximize the information gain of the
decision at that node as estimated by the training data. The information gain
is a measure of the predictability of the target class (developer who will resolve
the bug report) from the decisions made along the path from the root to this
node in the tree. The sub-trees end in leaf nodes at which no further useful
distinctions can be made and thus a particular class is chosen.

Support Vector Machines. An SVM (Support Vector Machine [23]) is a su-
pervised classification algorithm that finds a decision surface that maximally
separates the classes of interest. That is, the closest points to the surface on
each side are as far as possible from the decision surface. It employs kernels
to represent non-linear mappings of the original input vectors. This allows it
to build highly non-linear decision surfaces without an explicit representation
of the non-linear mappings. Four kinds of kernel functions are commonly used:
Linear, Polynomial, Gaussian Radial Basis Function (RBF) and Sigmoid. In
our study we use Polynomial and RBF functions as they have been found to be
most effective in text classification.

3.2. Folding
Early bug assignment approaches [7, 9, 10] divided the data set into two

subsets: 80% for TDS and 20% for VDS. Bettenburg et al. [11] have used folding
(similar to split-sample validation techniques from machine learning [8]) in the
context of detecting duplicate bug reports. In a folding-based training and

9

Training

Testing

Fold 2 Fold 3Split

Training

Training

Run 10

Run 2

Fixed bug reports

Testing

Fold 1

Run 1

Fold 10

Testing

sorted chronologically

Fold 11

Figure 2: Folding techniques for classification as used by Bettenburg et al.

validation approach, also known as cross-validation, (illustrated in Figure 2),
the algorithm first collects all bug reports to be used for TDS, 4 sorts them
in chronological order (based on the fixed date of the bug) and then divides
them into n folds. In the first run, fold 1 is used to train the classifier and
then to predict the VDS. 5 In the second run, fold 2 bug reports are added
to TDS. In general, after validating the VDS from fold n, that VDS is added
to the TDS for validating fold n + 1. To reduce experimental bias [8], similar
to Bettenburg et al., we chose n = 11 and carried out 10 iterations of the
validation process using incremental learning. Note that incremental learning
is not a contribution of our work; incremental learning is a standard technique
to improve the prediction accuracy in any supervised or unsupervised learning
algorithms in machine learning [24]. Rather, we show that, similar to other
software maintenance problems like duplicate bug detection [11], fine-grained
incremental learning is important for improving bug assignment accuracy, i.e.,
to have the classifier trained with most recent data (or bug reports). Therefore,
we only use folding to compare our work with prior studies in automatic bug
assignment where split-sample validation was used; though our best result was
achieved using fine-grained incremental learning.

3.3. Goal-oriented Tossing Graphs
When a bug is assigned to a developer for the first time and she is unable

to fix it, the bug is assigned (tossed) to another developer. Thus a bug is
tossed from one developer to another until a developer is eventually able to fix
it. Based on these tossing paths, goal-oriented tossing graphs were proposed
by Jeong et al .[7]; for the rest of the paper, by “tossing graph” we refer to a
goal-oriented tossing graph. Tossing graphs are weighted directed graphs such
that each node represents a developer, and each directed edge from D1 to D2

4Training Data Set (TDS) used to train the classifier; see Section 3.1 for more details.
5Validation Data Set (VDS) used to validate the classifier; see Section 3.1 for more details.

10

represents the fact that a bug assigned to developer D1 was tossed and eventually
fixed by developer D2. The weight of an edge between two developers is the
probability of a toss between them, based on bug tossing history. We denote
a tossing event from developer D to Dj as D ↪→ Dj . The tossing probability
(also known as the transaction probability) from developer D to Dj is defined
by the following equation where k is the total number of developers who fixed
bugs that were tossed from D:

Pr(D ↪→ Dj) =
#(D ↪→ Dj)∑k
i=1 #(D ↪→ Di)

(2)

Tossing paths
A → B → C → D
A → E → D → C
A → B → E → D
C → E → A → D
B → E → D → F

Developer Total Developers who fixed the bug
who tossed tosses C D F

the bug # Pr # Pr # Pr
A 4 1 0.25 3 0.75 0 0
B 3 0 0 2 0.67 1 0.33
C 2 - - 2 1.00 0 0
D 2 1 0.50 - - 1 0.50
E 4 1 0.25 2 0.50 1 0.25

Table 1: Tossing paths and probabilities as used by Jeong et al.

F
0.33

0.5

0.5

1

0.75

D

C

B

A

E

0.25

0.5
0.25

0.25

0.67

Figure 3: Tossing graph built using tossing paths in Table 1.

11

In this equation, the numerator is the number m of tosses from developer D
to Dj such that Dj fixed the bug, while the denominator is the total number
of tosses from D to any other developer Di such that Di fixed the bug. Note
that if k = 0 for any developer D, it denotes that D has no outgoing edge in
the bug tossing graph. To illustrate this, in Table 1 we provide sample tossing
paths and show how toss probabilities are computed. For example, developer A
has tossed four bugs in all, three that were fixed by D and one that was fixed
by C, hence Pr(A ↪→ D) = 0.75, Pr(A ↪→ C) = 0.25, and Pr(A ↪→ F) = 0.
Note that developers who did not toss any bug (e.g., F) do not appear in the
first column, and developers who did not fix any bugs (e.g., A) do not have a
probability column. In Figure 3, we show the final tossing graph built using the
computed tossing probabilities. It is common in open source projects that when
a bug in a module is first reported, the developers associated with that module
are included in the list of assignees by default. The purpose of our automatic
bug assignment approach is, given a bug report, to predict developers who could
be potential fixers and email them, so that human intervention is reduced as
much as possible.

Prediction accuracy. If the first developer in our prediction list matches the
actual developer who fixed the bug, we have a hit for the Top 1 developer
count. Similarly, if the second developer in our prediction list matches the
actual developer who fixed the bug, we have a hit for the Top 2 developer
count. For example, if there are 100 bugs in the VDS and for 20 of those bugs
the actual developer is the first developer in our prediction list, the prediction
accuracy for Top 1 is 20%; similarly, if the actual developer is in our Top 2 for
60 bugs, the Top 2 prediction accuracy is 60%.

4. Methodology

4.1. Choosing Effective Classifiers and Features
In this section we discuss appropriate selection of machine learning algo-

rithms and feature vectors for improving the classification process.

4.1.1. Choosing the Right Classifier
Various approaches that use machine learning techniques for prediction or

recommendation purposes have found that prediction accuracy depends on the
choice of classifier, i.e., for a specific kind of a problem, a certain classifier
outperforms other classifiers [8]. Previous bug classification and assignment
studies [7, 9, 10, 11] only used a subset of text classifiers and did not aim
at analyzing which classifier works best for bug assignment. Our work is the
first study to consider an extensive set of classifiers which are commonly used
for text classification: Näıve Bayes Classifier, Bayesian Networks, C4.5 and
two types of SVM classifiers (Polynomial and RBF). We found that for bug
assignment it is not possible to select one classifier which is better than the
rest, either for a specific project or for any project in general. Since classifier

12

performance is also heavily dependent on the quality of bug reports, in general
we could not propose choosing a specific classifier a priori for a given project.
Interestingly, computationally-intensive classification algorithms such as C4.5
and SVM do not consistently outperform simpler algorithms such as Näıve Bayes
and Bayesian Networks. We provide details of our prediction accuracy using
each classifier in Section 5.2.

4.1.2. Feature Selection
Classifier performance is heavily dependent on feature selection [8]. Prior

work [9, 10, 11] has used keywords from the bug report and developer name
or ID as features (attributes) for the training data sets; we also include the
product and component the bug belongs to. For extracting relevant words from
bug reports, we employ tf-idf, stemming, stop-word and non-alphabetic word
removal [19]. We use the Weka toolkit [25] to remove stop words and form the
word vectors for the dictionary (via the StringtoWordVector class with tf-idf
enabled).

4.2. Incremental Learning
Prior work [7, 11] has used inter-fold updates, i.e., the classifier and tossing

graphs are updated after each fold validation, as shown in Figure 4(a). With
inter-fold updates, after validating the VDS from fold n, the VDS is added to
the TDS for validating fold n+1. However, consider the example when the TDS
contains bugs 1–100 and the VDS contains bugs 101–200. When validating bug
101, the classifier and tossing graph are trained based on bugs 1–100, but from
bug 102 onwards, the classifier and tossing graph are not up-to-date any more
because they do not incorporate the information from bug 101. As a result,
when the validation sets contain thousands of bugs, this incompleteness affects
prediction accuracy. Therefore, to achieve high accuracy, it is essential that
the classifier and tossing graphs be updated with the latest bug fix; we use a
fine-grained, intra-fold updating technique (i.e., incremental learning) for this
purpose.

We now proceed to describing intra-fold updating. After the first bug in the
validation fold has been used for prediction and accuracy has been measured,
we add it to the TDS and re-train the classifier as shown in Figure 11(b). We
also update the tossing graphs by adding the tossing path of the just-validated
bug. This guarantees that for each bug in the validation fold, the classifier and
the tossing graphs incorporate information about all preceding bugs.

4.3. Multi-featured Tossing Graphs
Tossing graphs are built using tossing probabilities derived by analyzing

bug tossing histories, as explained in Section 3.3. Jeong et al. [7] determined
potential tossees as follows: if developer A has tossed more bugs to developer B
than to developer D, in the future, when A cannot resolve a bug, the bug will be
tossed to B, i.e., tossing probabilities determine tossees. However, this approach
might be inaccurate in certain situations: suppose a new bug belonging to class

13

Training Data Set
{X1, X2,......, Xm} {X1, X2, , Xm, Y1, Y2,, Ym}
Training Data Set

{Ym+1, Ym+2,, Y2m}

Validation Set
{Y1, Y2,, Ym}

Classifier

Validation Set

Classifier

Iteration i Iteration i+1

(a) Updates after each validation set (Bettenburg et al.)

Training Data Set
{X1, X2,......, Xm}

Validation Set
{ Y1, Y2,, Ym}

Validation Set
{Y1, Y2,, Ym }

Classifier

{X1, , Xm, Y1, Y2, ..., Ym−1}

Classifier

Validation Set
{Y1, Y2,, Ym}

Run 2

Classifier

Training Data Set

Run 1 Run m

{X1, X2, , Xm, Y1}
Training Data Set

Iteration i
(b) Updates after each bug (our approach)

Figure 4: Comparison of training and validation techniques.

K1 is reported, and developer A was assigned to fix it, but he is unable to fix
it; developer B has never fixed any bug of type K1, while D has fixed 10 bugs
of type K1. The prior approach would recommend B as the tossee, although D
is more likely to resolve the bug than B. Thus, although tossing graphs reveal

14

tossing probabilities among developers, they should also contain information
about which classes of bugs were passed from one developer to another; we use
multi-feature tossing graphs to capture this information.

Product Component Tossing paths
P1 C1 A → B → C
P1 C3 F → A → B → E
P2 C5 B → A → D → C
P1 C3 C → E → A → D
P1 C1 A → B → E → C
P1 C3 B → A → F → D

Developer Total Developers who fixed the bug
bug tosses C D E

assigned # Pr # Pr # Pr
A 6 3 0.5 2 0.33 1 0.17

Developer Last Activity
(in days)

A 20
C 70
D 50
E 450

Table 2: Example of tossing paths, associated tossing probabilities and developer activity.

Another problem with the classifier- and tossing graph-based approaches
is that it is difficult to identify retired or inactive developers. This issue is
aggravated in open source projects: when developers work voluntarily, it is
difficult to keep track of the current set of active developers associated with
the project. Anvik et al. [9] and Jeong et al. [7] have pointed out this problem
and proposed solutions. Anvik et al. use a heuristic to filter out developers
who have contributed fewer than 9 bug resolutions in the last 3 months of
the project. Jeong et al. assume that, when within a short time span many
bugs get tossed from a developer D to others, leading to an increase in the
number of outgoing edges in the tossing graph from D’s node, D is a potentially
retired developer. They suggest that this information can be used in real-world
scenarios by managers to identify potentially inactive developers. Therefore, in
their automatic bug assignment approach they still permit assignment of bugs
to inactive developers, which increases the length of the predicted tossing paths.
In contrast, we restrict potential assignees to active developers only, and do so
with a minimum number of tosses.

The tossing graphs we build have additional labels compared to Jeong et al.:
for each bug that contributes to an edge between two developers, we attach the
bug class (product and component)6 to that edge; moreover, for each developer

6Products are smaller projects within a large project. Components are sub-modules in

15

in the tossing graph, we maintain an activity count, i.e., the difference between
the date of the bug being validated and the date of the last activity of that
developer.

A

{P1,C3}
0.33

50 Days

0.17
{P1,C3}

70 Days

450 Days
{P1,C1,

0.5

D C

E

P2,C5}

Figure 5: Multi-feature tossing graph (partial) derived from data in Table 2.

4.3.1. Building Multi-feature Tossing Graphs
As discussed earlier in Section 4.3, tossing probabilities are a good start to-

ward indicating potential bug fixers, but they might not be appropriate at all
times. Therefore, the tossing graphs we generate have three labels in addition
to the tossing probability: bug product and bug component on each edge, and
number of days since a developer’s last activity on each node. For example,
consider three bugs that have been tossed from D1 to D2 and belong to three
different product-component sets: {P1, C1}, {P1, C3}, and {P2, C5}. There-
fore, in our tossing graph, the product-component set for the edge between
D1 and D2 is {{P1, C1}, {P1, C3}, {P2, C5}}. Maintaining these additional at-
tributes is also helpful when bugs are re-opened. Both developer expertise and
tossing histories change over time, hence it is important to identify the last fixer
for a bug and a potential tossee after the bug has been re-opened.

We now present three examples that demonstrate our approach and show
the importance of multi-feature tossing graphs. The examples are based on the
tossing paths, the product–component the bug belongs to, and the developer
activity, as shown in Table 2. Suppose that at some point in our recommendation
process for a specific bug, the classifier returns A as the best developer for fixing
the bug. However, if A is unable to resolve it, we need to use the tossing graph
to find the next developer. We will present three examples to illustrate which
neighbor of A to choose, and how the selection depends on factors like bug source
and developer activity, in addition to tossing probability. For the purpose of
these examples, we just show a part of the tossing graph built from the tossing
paths shown in Table 2; we show the node for developer A and its neighbors
in the tossing graph in Figure 5, as the tossee selection is dependent on these
nodes alone.

a product. For example, Firefox is a product in Mozilla and Bookmarks is a component of
Firefox.

16

Example I. Suppose we encounter a new bug B1 belonging to product P1

and component C5, and the classifier returns A as the best developer for fixing
the bug. If A is unable to fix it, by considering the tossing probability and
product–component match, we conclude that it should be tossed to C.

Example II. Consider a bug B2 belonging to product P1 and component
C3. If A is unable to fix it, although C has a higher transaction probability
than D, because D has fixed bugs earlier from product P1 and component C3,
he is more likely to fix it than C. Hence in this case the bug gets tossed from
A to D.

Example III. Based on the last active count for E in Figure 5, i.e., 450
days, it is likely that E is a retired developer. In our approach, if a developer has
been inactive for more than 100 days,7 we choose the next potential neighbor
(tossee) from the reference node A. For example, consider bug B3 which belongs
to product P1 and component C3, which has been assigned to A and we need
to find a potential tossee when A is unable to resolve it. We should never
choose E as a tossee as he is a potential retired developer and hence, in this
particular case, we choose C as the next tossee. We also use activity counts
to prune inactive developers from classifier recommendations. For example, if
the classifier returns n recommendations and we find that the ith developer is
probably retired, we do not select him, and move on to the (i + 1)st developer.

4.3.2. Ranking Function
As explained with examples in Section 4.3.1, the selection of a tossee depends

on multiple factors. We thus use a ranking function to rank the tossees and
recommend a potential bug-fixer. We first show an example of our developer
prediction technique for a real bug from Mozilla and then present the ranking
function we use for prediction.

Example (Mozilla bug 254967). For this particular bug, the first five
developers predicted by the Näıve Bayes classifier are {bugzilla, fredbezies, myk,
tanstaafl, ben.bucksch}. However, since bryner is the developer who actually
fixed the bug, our classifier-only prediction is inaccurate in this case. If we
use the tossing graphs in addition to the classifier, we select the most likely
tossee for bugzilla, the first developer in the classifier ranked list. In Figure 6,
we present the node for bugzilla and its neighbors.8 If we rank the outgoing
edges of bugzilla based on tossing probability alone, the bug should be tossed
to developer ddahl. Though bryner has lower probability, he has committed
patches to the product “Firefox” and component “General” that bug 254967
belong to. Therefore, our algorithm will choose bryner as the potential devel-
oper over ddahl, and our prediction matches the actual bug fixer. Our ranking
function also takes into account developer activity; in this example, however,

7Choosing 100 days as the threshold was based on Anvik et al. [9]’s observation that
developers that have been inactive for three months or more are potentially retired.

8For clarity, we only present the nodes relevant to this example, and the labels at the point
of validating this bug; due to incremental learning, label values will change over time.

17

both developers ddahl and bryner are active, hence comparing their activities
is not required. To conclude, our ranking function increases prediction accu-
racy while reducing tossing lengths; the actual tossing length for this particular
Mozilla bug was 6, and our technique reduces it to 2.

We now describe our algorithm for ranking developers. Similar to Jeong et
al., we first use the classifier to predict a set of developers named CP (Classi-
fier Predicted). Using the last-activity information, we remove all developers
who have not been active for the past 100 days from CP. We then sort the
developers in CP using the fix counts from the developer profile (as described
in Section 4.6.1).

Suppose the CP is {D1, D2, D3, . . . , Dj}. For each Di in the sorted CP, we
rank its tossees Tk (outgoing edges in the tossing graph) using the following
ranking function:

Rank (Tk) = Pr(Di ↪→ Tk)+
MatchedProduct(Tk) +
MatchedComponent(Tk) +
LastActivity(Tk)

The tossing probability, Pr(Di ↪→ Tk), is computed using equation 2 (Sec-
tion 3). The function MatchedProduct(Tk) returns 1 if the product the bug be-
longs to exists in developer Tk’s profile, and 0 otherwise. Similarly, the function
MatchedComponent(Tk) returns 1 if the component the bug belongs to exists
in developer Tk’s profile. Note that the MatchedComponent(Tk) attribute is
computed only when MatchedProduct(Tk) returns 1. The LastActivity func-
tion returns 1 if Tk’s last activity was in the last 100 days from the date the
bug was reported. As a result, 0 < Rank(Tk) ≤ 4. We then sort the tossees Tk

by rank, choose the developer Ti with highest rank and add it to the new set of
potential developers, named ND. Thus after selecting Ti, where i = 1, 2, . . . , j,
the set ND becomes {D1, T1, D2, T2, D3, T3, . . . , Dj , Tj}. When measuring our
prediction accuracy, we use the first 5 developers in ND.

If two potential tossees Ti and Tj have the same rank, and both are active
developers, and both have the same tossing probabilities for bug B (belonging
to product P and component C), we use developer profiles to further rank them.
There can be two cases in this tie: (1) both Ti and Tj ’s profiles contain {P,C}, or
(2) there is no match with either P or C. For the first case, consider the example
in Table 3: suppose a new bug B belongs to {P1, C1}. Assume Ti and Tj are
the two potential tossees from developer D (where D has been predicted by the
classifier) and suppose both Ti and Tj have the same tossing probabilities from
D. From developer profiles, we find that Tj has fixed more bugs for {P1, C1}
than Ti, hence we choose Tj (case 1). If the developers have the same fix count,
or neither has P and/or C in their profile (case 2), we randomly choose one.

4.4. Ablative Analysis for Tossing Graph Attributes
As explained in Section 4.6.4, our ranking function for tossing graphs con-

tains additional attributes compared to the original tossing graphs by Jeong et

18

bugzilla

{Firefox,General}
0.437 0.196

ddahl bryner38 days12 days

{Firefox,Bookmarks} {Firefox,Bookmarks}

Figure 6: Actual multi-feature tossing graph extracted from Mozilla.

Developer ID Product-Component Fix count
Ti {P1, C1} 3

{P1, C7} 18
{P9, C6} 7

Tj {P1, C1} 13
{P4, C6} 11

Table 3: Sample developer profiles: developer IDs and number of bugs they fixed in each
product–component pair.

al. Therefore, we were interested to evaluate the importance of each attribute;
to measure this, we performed another ablative analysis. We choose only two
attributes out of three (product, component and developer activity) at a time
and compute the decrease in prediction accuracy in the absence of the other
attribute. For example, if we want to measure the significance of the “developer
activity” attribute, we use only product and component attributes in our rank-
ing function described in Section 4.6.4 and compute the decrease in prediction
accuracy. In Section 5.5 we discuss the results of our ablative analysis and argue
the importance of the attributes we propose.

4.5. Accurate Yet Efficient Classification
One of the primary disadvantages of fine-grained incremental learning is

that it is time consuming [26, 27, 28]. Previous studies which used fine-grained
incremental learning for other purposes [29] found that using a part of the bug
repository history for classification might yield comparable and stable results
to using the entire bug history. Similarly, we intended to find how many past
bug reports we need to train the classifier on in order to achieve a prediction
accuracy comparable to the highest prediction accuracy attained when using
fold 1–10 as the TDS and fold 11 as the VDS.

We now present the procedure we used for finding how much history is
enough to yield high accuracy. We first built the tossing graphs using the TDS
until fold 10; building tossing graphs and using them to rank developers is not

19

a time consuming task, hence in our approach tossing graphs cover the entire
TDS. We then incrementally started using sets of 5,000 bug reports from fold 10
downwards, in descending chronological order, as our TDS for the classifier, and
measured our prediction accuracy for bugs in fold 11 (VDS); we continued this
process until addition of bug reports did not improve the prediction accuracy
any more, implying stabilization. Note that by this method our VDS remains
constant. We present the results of our optimization in Section 5.7.

4.6. Implementation
In Figure 7 we compare our approach to previous techniques. Initial work

in this area (Figure 7(a)) used classifiers only [9, 10, 11, 12]; more recent work
by Jeong et al. [7] (Figure 7(b)) coupled classifiers with tossing graphs. Our
approach (Figure 7(c)) adds fine-grained incremental learning and multi-feature
tossing graphs. Our algorithm consists of four stages, as labeled in the figure: (1)
initial classifier training and building the tossing graphs, (2) predicting potential
developers, using the classifier and tossing graphs, (3) measuring prediction
accuracy, (4) updating the training sets using the bugs which have been already
validated, re-running the classifier and updating the tossing graphs. We iterate
these four steps until all bugs have been validated.

4.6.1. Developer Profiles

Developer ID Product-Component Fix count
D1 {P1, C2} 3

{P1, C7} 18
{P9, C6} 7

Table 4: Sample developer profile.

We maintain a list of all developers and their history of bug fixes. Each
developer D has a list of product-component pairs {P,C} and their absolute
count attached to his or her profile. A sample developer profile is shown in
Table 4, e.g., developer D1 has fixed 3 bugs associated with product P1 and
component C2. This information is useful beyond bug assignments; for example,
while choosing moderators for a specific product or component it is a common
practice to refer to the developer performance and familiarity with that product
or component.

4.6.2. Classification
Given a new bug report, the classifier produces a set of potential developers

who could fix the bug. We describe the classification process in the remainder
of this subsection.

Choosing fixed bug reports. We use the same heuristics as Anvik et al. [9] for
obtaining fixed bug reports from all bug reports in Bugzilla. First, we extract
all bugs marked as “verified” or “resolved”; next, we remove all bugs marked

20

Fixed Bug

Supervised ML
Classifier

History

Predict
Developers

(a) Classifier-based bug
assignment

Fixed Bug

Supervised ML
Classifier

History

Developers
Predict

Tossing Graphs
(with tossing probabilities only)

(b) Classifiers coupled with tossing
graphs

Fixed Bug

Supervised ML
Classifier

History

Developers
Predict

(with tossing probabilities,
Tossing Graphs

product−component label,
developer activity)

2

1

1

4

3

after each bugvalidation
Update classifier and tossing graphs

Re−iterate

(c) Incremental learning and multi-feature toss-
ing graphs (our approach)

Figure 7: Comparison of bug assignment techniques.

as “duplicate” or “works-for-me,” which leaves us with the set containing fixed
bugs only.

Accumulating training data. Prior work [9, 10, 11] has used keywords from the
bug report and developer name or ID as attributes for the training data sets;
we also include the product and component the bug belongs to. For extracting

21

relevant words from bug reports, we employ tf-idf, stemming, stop-word and
non-alphabetic word removal [19].

Filtering developers for classifier training. Anvik et al. refine the set of training
reports by using several heuristics. For example, they do not consider developers
who fixed a small number of bugs, which helps remove noise from the TDS.
Although this is an effective way to filter non-experts from the training data
and improve accuracy, in our approach filtering is unnecessary: the ranking
function is designed such that, if there are two developers A and B who have
fixed bugs of the same class K, but the number of K-type bugs A has fixed
is greater than the number of K-type bugs B has fixed, a K-type bug will be
assigned to A.

4.6.3. Multi-feature Tossing Graphs
With the training data and classifier at hand, we proceed to constructing

tossing graphs as explained in Section 4.3.1. We use the same bug reports used
for classification to build the tossing graphs.

Filtering developers for building tossing graphs. We do not prune the tossing
graphs based on a pre-defined minimum support (frequency of contribution) for
a developer, or the minimum number of tosses between two developers. Jeong
et al. [7] discuss the significance of removing developers who fixed less than 10
bugs and pruning edges between developers that have less than 15% transaction
probability. Since their approach uses the probability of tossing alone to rank
neighboring developers, they need the minimum support values to prune the
graph. In contrast, the multiple features in our tossing graphs coupled with
the ranking function (as explained in the Section 4.6.4) obviate the need for
pruning.

4.6.4. Predicting Developers
For each bug, we predict potential developers using two methods: (1) using

the classifier alone, to demonstrate the advantages of incremental learning, and
(2) using both the classifier and tossing graphs, to show the significance of multi-
feature tossing graphs. When using the classifier alone, the input consists of
bug keywords, and the classifier returns a list of developers ranked by relevance;
we select the top five from this list. When using the classifier in conjunction
with tossing graphs, we select the top three developers from this list, then for
developers ranked 1 and 2 we use the tossing graph to recommend a potential
tossee, similar to Jeong et al. For predicting potential tossees based on the
tossing graph, our tossee ranking function takes into account multiple factors,
in addition to the tossing probability as proposed by Jeong et al. In particular,
our ranking function is also dependent on (1) the product and component of
the bug, and (2) the last activity of a developer, to filter retired developers.
Thus our final list of predicted developers contains five developer id’s in both
methods (classifier alone and classifier + tossing graph).

22

4.6.5. Folding
After predicting developers, similar to the Bettenburg et al.’s folding tech-

nique [11], we iterate the training and validation for all folds. However, since
our classifier and tossing graph updates are already performed during valida-
tion, we do not have to update our training data sets after each fold validation.
To maintain consistency in comparing our prediction accuracies with previous
approaches, we report the average prediction accuracy over each fold.

5. Results

5.1. Experimental Setup
We used Mozilla and Eclipse bugs to measure the accuracy of our proposed

algorithm. We analyzed the entire life span of both applications. For Mozilla,
our data set ranges from bug number 37 to 549,999 (May 1998 to March 2010).
For Eclipse, we considered bugs numbers from 1 to 306,296 (October 2001 to
March 2010). Mozilla and Eclipse bug reports have been found to be of high
quality [7], which helps reduce noise when training the classifiers. We divided
our bug data sets into 11 folds and executed 10 iterations to cover all the folds.

Data collection. We used the bug reports to collect four kinds of data:

1. Keywords: we collect keywords from the bug title, bug description and
comments in the bug report.

2. Bug source: we retrieve the product and component the bug has been filed
under from the bug report.

3. Temporal information: we collect information about when the bug has
been reported and when it has been been fixed.

4. Developers assigned: we collect the list of developer IDs assigned to the
bug from the activity page of the bug and the bug routing sequence.

5.2. Prediction Accuracy
In Tables 5 and 6 we show the results for predicting potential developers who

can fix a bug for Mozilla and Eclipse using five classifiers: Näıve Bayes, Bayesian
Networks, C4.5, and SVM using Polynomial and RBF kernel functions. In our
experiments, we used the classifier implementations in Weka for the first three
classifiers [25] and WLSVM for SVM [30].9

9The details of the parameters used for the classifiers in the experiments can be found at:
http://www.cs.ucr.edu/~neamtiu/bugassignment-params/

23

M
L

M
L

M
L

+
T
os

si
n
g

G
ra

p
h
s

al
go

ri
th

m
S
el

ec
ti

on
on

ly
(a

ve
ra

ge
p
re

d
ic

ti
on

ac
cu

ra
cy

fo
r

V
D

S
fo

ld
)

A
v
g.

Im
p
ro

v
.

ac
ro

ss
v
s

(c
la

ss
ifi

er
)

(a
v
g)

2
3

4
5

6
7

8
9

10
11

al
l

fo
ld

s
p
ri

or
w

or
k

[7
]

T
op

1
27

.6
7

13
.3

3
20

.6
7

22
.2

5
25

.3
9

24
.5

8
30

.0
9

30
.0

5
33

.6
1

35
.8

3
40

.9
7

27
.6

7
-

N
äı

ve
T
op

2
42

.1
9

39
.1

4
44

.5
9

47
.7

2
49

.3
9

52
.5

7
57

.3
6

59
.4

6
62

.3
7

64
.9

9
67

.2
3

54
.4

9
8.

16
B

ay
es

T
op

3
54

.2
5

51
.3

4
62

.7
7

66
.1

5
57

.5
0

63
.1

4
61

.3
3

64
.6

5
77

.5
4

71
.7

6
74

.6
6

65
.0

9
11

.0
2

T
op

4
59

.1
3

64
.2

0
75

.8
6

79
.5

7
70

.6
6

69
.1

1
69

.8
4

67
.6

8
82

.8
7

68
.7

7
69

.7
1

71
.8

2
6.

93
T
op

5
65

.6
6

74
.6

3
77

.6
9

81
.1

2
79

.9
1

76
.1

5
72

.3
3

75
.7

6
83

.6
2

78
.0

5
79

.4
7

77
.8

7
9.

22
T
op

1
26

.7
1

13
.5

4
14

.1
6

20
.2

1
22

.0
5

25
.1

6
28

.4
7

32
.3

7
35

.1
37

.1
1

38
.9

4
26

.7
1

-
B

ay
es

ia
n

T
op

2
44

.4
3

36
.9

8
38

.9
37

.4
6

40
.8

9
43

.5
3

48
.1

8
51

.7
54

.2
9

57
.5

7
60

.4
3

46
.9

9
7.

24
N

et
w

or
k

T
op

3
49

.5
1

47
.1

9
49

.4
5

46
.4

2
51

.4
2

53
.8

2
49

.5
9

53
.6

3
59

.2
6

61
.9

1
63

.9
53

.6
5

2.
27

T
op

4
58

.3
7

54
.3

1
57

.0
1

54
.7

7
59

.8
8

61
.7

63
.4

7
62

.1
1

67
.6

4
68

.8
1

66
.0

8
61

.5
9

8.
07

T
op

5
62

.1
9

59
.2

2
59

.4
4

61
.0

2
68

.2
9

64
.8

7
68

.3
71

.9
76

.3
8

77
.0

6
78

.9
1

68
.5

4
10

.7
8

T
op

1
25

.4
6

10
.8

14
.2

18
.3

26
.2

1
24

.8
5

28
.7

7
30

.7
32

.2
9

33
.6

4
34

.8
7

25
.4

6
T
op

2
31

.0
3

29
.1

7
34

.1
6

40
.3

4
45

.9
2

51
.6

7
56

.3
5

59
.4

1
62

.0
4

65
.2

6
69

.4
9

51
.3

8
C

4.
5

T
op

3
38

.9
7

33
.2

38
.3

9
43

.3
7

51
.0

5
56

.4
7

62
.6

8
66

.4
4

69
.9

2
73

.4
1

75
.6

2
57

.0
5

N
/A

T
op

4
46

.4
3

41
.1

6
46

.1
5

51
.0

5
59

.1
6

64
.5

6
69

.4
3

73
.4

76
.3

1
80

.5
2

83
.8

4
64

.7
2

T
op

5
59

.1
8

47
.0

4
50

.4
9

56
.6

7
64

.2
5

69
.0

7
74

.6
8

78
.7

4
80

.3
7

81
.5

9
84

.8
2

68
.7

7
SV

M
T
op

1
23

.8
2

8.
26

13
.0

1
18

.5
4

20
.6

9
22

.9
7

27
.1

4
29

.4
6

32
.3

6
32

.6
9

33
.0

8
23

.8
2

(P
ol

yn
om

ia
l

T
op

2
28

.6
6

18
.9

4
21

.4
9

26
.6

3
31

.2
9

31
.8

1
37

.2
4

36
.8

7
40

.2
4

43
.4

7
48

.0
6

33
.6

K
er

ne
l

T
op

3
34

.0
4

23
.8

5
23

.1
1

27
.4

4
32

.4
6

39
.1

1
32

.5
2

41
.9

2
44

.6
2

45
.3

7
48

.8
5

35
.9

3
N

/A
Fu

nc
ti

on
,

T
op

4
43

.9
2

26
.7

4
30

.7
8

35
.9

9
28

.8
2

34
.7

7
40

.0
5

46
.8

9
53

.4
7

59
.0

3
63

.7
42

.0
2

D
eg

re
e=

2)
T
op

5
51

.1
7

34
.8

3
32

.8
5

41
.1

4
44

.4
46

.9
4

53
.7

6
60

.3
62

.6
9

61
.0

1
70

.9
5

50
.8

9
SV

M
T
op

1
30

.9
8

17
.3

7
20

.2
7

28
.5

6
30

.4
6

31
.9

8
34

.8
6

31
.5

6
38

.6
9

33
.0

9
42

.9
7

30
.9

8
(R

B
F

T
op

2
39

.2
7

41
.5

1
42

.4
49

.1
53

.0
2

52
.0

4
59

.3
3

59
.2

4
62

.1
3

66
.1

68
.2

9
55

.3
2

K
er

ne
l

T
op

3
45

.5
2

43
.7

44
.2

6
49

.6
53

.9
6

61
.6

9
54

.7
9

62
.7

9
66

.8
2

67
.2

5
69

.7
5

57
.3

8
N

/A
Fu

nc
ti

on
)

T
op

4
53

.4
2

48
.2

1
51

.5
1

57
.1

5
51

.6
2

56
.9

5
61

.0
8

67
.6

3
74

.2
3

80
.5

9
84

.1
2

63
.3

1
T
op

5
62

.4
9

56
.0

7
53

.9
9

62
.2

66
.1

3
68

.5
4

76
.2

3
80

.7
4

84
.6

9
83

.0
4

82
.7

1
71

.4
3

T
a
b
le

5
:

B
u
g

a
ss

ig
n
m

en
t

p
re

d
ic

ti
o
n

a
cc

u
ra

cy
(p

er
ce

n
ts

)
fo

r
M

o
zi

ll
a
.

24

M
L

M
L

M
L

+
T
os

si
n
g

G
ra

p
h
s

al
go

ri
th

m
S
el

ec
ti

on
on

ly
(a

ve
ra

ge
p
re

d
ic

ti
on

ac
cu

ra
cy

fo
r

V
D

S
fo

ld
)

A
v
g.

Im
p
ro

v
.

ac
ro

ss
v
s

(c
la

ss
ifi

er
)

(a
v
g)

2
3

4
5

6
7

8
9

10
11

al
l

fo
ld

s
p
ri

or
w

or
k

[7
]

T
op

1
32

.3
5

12
.2

21
.0

9
24

.7
23

.4
3

25
.1

7
33

.0
4

38
.7

3
42

.0
3

49
.5

9
53

.6
9

32
.3

6
-

N
äı

ve
T
op

2
48

.1
9

39
.5

3
38

.6
6

36
.0

3
39

.1
6

39
.2

9
41

.8
2

43
.2

47
.9

4
51

.6
5

54
.1

8
43

.1
5

5.
99

B
ay

es
T
op

3
54

.1
5

47
.9

5
50

.8
4

48
.4

6
49

.5
2

59
.4

5
62

.7
7

61
.7

3
68

.1
9

74
.9

5
69

.0
7

59
.3

0
2.

76
T
op

4
58

.4
6

56
.2

9
61

.1
6

59
.8

8
60

.8
1

69
.6

4
69

.3
7

75
.6

4
75

.3
78

.2
2

77
.3

1
68

.3
7

6.
69

T
op

5
67

.2
1

66
.7

3
69

.9
2

74
.1

3
77

.0
3

77
.9

81
.8

82
.0

5
80

.6
3

82
.5

9
81

.4
4

77
.4

3
5.

98
T
op

1
38

.0
3

24
.3

6
29

.5
3

31
.0

4
36

.3
7

34
.0

9
40

.9
7

40
.2

2
43

.9
9

48
.8

8
50

.8
5

38
.0

3
-

B
ay

es
ia

n
T
op

2
41

.4
3

36
.1

1
41

.4
9

41
.1

3
44

.8
1

46
.3

4
47

.4
48

.6
1

53
.8

4
59

.1
8

63
.6

9
48

.2
6

3.
97

N
et

w
or

k
T
op

3
59

.5
0

51
.1

6
52

.8
54

.6
2

57
.3

8
56

.3
9

63
.2

6
66

.6
8

70
.3

4
76

.7
2

77
.3

4
62

.6
7

8.
88

T
op

4
62

.7
2

62
.9

2
59

.0
3

63
.0

9
68

.2
7

68
.3

3
71

.7
9

73
.3

7
74

.1
5

76
.9

4
77

.0
4

69
.5

0
5.

58
T
op

5
68

.9
1

74
.0

4
72

.4
1

70
.9

2
71

.5
2

73
.5

75
.6

1
79

.2
8

79
.6

8
80

.6
1

81
.3

8
75

.8
9

6.
93

T
op

1
28

.9
7

11
.4

3
21

.3
5

24
.8

8
28

.3
3

25
.1

2
30

.5
6

31
.5

7
35

.1
9

38
.3

7
42

.9
7

28
.9

7
T
op

2
36

.3
3

31
.0

7
37

.6
5

42
.2

4
48

.2
3

51
.7

5
55

.5
4

58
.1

3
59

.4
4

62
.6

1
62

.9
8

50
.9

6
C

4.
5

T
op

3
48

.1
7

37
.9

5
44

.4
7

48
.2

9
55

.8
2

58
.4

5
62

.7
3

65
.2

8
66

.3
2

69
.3

4
69

.5
7

57
.8

2
N

/A
T
op

4
54

.6
2

44
.6

2
51

.1
1

55
.3

6
61

.4
7

65
.6

2
69

.3
71

.0
6

72
.3

9
75

.2
3

76
.4

4
64

.2
6

T
op

5
65

.9
8

51
.2

7
57

.1
5

62
.4

4
68

.5
2

71
.7

7
75

.9
5

78
.5

1
79

.6
4

82
.3

6
86

.0
9

71
.3

7
SV

M
T
op

1
22

.4
5

9.
43

13
.3

15
.5

9
20

.1
2

24
.6

24
.6

5
26

.4
6

30
.1

2
31

.7
1

29
.9

3
22

.4
5

(P
ol

yn
om

ia
l

T
op

2
26

.5
2

19
.5

1
21

.4
27

.1
32

.0
2

31
.0

4
37

.3
3

37
.2

4
40

.1
3

44
.1

47
.2

9
33

.7
2

K
er

ne
l

T
op

3
30

.0
8

21
.7

23
.2

6
27

.6
32

.9
6

39
.6

9
32

.7
9

41
.7

9
48

.1
1

45
.2

5
50

.7
5

36
.3

9
N

/A
Fu

nc
ti

on
,

T
op

4
33

.1
7

26
.2

1
30

.5
1

35
.1

5
29

.6
2

34
.9

5
40

.0
8

46
.6

3
53

.2
3

59
.5

9
63

.1
2

41
.9

1
D

eg
re

e=
2)

T
op

5
42

.9
2

35
.0

7
32

.9
9

41
.2

45
.1

3
46

.5
4

54
.2

3
59

.7
4

62
.6

9
61

.0
4

71
.7

1
51

.0
3

SV
M

T
op

1
29

.2
3

16
.5

4
22

.0
6

22
.2

9
28

.2
9

26
.5

8
31

.8
6

31
.4

8
33

.8
4

36
.0

1
43

.1
8

29
.2

1
(R

B
F

T
op

2
37

.5
38

.4
42

.8
5

43
.3

9
44

.4
1

47
.2

46
.9

8
48

.2
9

49
.4

9
48

.8
46

.6
8

45
.6

5
K

er
ne

l
T
op

3
47

.0
4

46
.6

5
54

.1
7

51
.1

55
.6

6
61

.4
1

62
.6

6
66

.6
3

72
.4

6
68

.8
7

72
.9

3
61

.2
5

N
/A

Fu
nc

ti
on

)
T
op

4
53

.4
6

48
.6

4
49

.7
6

55
.9

6
54

.1
8

59
.7

6
64

.6
1

70
.3

2
74

.4
3

74
.8

3
78

.6
7

63
.1

2
T
op

5
64

.7
7

63
.5

63
.6

8
59

.9
69

.5
2

71
.9

8
75

.9
7

78
.2

4
83

.3
3

80
.3

8
82

.0
2

72
.8

5

T
a
b
le

6
:

B
u
g

a
ss

ig
n
m

en
t

p
re

d
ic

ti
o
n

a
cc

u
ra

cy
(p

er
ce

n
ts

)
fo

r
E

cl
ip

se
.

25

Classifier alone. To demonstrate the advantage of our fine-grained, incre-
mental learning approach, we measure the prediction accuracy of the classifier
alone; column “ML only” contains the classifier-only average prediction accuracy
rate. We found that, for Eclipse and Mozilla, our approach increases accuracy
by 8.91 percentage points on average compared to the best previously-reported,
no-incremental learning approach, by Anvik et al. [9]. This confirms that incre-
mental learning is instrumental for achieving a high prediction accuracy. Anvik
et al. report that their initial investigation of incremental learning did not yield
highly accurate predictions, though no details are provided. Note that we use
different data sets (their experiments are based on 8,655 reports for Eclipse and
9,752 for Firefox, while we use 306,297 reports for Eclipse and 549,962 reports
for Mozilla) and additional attributes for training and validation.

Classifier + tossing graphs. Columns “ML+Tossing Graphs” of Tables 5
and 6 contain the average accurate predictions for each fold (Top 2 to Top
5 developers) when using both the classifier and the tossing graph; the Top 1
developer is predicted using the classifier only. Consider row 2, which contains
prediction accuracy results for Top 2 in Mozilla using the Näıve Bayes classifier:
column 4 (value 39.14) represents the percentage of correct predictions for fold 1;
column 5 (value 44.59) represents the percentage of correct predictions for folds
1 and 2; column 14 (value 54.49) represents the average value for all iterations
across all folds. Column 15 represents the percentage improvement of prediction
accuracy obtained by our technique when compared to using tossing graphs
with tossing probabilities only. Our best average accuracy is achieved using
Näıve Bayes (77.87% for Mozilla and 77.43% for Eclipse). We found that this
prediction accuracy is higher than the prediction accuracy we obtained in our
earlier work [31] where we used Näıve Bayes and Bayesian Networks only. When
compared to prior work [7] (where Näıve Bayes and Bayesian Networks were
used as ML algorithms and tossing probabilities alone were used in the tossing
graphs) our technique improved prediction accuracy by up to 11.02 percentage
points. However, when measuring across the average of all ten folds, our model
achieved highest prediction accuracy of 77.87% for Mozilla using Näıve Bayes
and 75.89% for Eclipse using Bayesian Networks. The last column shows the
percentage increase in prediction accuracy from using single-attribute tossing
graphs with tossing probability alone [7] compared to our approach in which we
used a ranking function based on the multi-attribute tossing graphs we proposed.

Classifier selection. In Section 4.1.1 we discussed that one of the objectives
of using a broad range of classifiers for evaluating our framework is to analyze
if a particular classifier is best suited for the bug assignment problem. Our
results in Tables 5 and 6 reveal that the answer is complex. Generally, Näıve
Bayes works best for early VDS folds (when there are fewer data) and when
considering Top 4 or Top 5 accuracies. The polynomial-kernel SVM performs
fairly poorly. The other three are comparable, without an obvious pattern.

Our results are consistent with the standard statistical learning theory of
bias-variance [32]. In particular, with fewer data (or more noise in the data)

26

better results are achieved by using a less flexible classifier (one with fewer
parameters and more bias). This supports the performance of Näıve Bayes: it
does better for small sample sizes and in case where the testing metric does not
match the training metric as well (Top 5, for instance) which looks like noisier
data. Additionally, if the bias is too far from the true answer, the method will
not work well. The polynomial-kernel SVM probably has such a mismatch:
its bias is too far from the correct bug triage classifier. In particular, it is a
global classifier in that all training data affect the classifications for all inputs.
By contrast, C4.5 and RBF SVM both are local classifiers: only training data
near the testing point have a large influence on the resulting classification. This
suggests that local classification methods will do best on bug assignment.

Among the more flexible (less biased) local classifiers (Bayesian networks,
C4.5, and RBF SVM), there is not a clear winner—all seem equally well suited
for bug assignment. On any particular task, one will do better than the others,
but a systematic prediction about other tasks cannot be made from these ex-
periments: much will depend on the amount of data, and the noise present. All
of these methods have “regularization parameters” that can adjust the amount
of bias. Picking a suitable value based on the amount of data and noise is more
important for achieving good results than the exact classifier used.

5.3. Tossing Length Reduction
We compute the original tossing path lengths for “fixed” bugs in Mozilla and

Eclipse, and present them in Figure 8; we observe that most bugs have tossing
length less than 13 for both applications. Note that tossing length is zero if the
first assigned developer is able to resolve the bug. Ideally, a bug assignment
model should be able to recommend bug fixers such that tossing lengths are
zero. However, this is unlikely to happen in practice due to the unique nature
of bugs. Though Jeong et al. measured tossing lengths for both “assigned” and
“verified” bugs, we ignore “assigned” bugs because they are still open, hence
we do not have ground truth (we do not know the final tossing length yet). In
Figure 9, we present the average reduced tossing lengths of the bugs for which
we could correctly predict the developer. We find that the predicted tossing
lengths are reduced significantly, especially for bugs which have original tossing
lengths less than 13. Our approach reports reductions in tossing lengths by up
to 86.67% in Mozilla and 83.28% in Eclipse. For correctly-predicted bugs with
original tossing length less than 13, prior work [7] has reduced tossing path
lengths to 2–4 tosses, while our approach reduces them to an average of 1.5
tosses for Mozilla and 1.8 tosses for Eclipse, hence multi-feature tossing graphs
prove to be very effective.

5.4. Filtering Noise in Bug Reports
We found that when training sets comprise bugs with resolution “verified” or

“resolved” and arbitrary status, the noise is much higher than when considering
bugs with resolution “verified” or “resolved” and status “fixed”. In fact, we
found that, when considering arbitrary-status bugs, the accuracy is on average

27

1%

68%

26%

5%

0

1−5

6−12

13 or higher

(a) Mozilla

7%

69%

18%

6%

0

1−5

6−12

13 or higher

(b) Eclipse

Figure 8: Original tossing length distribution for “fixed” bugs.

0 10 20 30
0

1

2

3

4

Original Tossing Length

Pr
ed

ic
te

d
T

os
si

ng
 L

en
gt

h

(a) Mozilla

0 5 10 15 20
0

1

2

3

4

Original Tossing Length

Pr
ed

ic
te

d
T

os
si

ng
 L

en
gt

h

(b) Eclipse

Figure 9: Average reduction in tossing lengths for correctly predicted bugs when using ML +
Tossing Graphs (using both classifiers).

23% lower than the accuracy attained when considering fixed-status bugs only.
Jeong et al. considered all bugs with resolution “verified” and arbitrary-status
for their training and validation purposes. They found that tossing graphs are
noisy, hence they chose to prune developers with support less than 10 and edges
with transaction probability less than 15%.

Our analysis suggests that bugs whose status changes from “new” or “open”
to “fixed” are actual bugs which have been resolved, even though various other
kinds of bugs, such as “invalid,” “works-for-me,” “wontfix,” “incomplete” or
“duplicate” may be categorized as “verified” or “resolved.” We conjecture that
developers who submit patches are more competent than developers who only
verify the validity of a bug and mark them as “invalid” or developers who
find a temporary solution and change the bug status to “works-for-me.” An-
vik et al. made a similar distinction between message repliers and contribu-
tors/maintainers; they found that only a subset of those replying to bug mes-
sages are actually submitting patches and contributing to the source code, hence
they only retain the contributing repliers for their TDS.

28

Project Selection Average Prediction Accuracy (%)
With intra-
and inter-fold
updates (best)

Without
intra-fold
updates

Without
inter-fold
updates

Top 1 27.67 13.53 (-14.15) 7.86 (-19.82)
Top 2 54.49 26.59 (-27.90) 12.54 (-41.95)

Mozilla Top 3 65.09 47.20 (-17.88) 28.61 (-36.48)
Top 4 71.82 53.24 (-18.60) 36.63 (-35.2)
Top 5 77.87 62.22 (-15.66) 43.86 (-34.02)
Top 1 32.36 8.64 (-23.73) 11.43 (-20.94)
Top 2 43.15 19.18 (-23.97) 16.02 (-27.13)

Eclipse Top 3 59.30 32.82 (-26.48) 27.15 (-32.15)
Top 4 68.37 44.30 (-24.07) 32.49 (-35.88)
Top 5 77.43 58.33 (-19.10) 39.47 (-37.96)

Table 7: Impact of inter- and intra-folding on prediction accuracy using Näıve Bayes classifier.

5.5. Importance of Individual Tossing Graph Attributes
Since our ranking function for tossing graphs contains additional attributes

compared to the original tossing graphs by Jeong et al., we were interested in
evaluating the importance of each attribute using ablative analysis as described
in Section 4.4. Therefore, we compute, for each fold, the reduction in accu-
racy caused by removing one attribute from the ranking function and keeping
the other two. In Figure 10 we show the minimum (bottom black bar), max-
imum (top black bar) and average (red bar) across all folds. The decrease in
prediction accuracy shows that the removal of product and developer activity
attributes affects the prediction accuracy the most. These accuracy reductions
underline the importance of using all attributes in the ranking function, and
more generally, the advantage of the richer feature vectors our approach relies
on. Note that removing developer activity affects prediction accuracy in Mozilla
more significantly than in Eclipse. Analyzing the significance of each attribute
in our ranking function for individual projects, i.e., build a ranking function per
project, is beyond the scope of this paper.

5.6. Importance of Incremental Learning
To assess the significance of incremental learning in our technique, we per-

formed two sets of experiments. We took our best results, obtained as shown
in Figure 1, i.e., using Näıve Bayes classifier, with tossing graphs, product–
component and incremental learning, and then unilaterally varied the learning
procedure.10 The best-result data has been shown in Tables 5 and 6 but for
ease of comparison we report the same data in shown column 3 of Table 7.

10We chose Näıve Bayes since the average prediction accuracy was highest for this classifier
compared to other classifiers, hence, consistent with the standard machine learning practice
of ablative analysis, we varied incremental learning to quantify its impact.

29

Intra-fold updates. To evaluate the impact of disabling of intra-fold updates
we also trained our model using folds 1 to (N − 1) and we used fold N for
prediction. The results of the average prediction accuracy are presented in
column 4 of Table 7. For example, our results show that for Top 1 developers in
Mozilla, the average prediction accuracy across 10 folds is 13.53%, a decrease of
14.15 percentage points when compared to the incremental learning (inter- and
intra-fold updates) technique shown in column 3.

Inter-fold updates. To evaluate the importance of inter-fold updates for each
fold, we first trained our model using the first 80% of the bug reports in that
fold only. Next, we used the remaining 20% of the bug reports in that fold
only for measuring prediction accuracy. Note that in this case, the bug reports
from folds 1 to N -1 are not added to fold N while training the classifier. The
average prediction accuracy is presented in column 5 of Table 7. For example,
our results show that for Top 1 developers in Mozilla, the average prediction
accuracy across 10 folds is 7.86%, a decrease of 19.82% when compared to the
incremental learning (inter- and intra-fold updates) technique shown in column
3.

Conclusions. The results in Table 7 suggest there is a significant decrease in
prediction accuracy (up to 42%) when incremental learning (inter- and intra-fold
updates) is removed from our algorithm. This reduction in prediction accuracy
suggests that indeed incremental learning is instrumental to achieving higher
prediction accuracy for bug assignment: inter-and intra-folding lead to tossing
graphs with highly accurate transaction probabilities which, helps improve our
prediction accuracy. Note that incremental learning (or folding) is not a con-
tribution of our work; incremental learning is a standard technique to improve
the prediction accuracy in any supervised or unsupervised learning algorithms
in machine learning [24]. Rather, these experiments were performed to demon-
strate that in comparison to prior work, where split-sample validation was used,
automatic bug assignment can benefit significantly from incremental learning.

5.7. Accurate Yet Efficient Classification
One of the primary disadvantages of fine-grained incremental learning is

that it is very time consuming. As described in Section 4.5, we performed
a study to find how many past bug reports we need to train the classifier to
achieve approximately similar prediction accuracy when compared to the highest
prediction accuracy attained when using folds 1–10 as the TDS and fold 11 as the
VDS. We used the Näıve Bayes classifier as our ML algorithm in this case. We
present our results in Figure 11. We found that Mozilla required approximately
14% and Eclipse required about 26% of all bug reports (in reverse chronological
order, i.e., most recent bugs) to achieve prediction accuracies greater than 80%—
within 5 percentage points of the best results of our original experiments where
we used the complete bug history to train our classifier. Therefore, a practical
way to reduce the computational effort associated with learning, yet maintain
high prediction accuracy, is to prune the bug report set and only use a recent

30

Product Component Developer Activity

5

10

15

20

%
 R

e
d

u
ct

io
n

 in
 P

re
d

ic
tio

n
 A

cc
u

ra
cy

(a) Mozilla

Product Component Developer Activity

5

10

15

20

%
 R

e
d

u
ct

io
n

 in
 P

re
d

ic
tio

n
 A

cc
u

ra
cy

(b) Eclipse

Figure 10: Impact of individual ranking function attributes on prediction accuracy.

subset (e.g., the most recent 14% to 26% of bug reports, depending on the
project).

31

0 5 10 15
20

40

60

80

100

Fraction of TDS(%)

P
re

di
ct

io
n

A
cc

ur
ac

y
Highest Prediction Accuracy

(a) Mozilla

0 10 20 30
20

40

60

80

100

Fraction of TDS(%)

P
re

di
ct

io
n

A
cc

ur
ac

y

Highest Prediction Accuracy

(b) Eclipse

Figure 11: Change in prediction accuracy when using subsets of bug reports using Näıve Bayes
classifier.

Computational effort. The intra-fold updates used in our approach are more
computationally-intensive than inter-fold updates. However, for practical pur-
poses this is not a concern because very few bugs get fixed the day they are
reported. Before we use the algorithm to predict developers, we train it with
all fixed bug reports in the history; when a new bug gets fixed, the TDS needs
to be updated and we need to re-train the classifier. However, while about 100
bugs are reported every day for large projects like Mozilla and Eclipse, less than
1 bug gets fixed every day, on average [7]. Since we use fixed bug reports only,
if we update the TDS overnight with the new fixed bug reports and retrain the
classifier, we can still achieve high prediction accuracies.

6. Threats To Validity

We now present possible threats to the validity of our study.

6.1. Internal Validity
In our study we collected bug reports from Bugzilla for both Eclipse and

Mozilla. Bug reports can have various status at a given point in time: “uncon-
firmed,” “new,” “assigned,” “reopened,” “resolved,” “verified,” and “closed”.
A bug which has status resolution status as “fixed” can be either “verified” or
“closed” at a given point. For our training and validation purposes, we look
at bugs which have the resolution status as fixed irrespective of whether it is
“verified” or “closed”. We filter our data set to fixed bugs only for the following
reasons: (1) for bugs which are unconfirmed, it is not possible to say if they are
indeed bugs, (2) for new bugs it is not known who the developer will be who will
fix that bug and hence these bugs cannot be used for training a supervised clas-
sifier where the end-result knowledge is necessary, (3) reopened bugs are similar
to new bugs and hence are not a part of our training/validation, (4) resolved
bugs are those for which a resolution has been provided by a developer but is
still in the review process which implies that the bug might be re-assigned (or
tossed) if the resolution is not satisfactory. For accurate supervised learning, we

32

need to ensure that the training set includes the correct expertise of the devel-
opers. One potential threat to validity in our study is that a bug B which has
been fixed and closed can be reopened at a later time. In that case developer D
who earlier resolved bug B might not resolve the issues with reopening the bug
again and might affect our classification results. However, it is impossible to
predict what percentage of currently-fixed bugs will be reopened in future and
quantify the effects of bug reopening on our results. Another potential threats
to validity in our study is not differentiating between bugs and enhancement
requests.

6.2. External Validity
Generalization to other systems. The high quality of bug reports found in
Mozilla and Eclipse [7] facilitates the use of classification methods. However, we
cannot claim that our findings generalize to bug databases for other projects.
Additionally, we have validated our approach on open source projects only,
but commercial software might have different assignment policies and we might
require considering different attribute sets.

Small projects. We used two large and widely-used open source projects for
our experiments, Mozilla and Eclipse. Both projects have multiple products and
components, hence we could use this information as attributes for our classifier
and labels in our tossing graphs. For comparatively smaller projects which do
not have products or components, the lack of product-component labels on edges
would reduce accuracy. Additionally, for smaller projects the 90-days heuristic
we use for pruning inactive developers might have to change. In the future when
we analyze smaller projects, we plan to empirically study the average lifetime of
a developer for the project to determine inactive and active developers. Never-
theless, fine-grained incremental learning and pruning inactive developers would
still be beneficial.

6.3. Construct Validity
For the projects we used, we did not differentiate between various roles (e.g.,

developers, triagers, managers) contributors serve in the project. Our approach
neither divides contributors according to the roles they play in the community,
nor ranks them higher based on their familiarity with the source code. In the
future, we plan to include developer’s source code expertise in the future to
further improve our ranking function. Additionally, it is not possible to find out
in our framework if the first developer who was assigned the bug was a default
assignee or assigned by the triager explicitly for any projects. However, for
the projects we chose—Mozilla and Eclipse—developers were cc’ed by default
when they are responsible for a specific product or component, but they are not
assigned the bug by default for fixing it.

33

6.4. Content Validity
Information retrieval and learning tools. We used Weka for extracting
relevant keywords after stop-word removal and tf-idf as explained in Section 4.6.
We also used the built-in classifiers of Weka and LibSVM for learning our model.
Hence, another potential threat to validity is error in these tools or how changes
in implementation of these classifiers might affect our results.

Developer identity. The assignee information in Bugzilla does not contain
the domain info of the email address for a developer. Therefore, we could
not differentiate between users with same email id but different domains. For
instance, in our technique, bugzilla@alice.com, and bugzilla@bob.com will be in
the same bucket as bugzilla@standard8.plus.com. This might potentially lead
to inaccurate predictions and decrease the prediction accuracy of our model.

Load balancing. Our technique does not consider load balancing while assign-
ing bugs to developers. This is a potential threat to validity in the following
sense: if our approach predicts that developer D is the best match to fix a bug,
he/she might be overloaded, so assigning them another bug might increase the
bug-fix time.

7. Conclusions

Machine learning and tossing graphs have proved to be promising for au-
tomating bug assignment. In this paper we lay the foundation for future work
that uses machine learning techniques to improve automatic bug assignment
by examining the impact of multiple machine learning dimensions—learning
strategy, attributes, classifiers—on assignment accuracy.

We used a broad range of text classifiers and found that, unlike many prob-
lems which use specific machine learning algorithms, we could not select a spe-
cific classifier for the bug assignment problem. We show that, for bug assign-
ment, computationally-intensive classification algorithms such as C4.5 and SVM
do not always perform better than their simple counterparts such as Näıve Bayes
and Bayesian Networks. We performed an ablative analysis to measure the rel-
ative importance of various software process attributes in prediction accuracy.
Our study indicates that to avoid the time-consuming classification process we
can use a subset of the bug reports from the bug databases and yet achieve
stable-high prediction accuracy.

We validated our approach on two large, long-lived open-source projects; in
the future, we plan to test how our current model generalizes to projects of
different scale and lifespan. In particular we would like to find if the classifier
preference should change as the project evolves and how source code familiarity
of a developer could be used as an additional attribute for ranking developers.
Similarly, when we assign tossing probabilities, we only consider the developer
who could finally fix the bug. However, it is common that developers contribute
partially to the final patch in various ways. For example, when a bug is assigned
to a developer, he might provide insights and add notes to the bug report

34

instead of actually fixing the bug; in fact, there are contributors who provide
useful discussions about a bug in the comment sections of a bug report who
are never associated with the fixing process directly. These contributions are
not considered in our ranking process, though they would significantly help
in understanding contributor expertise and role in the software development
community. Quantifying how these useful insights (or contribution) can be
attributed towards the bug-fix based expertise of a contributor has the potential
of further improving the triaging process. We also intend to test our approach
on proprietary software where developer expertise, role, and contributions are
more clearly defined.

Acknowledgements

This research was supported in part by NSF grant CCF-1149632. We thank
the anonymous referees for their helpful comments on this paper.

References

[1] NIST, The economic impacts of inadequate infrastructure for software test-
ing, Planning Report, 2002.

[2] J. Koskinen, http://users.jyu.fi/~koskinen/smcosts.htm, 2003.

[3] R. C. Seacord, D. Plakosh, G. A. Lewis, Modernizing Legacy Systems: Soft-
ware Technologies, Engineering Process and Business Practices, Addison-
Wesley, ISBN 0321118847, 2003.

[4] I. Sommerville, Software Engineering (7th Edition), Pearson Addison Wes-
ley, ISBN 0321210263, 2004.

[5] Bugzilla User Database, http://www.bugzilla.org/
installation-list/, 2010.

[6] Increase in Open Source Growth, http://
software.intel.com/en-us/blogs/2009/08/04/
idc-reports-an-increase-in-open-source-growth/, 2009.

[7] G. Jeong, S. Kim, T. Zimmermann, Improving Bug Triage with Bug Tossing
Graphs, in: FSE, 2009.

[8] I. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, Morgan Kaufmann, second edn., 2005.

[9] J. Anvik, L. Hiew, G. C. Murphy, Who should fix this bug?, in: ICSE,
361–370, 2006.

[10] D. Cubranic, G. C. Murphy, Automatic bug triage using text categoriza-
tion, in: SEKE, 2004.

35

[11] N. Bettenburg, R. Premraj, T. Zimmermann, S. Kim, Duplicate Bug Re-
ports Considered Harmful... Really?, in: ICSM, 2008.

[12] G. Canfora, L. Cerulo, Supporting change request assignment in open
source development, in: SAC, 1767–1772, 2006.

[13] J. K. Anvik, Assisting Bug Report Triage through Recommendation, Ph.D.
thesis, University of British Columbia, 2007.

[14] G. Canfora, L. Cerulo, How software repositories can help in resolving a new
change request, in: Workshop on Empirical Studies in Reverse Engineering,
2005.

[15] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, B. Wang,
Automated support for classifying software failure reports, in: ICSE, 465–
475, 2003.

[16] Z. Lin, F. Shu, Y. Yang, C. Hu, Q. Wang, An empirical study on bug
assignment automation using Chinese bug data, in: ESEM, 2009.

[17] G. A. D. Lucca, M. D. Penta, S. Gradara, An Approach to Classify Software
Maintenance Requests, in: ICSM, 93–102, 2002.

[18] D. Matter, A. Kuhn, O. Nierstrasz, Assigning bug reports using a
vocabulary-based expertise model of developers, MSR .

[19] C. D. Manning, P. Raghavan, H. Schtze, Introduction to Information Re-
trieval, Cambridge University Press, 2008.

[20] P. Domingos, M. Pazzani, Beyond Independence: Conditions for the Op-
timality of the Simple Bayesian Classifier, in: Machine Learning, Morgan
Kaufmann, 105–112, 1996.

[21] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and
Techniques, The MIT Press, 2009.

[22] J. R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, ISBN 1-55860-238-0, 1993.

[23] B. E. Boser, I. M. Guyon, V. N. Vapnik, A Training Algorithm for Opti-
mal Margin Classifiers, in: Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, 144–152, 1992.

[24] R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Esti-
mation and Model Selection, Morgan Kaufmann, 1995.

[25] Weka Toolkit 3.6, http://www.cs.waikato.ac.nz/ml/weka/, 2010.

[26] E. Osuna, R. Freund, F. Girosi, An improved training algorithm for sup-
port vector machines, in: IEEE Workshop on Neural Networks for Signal
Processing, 1997.

36

[27] J. C. Platt, Fast training of support vector machines using sequential mini-
mal optimization, in: In Advances in kernel methods: support vector learn-
ing, 1999.

[28] C. time in cross validation, http://en.wikipedia.org/wiki/
Cross-validationstatisticsComputational_issues, 2010.

[29] A. Lamkanfi, S. Demeyer, E. Giger, B. Goethals, Predicting the severity of
a reported bug, in: MSR, 1–10, 2010.

[30] Y. EL-Manzalawy, V. Honavar, WLSVM: Integrating LibSVM into
Weka Environment, Software available at http://www.cs.iastate.edu/
~yasser/wlsvm, 2005.

[31] P. Bhattacharya, I. Neamtiu, Fine-grained Incremental Learning and Multi-
feature Tossing Graphs to Improve Bug Triaging, in: IEEE Conference on
Software Maintenance, 2010.

[32] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer, second edn., 2009.

37

