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Abstract

The problem of learning is arguably at the very core of the problem of
intelligence, both biological and artificial. In this paper we review our
work over the last ten years in the area of supervised learning, focusing on
three interlinked directions of research: theory, engineering applications
(making intelligent software) and neuroscience (understanding the brain’s
mechanisms of learning) which contribute to and complement each other.
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Figure 1: A multidisciplinary approach to supervised learning

1 Introduction

Learning is now perceived as a gateway to understanding the problem of in-
telligence. Since seeing is intelligence, learning is also becoming a key to the
study of artificial and biological vision. In the last few years both computer
vision — which attempts to build machines that see — and visual neuroscience
— which aims to understand how our visual system works — are undergoing a
fundamental change in their approaches. Visual neuroscience is beginning to
focus on the mechanisms which allow the cortex to adapt its circuitry and learn
a new task. Instead of building a hardwired machine or program to solve a
specific visual task, computer vision is trying to develop systems that can be
trained with examples of any of a number of visual tasks. Vision systems that
learn and adapt represent one of the most important directions in computer
vision research. This reflects an overall trend — to make intelligent systems that
do not need to be fully and painfully programmed. It may be the only way to
develop vision systems that are robust and easy to use in many different tasks.

Building systems without explicit programming is not a new idea. Ex-
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Figure 2: In the learning-from-examples paradigm, we learn a function f from
input-output pairs (x;,y;) called the training set.

tensions of the classical pattern recognition techniques have provided a new
metaphor — learning from examples — that makes statistical techniques more at-
tractive (for an overview of machine learning and other applications, see Mitchell
(1997)). As a consequence of this new interest in learning, we are witnessing
a renaissance of statistics and function approximation techniques and their ap-
plications to domains such as computer vision. In this paper we review our
work over the last ten years in the area of supervised learning, focusing on
three interlinked directions of research sketched in figure 1: theory, engineering
applications (making intelligent software), and neuroscience (understanding the
brain’s mechanisms of learning). The figure shows an ideal continuous loop from
theory to feasibility demonstrations to biological models feeding back into new
theoretical ideas. In reality, the interactions — as one may expect — are less pre-
dictable but not less useful. For instance in 1990, ideas from the mathematics
of learning theory — Radial Basis Function Networks — suggested a model for
biological object recognition which led to the physiological experiments incortex
described later in the paper. It was only later that the same idea found its way
into the computer graphics applications described in the conclusions.

2 Learning and Regularization

In this article we will concentrate on one aspect of learning: supervised learn-
ing. Supervised learning — or learning-from-examples — refers to systems that
are trained, instead of programmed, by a set of examples, that is input-output
pairs (x;,y;) as sketched in figure 2. At run-time they will hopefully provide
a correct output for a new input not contained in the training set. One way
to set the problem of learning-from-examples in a mathematically well-founded
framework is the following. Supervised learning can be regarded as the regres-
sion problem of interpolating or approximating a multivariate function from
sparse data (figure 3). The data are the examples. Generalization means esti-
mating the value of the function for points in the input space in which data are
not available.

Once the ill-posed problem of learning-from-examples has been formulated
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Figure 3: Learning-from-examples as multivariate function approrimation or

interpolation from sparse data. Generalization means estimating f*(x) =
f(z) Vo € X from the examples f*(x;) = f(x;),i=1,...,N.



as a problem of function approximation, an obvious approach to solving it is
reqularization. Regularization solves the problem of choosing among the infinite
number of functions that all pass through the finite number of data points by
imposing a smoothness constraint on the final solution (as we describe below,
it is reasonable to assume that any learnable function is smooth). This results
in minimizing the cost functional

HIf] =N (yi — f(x))? + A fl1% (1)

where || f||% is a measure of deviation from smoothness of the solution f (see
Wahba (1990) and Evgeniou, Pontil, and Poggio (1999)) and the sum is the devi-
ation of the function from the data points (thus we are making a tradeoff between
accurately modeling the data points and the smoothness of the learned func-
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tion). For instance in the one-dimensional case, using || f||% = [dx (6 31;(21)>

in H yields cubic splines as the minimizer f(z) of H.

The use of smoothness stabilizers in the functional equation 1 penalizing
non-smooth functions can be justified by observing that it would be impossible
to generalize for input-output relations that are not smooth, that is for cases in
which “similar” inputs do not correspond to “similar” outputs (in an appropriate
metric!). Such cases exist: for instance the mapping provided by a telephone
directory between names and telephone numbers is usually not “smooth” and
it is a safe bet that it would be difficult to learn it from examples!

The functional regularization approach can also be regarded from a prob-
abilistic and Bayesian perspective. In particular, as Girosi, Jones, and Poggio
(1995) and Girosi, Jones, and Poggio (1993) (see also Poggio and Girosi (1990Db),
Poggio and Girosi (1990a), and Wahba (1990)) describe, an empirical Bayes ap-
proach leads to the maximum a posteriori (MAP) estimate of

P(flg) o< P(f) P(glf)
where the set g = (Xi,yi)i\;l consists of the input-output pairs of training
examples and f is again the learned function. Under a few assumptions (additive
Gaussian noise and a linear Gaussian prior), taking this probabilistic approach
to solving the learning problem is equivalent to minimizing equation 1.

2.1 Regularization is equivalent to feed forward networks:
Regularization Networks

A key result for our work since 1990 is that, under rather general conditions,
the solution of the regularization formulation of the approximation problem can
be expressed as the linear combination of basis functions, centered on the data
points and depending on the input x. The form of the basis function K depends
on the specific smoothness criterion, that is the functional |f|%. The simplest
solution (for several important K such as the Gaussian) is
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Figure 4: A Regularization Network. The input vector x is d-dimensional, there
are N hidden units, one for each example x;, and the output is a scalar function

f(x).

l
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As observed by Poggio and Girosi (1990b) (see also Broomhead and Lowe
(1988)), the solution provided by equation 2 can always be rewritten as a net-
work with one hidden layer containing as many units as examples in the training
set (see figure 4). We called these networks Regularization Networks (RN). The
coefficients ¢; that represent the “weights” of the connections to the output are
“learned” by minimizing the functional H over the training set (Girosi, Jones,
and Poggio 1995).



2.2 Radial Basis Functions

An interesting special case arises for radial K. Radial Basis Function techniques
— or Radial Basis Function networks (RBFs) (Powell 1987; Micchelli 1986; Pog-
gio and Girosi 1989; Girosi, Jones, and Poggio 1995) follow from regularization
when K(s,t) is shift invariant and radially symmetric: the best example is a
Gaussian K (s,t) = G, (|s — t]?):

l
Fx) =) eilGo(lx = xif). (3)
i=1

In the Gaussian case, these RBF networks consist of units each tuned to one
of the examples with a bell-shaped activation curve. In the limit of very small o
for the variance of the Gaussian basis functions, RBF networks become look-up
tables. Thus

e Each “unit” computes the distance ||x — x;|| of the input vector x from
its center x; and

e in the limiting case of G being a very narrow Gaussian, the network be-
comes a look-up table

e centers are like templates

Gaussian RBF networks are a simple extension of look-up tables and can be
regarded as interpolating look-up tables, providing a very simple interpretation
to the result of relatively sophisticated mathematics . The “vanilla” RBF de-
scribed above can be generalized to the case in which there are fewer units than
data and the centers x; are to be found during the learning phase of minimizing
the cost over the training set. These generalized RBF networks have sometimes
been called HyperBF networks (Poggio and Girosi 1990a).

3 Support Vector Machines

3.1 Regularization provides a general theory

Several representations for function approximation and regression as well as sev-
eral Neural Network architectures can all be derived from regularization princi-
ples with somewhat different prior assumptions on the smoothness of the func-
tion space (that is different stabilizers, defined by different kernels K). They
are therefore quite similar to each other.

Figure 5 tries to make the point that Regularization Networks provide a
general framework for a number of classical and new learning techniques. In
particular, the radial class of stabilizer is at the root of the techniques on the
left branch of the diagram: RBF can be generalized into HyperBF and into
so-called kernel methods and various types of multidimensional splines. A class
of priors combining smoothness and additivity (Girosi, Jones, and Poggio 1995)
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Figure 5: Several classes of approximation schemes and corresponding network
architectures can be derived from regularization with the appropriate choice of
smoothness priors and associated stabilizers and basis functions, showing the
common Bayesian roots. From Girosi, Jones, and Poggio (1993).



is at the root of the middle branch of the diagram: additive splines of many
different forms generalize into ridge regression techniques, such as the repre-
sentations used in Projection Pursuit Regression (Friedman and Stuetzle 1981),
hinges (Breiman 1993), and several multilayer perceptron-like networks (with
one hidden layer).

The mathematical results (Girosi, Jones, and Poggio 1995) summarized in
figure 5 are useful because they provide

1. an understanding of what many different Neural Networks do and what is
the function of their hidden units,

2. an approximate “equivalence” of many different schemes for regression,
while giving insights into their slightly different underlying (smoothness)
assumptions, and

3. a general theory for a broad class of supervised learning architectures.

3.2 Support Vector Machines and Regularization

Recently a new learning technique has emerged and become quite popular be-
cause of its good performance and its deep theoretical foundations: Support
Vector Machines (SVM), proposed by Vapnik (Vapnik 1995). It is natural to
ask the question of its relation with Regularization Networks. The answer is
that it is very closely connected to regularization (Girosi 1998; Evgeniou, Pontil,
and Poggio 1999): it can be regarded as the same type of network, correspond-
ing to exactly the same type of solution f (that is equation 2) but “trained”
in a different way and therefore with different values of the weight ¢; after the
training (Evgeniou, Pontil, and Poggio 1999). In particular, in SVM many of
the coefficients ¢; are usually zero: the x; corresponding to the non-zero coeffi-
cients are called support vectors and capture all the relevant information of the
full training set.

3.3 Support Vector Machines and Sparsity

In recent years, there has been a growing interest in using sparse function ap-
proximators. An analogy to human speech due to Stefan Mallat (of wavelet
fame) provides the right intuition. If one were to describe a concept using a
small dictionary of only three thousand English words, the description of most
concepts would require long sentences using all of most of the three thousand
words. However, if one were to describe a concept using a large dictionary of one
hundred thousand words, only a small number of the words would be required
for most concepts.

As we mentioned, in SVMs many of the weights ¢ in the sum of equation 2 are
zero. The link to sparsity can be made formal: Girosi (1998) proved that, loosely
speaking, the sparsest representation (in a certain sense, see Girosi (1998)) is
also the one with the best prediction and generalization abilities. The result



suggests that a sparse representation of a signal (for instance images) from a
large dictionary of features is optimal for generalization.

Finally, it is important to observe that until now the functionals of classical
regularization have lacked a rigorous justification for a finite set of training data.
Vapnik’s seminal work has laid the foundations for a more general theory that
justifies a broad range of regularization functionals for learning from finite sets,
including classical regularization and Support Vector Machines for regression
and for classification. The basic idea is that for a finite set of training examples
the search for the best model or approximating function has to be constrained
to an appropriately “small” hypothesis space (which can also be thought of
as a space of machines or models or network architectures). Vapnik’s theory
characterizes and formalizes these concepts in terms of the capacity of a set of
functions and capacity control depending on the training data: for instance, for
a small training set, the capacity of the function space in which f is sought has
to be small whereas it can increase with a larger training set. A key part of the
theory is to define and bound the capacity of a set of functions. Evgeniou et al.
(1999) show how different learning techniques based on the minimization of the
H functionals listed earlier can be justified using a slight extension of the tools
and results of Vapnik’s statistical learning theory.

4 Object Detection with Support Vector Ma-
chines

So, one can only ask, “does all of the theory mean anything?” The mathematics
of the previous section suggest that a sparse regularization network (such as a
support vector machine) will perform well in classification tasks.

We present here two systems based on the theory outlined in the previous
sections — they use Support Vector Machines classifiers of the form of figure 4
and equation 2 — that learn to detect and classify objects of a specific class in
complex image and video sequences. In both systems, the goal is to take an
image and find whether and where the object of interest is in the image.

Both use the same architecture (depicted in figure 6). A window is translated
across the image. At each translation step, the sub-window of the image masked
by the sliding window is fed into a feature extractor (which may return features
of the image or just the raw pixel values) whose output is then given to a support
vector classifier. This classifier was previously trained using labeled examples
of subimages. To achieve detection at multiple scales, the image is rescaled to
different sizes and the translation rerun at the new scales. Thus, the output
of the classifier on a particular subimage indicates whether the object exists at
that location and scale.

4.1 Face Detection

For face detection, the goal is to identify the position and scale of all of the faces
in the image. The sub-window for this task was 19x19 pixels and no feature
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Figure 6: Architecture of SVM system for object detection

extraction was used (the gray-scale intensity values from the sub-image were
fed directly to the classifier). The full system details are described in Osuna,
Freund, and Girosi (1997). Here we will just quote some of the results from
their experiment.

After training an SVM, most of the examples are automatically discarded
because many of the ¢; of equation 2 are zero. This is related to the theoretical
connection between the SVM framework and sparsity and results in a network
that depends only on a few “boundary” examples (the support vectors). The-
oretically, these are the examples that helped to define the decision boundary.
Figure 7 shows a few examples from the face detection system of Osuna et. al..
It is interesting to note that they appear to be the most “unfacelike” of the
face images and the most “facelike” of the non-face images. Put another way,
they are the most difficult training examples and the ones mostly likely to be
confused later and therefore the ones which should be remembered in order to
classify new examples correctly.

These learned support vectors and their associated weights were used in a
network, as shown in figure 4, to do classification. Some examples of the results
of the system are shown in figure 8.

4.2 Pedestrian Detection

Using the same system architecture, we can attempt to learn to detect pedes-
trians. Unfortunately, since pedestrians are a far more varied class of objects,
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Figure 7: Some of the support vectors found by training for face detection.
From Osuna, Freund, and Girosi (1997)
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Figure 8: Results of the face-detection system of Osuna, Freund, and Girosi
(1997)

using a sub-window of the pixel values is not sufficient for good performance.

To solve this problem, we add a feature extraction step (as shown in figure 6)
build an overcomplete, multiscale set of the absolute values of Haar wavelets as
the basic dictionary with which to describe shape. These wavelet are simple
differencing filters applied to the image at different resolutions. This results in
roughly 1300 coefficients for each sub-window. The full system is described in
depth in Papageorgiou (1997), Oren, Papageorgiou, Sinha, Osuna, and Poggio
(1997), Papageorgiou, Oren, and Poggio (1998), and Papageorgiou, Evgeniou,
and Poggio (1998).

Since the “sensitivity” of the system to pedestrians can be adjusted, we
can trade-off the number of undetected pedestrians (false negatives) against
the number of incorrect detected non-pedestrians (false positives). Figure 9
plots a curve showing the performance of the system for various settings of the
sensitivity. The upper-left corner represents an ideal system which classifies
all pedestrians correctly and does not signal non-pedestrian image patches as
pedestrians. These ROC curves were computed over an out-of-sample test set
gathered around MIT and over the Internet.

The different plots in figure 9 correspond to different sets of features. Shown
are the ROC curves for three systems:

e color processing with all 1326 features

e color processing with 29 features

12
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Figure 9: ROC curves for different detection systems. The detection rate is
plotted against the false positive rate, measured on a logarithmic scale. The
false detection rate is defined as the number of false detections per inspected
window. From Papageorgiou, Evgeniou, and Poggio (1998)
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Figure 10: Results from the pedestrian detection system. Typically, missed
pedestrians are due to occlusion or lack of contrast with the background. False
positives can be eliminated with further training. From Papageorgiou, Evge-
niou, and Poggio (1998)

e grey-level processing with 29 features

The ROC curve shows the difference in the performance resulting from the
choice of features. What is not shown (for clarity) is the impact of changing the
kernel function. Changes to the kernel used in the SVM had little effect on the
final performance (those shown are for polynomials of degree 3). As expected,
using color features results in a more powerful system. The curve of the system
with no feature selection is clearly superior to all the others. This indicates that
for the best accuracy, using all the features is optimal. When classifying using
this full set of features, we pay for the accuracy through a slower system. It
may be possible to achieve the same performance as the 1326 feature system
with fewer features; this is an open question, however. Reducing the number of
features is important to reducing the running time of the final detection system.
Examples of processed images are shown in Figure 10; these images were not
part of the training set.

The system has also been extended to allow detection of frontal, rear, and
side views of pedestrians. It is currently installed in an experiemenal car at
Daimler. Figure 11 shows the results of processing a video sequence from this car
driving in downtown Ulm, Germany. The results shown here are without using
any motion or tracking information; adding this information to the system would
improve results. From the sequence, we can see that the system generalizes

14
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Figure 11: Processing the “Downtown Ulm” sequence with the frontal, rear, and
side view detection system. The system performs the detection frame-by-frame:
it uses no motion or tracking. Adding motion information and the capability of
integrating detection over time improves results. From Papageorgiou, Evgeniou,
and Poggio (1998)

extremely well; this test sequence was gathered with a different camera, in a
different location, and in different lighting conditions than our training data.

5 Object Recognition in IT cortex

5.1 The learning-from-examples framework almost implies
a view-based approach to object recognition

As we mentioned in the introduction, ten years ago a learning approach to
object recognition — based on Gaussian Radial Basis Functions — suggested a
view-based approach to recognition Poggio and Edelman (1990). Regularization
networks store a number of examples in the hidden nodes and compare the
current input to each of those store examples in parallel. Instead of having
an explicit 3D model of the object we wish to recognize, we instead have a
number of 2D examples of what the object looks like and we compare a current
view against each of the stored examples. Different simulations with artificial
(Poggio and Edelman 1990) and real “wire-frame” objects (Brunelli and Poggio
1991) and also with images of faces (Beymer 1993; Romano 1993) showed that
a view-based scheme of this type can be made to work well.

It was not surprising that one of the first questions we asked was whether
a similar approach may be used by our brain. As Poggio and Girosi (1989)
and Poggio (1990) argued, networks that learn from examples have an obvious
appeal from the point of view of neural mechanisms and available neural data. In
a certain sense, networks like Gaussian Radial Basis functions are an extension
of a very simple device: look-up tables. The idea of replacing computation
with memory is appealing, especially from the point of view of biological and
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evolutionary plausibility. Interpolating or approximating memory devices such
as RBF avoid many of the criticisms of pure look-up table theories. It was
therefore natural for our group to try to see how far we could push this type of
brain theories.

Somewhat surprisingly to us, over the last ten years many psychophysical
experiments (for the first such work see Biilthoff and Edelman (1992)) have
supported the example-based and view-based schemes that we suggested as one
of the mechanisms of object recognition. More recent physiological experiments
have provided a suggestive glimpse on how neurons in IT cortex (the area of
the brain responsible for object recognition) may represent objects. The exper-
imental results seem again to agree (so far!) to a surprising extent with the
model (Logothetis, Pauls, and Poggio 1995). We are now developing a more
detailed model of the circuitry and the mechanisms underlying the properties
of the view-tuned units of the model (Riesenhuber and Poggio 1998).

5.2 View-based Model

Here we will review briefly our model and the physiological evidence for it.
Figure 12 shows our basic module for object recognition. Classification of a
visual stimulus is accomplished by a network of units. Each unit is broadly
tuned to a particular view of the object. We refer to this optimal view as the
center of the unit and to the unit as a view-tuned unit. One can think of it as a
template to which the input is compared. The unit is maximally excited when
the stimulus exactly matches its template but also responds proportionately
less to similar stimuli. The weighted sum of activities of all the units represents
the output of the network. The simplest recognition scheme of this type is the
Gaussian RBF network (see equation 3): each center stores a sample view of
the object and acts as a unit with a Gaussian-like recognition field around that
view. The unit performs an operation that could be described as “blurred”
template matching. At the output of the network the activities of the various
units are combined with appropriate weights, found during the learning stage.

Consider how the network “learns” to recognize views of the object shown
in figure 13. In this simplified and non-biological example the inputs of the
network are the x,y positions of the vertices of the wireframe object in the
image. Four training views are used. After training, the network consists of
four units, each one tuned to one of the four views as in figure 13. The weights
of the output connections are determined by minimizing misclassification errors
on the four views and using as negative examples views of other similar objects
(“distractors”).

The figure shows the tuning of the four units for images of the “correct”
object. The tuning is broad and centered on the center of the unit, that is
the training view. Somewhat surprisingly, the tuning is also quite selective:
the thinly dotted line shows the average response of each of the unit to 300
similar distractors (paperclips generated by the same mechanisms as the target;
for further details about the generation of paperclips see Edelman and Biilthoff
(1992)). Even the maximum response to the best distractor is in this case

16
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Figure 12: A Gaussian RBF network with four view-tuned units which, after
training, are each tuned to one of the four training views shown in the next
figure. The resulting tuning curve of each of the unit is also in the next figure.
The units are view-dependent and selective, relative to distractor objects of the
same type.
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Figure 13: Tuning of each of the four hidden units of the network of the previous
figure for images of the “correct” 38D objects. The tuning is broad and selective:
the dotted lines indicate the average response to 300 distractor objects of the
same type. The bottom graphs show the tuning of the output of the network of
the previous figure after learning (that is computation of the weights c): it is
view-invariant and object specific. Again the dotted curve indicates the average
response of the network to the same 300 distractors. From Vetter and Poggio,
unpublished.
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always less than the response to the optimal view. The output of the network,
being a linear combination of the activities of the four units, is essentially view-
invariant and still very selective. Notice that each center can be regarded as
the conjunction of all the features represented: the Gaussian can be in fact
decomposed into the product of one-dimensional Gaussians, each for each input
component, that is for each feature. The activity of the unit measures the global
similarity of the input vector to the center: for optimal tuning all features have
to be closed to the optimum value. Even the mismatch of a single component
of the template may set to zero the activity of the unit. Thus the rough rule
implemented by a view-tuned unit is the conjunction of a set of predicates, one
for each input feature, measuring the match with the template. On the other
hand the output of the network is performing an operation more similar to the
“OR” of the outputs of the units.

This example is clearly a caricature of a view-based recognition module but
it helps making the main points of the argument. Of course, biologically plau-
sible features are different from the coordinates of the corners used by the toy
network described above. We (Bricolo, Poggio, and Logothetis 1997; Riesenhu-
ber and Poggio 1998) have recently performed simulations of a biologically more
plausible network in which we first filter the image through a bank of directional
filters of various orders and scale, similar to V1 neurons (cells in the part of the
brain through which the visual information first passes). Before describing in
more detail the model work on the circuitry underlying the properties of view-
tuned cells, we will summarize the physiological findings (Logothetis, Pauls and
Poggio, 1995; Logothetis and Pauls, 1995).

5.3 Experimental Evidence

Two monkeys were trained to recognize computer-rendered objects irrespective
of position or orientation. The monkeys first were allowed to inspect an object,
the target, presented from a given viewpoint, and subsequently were tested for
recognizing views of the same object generated by rotations. In some experi-
ments the animals were tested for recognizing views around either the vertical or
the horizontal axis, and in some others the animals were tested for views around
all three axes. The images were presented sequentially, with the target views
dispersed among a large number of other objects, the distractors. Two levers
were attached to the front panel of the chair, and reinforcement was contingent
upon pressing the right lever each time the target was presented. Pressing the
left lever was required upon presentation of a distractor. Correct responses were
rewarded with fruit-juice.

An observation period began with the presentation of a small fixation spot.
Successful fixation was followed by the learning phase, whereby the target was
inspected for 2 seconds from one viewpoint, the training view. The learning
phase was followed by a short fixation period after which the testing phase
started. Each testing phase consisted of up to 10 trials, in each of which the
test stimulus, a shaded, static view of either the target or a distractor was
presented.
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A total of 970 IT cells were recorded from two monkeys during combined
psychophysical-electrophysiological experiments. Logothetis and coworkers found
a significant number of units that showed a remarkable selectivity for individual
views of wire objects that the monkey was trained to recognize.

Figure 14 shows the responses of three units that were found to respond
selectively to four different views of an wire object (Wire 71). The animal
had been exposed repeatedly to this object, and its psychophysical performance
remains above 95% for all tested views, as can be seen in the lower plot of
figure 14. Notice that one of the 3 neurons is tuned to a view and its mirror
image, consistently with other theoretical and psychophysical work. The figure
is surprisingly similar to figure 13 showing the response of the view-tuned hidden
units of the model of figure 12.

A small percentage of cells (8 out of 773) responded to wire-like objects
presented from any viewpoint, thereby showing view-invariant response char-
acteristics, superficially similarly to the output unit of the model of figure 12.
An example of such a neuron is shown in figure 15. The upper plot shows the
monkey’s hit rate and the middle plot the neuron’s average spike rate. The cell
fires with a rate of about 40Hz for all target’s views. The lower plot shows the
responses of the same cell to 120 distractors. With four exceptions activity was
uniformly low for all distractor objects presented. In all cases, even the best
response to a distractor, however, remains about one half of the worst response
to a target view. This neuron seems to behave as the output of the model of
figure 12. 71 out of the 773 (9%) analyzed cells showed view selective responses
similar to those illustrated in the two preceding figures. In their majority, the
rest of the neurons were visually active when plotted with other simple or com-
plex stimuli, including faces.

The main finding of this study is that there are neurons in IT cortex with
properties intriguingly similar to the “cartoon” model of figure 12, which is itself
supported by psychophysical experiments in humans and primates. Several neu-
rons showed a remarkable selectivity for specific views of a computer-rendered
object that the monkey had learned to recognize. A much smaller number of
neurons were object-specific but view-invariant, as expected in a network in
which “complex”-like view-invariant cells are fed by view-centered “simple”-like
units. Furthermore, we believe that our results reflect experience dependent
plasticity in IT neurons and quite possibly also much earlier in the visual path-
way. First, the neurons we found responded selectively to novel visual objects
that the monkey had learned to recognize during the training. None of these ob-
jects had any prior meaning to the animal and none of them resembled anything
familiar in the monkey’s environment. In addition, no selective responses were
ever encountered for views that the animal systematically failed to recognize.
Thus it seems that neurons in this area can develop a complex selectivity as a
result of training in the recognition of specific objects. Notice that view-tuning
was observed only for those views that the monkey could recognize.

A back-of-the-envelope extrapolation of the available data suggests an esti-
mate of the number of cells whose tuning was determined by the training. In
the region of IT from which recording were made, which contains around ten
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Figure 14: The top graph shows the activity of three units in IT cortex, as
a function of the angle of the stimulus view. The three neurons are tuned to
four different views of the same object, in a similar way to the units of the
model of figure 12 and figure 13. One of the units shows two peaks for two
mirror symmetric views. The neurons firing rate was significantly lower for all
distractors (not shown here). The bottom graph represents the almost perfect,
view-invariant behavioral performance of the monkey for this particular object
to which he was extensively trained (from Logothetis and Pauls, unpublished,
1995).
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Figure 15: The monkey performed quite well on this particular wire after ex-
tensive training (bottom graph). A neuron in IT was found that shows a view-
invariant response, with about 30 spikes/sec to any view of the wire object (top).
The response of the cell to any of the 120 distractors is lower as shown in the
middle graph (from Logothetis and Pauls, unpublished). This is similar to the
output unit of the model of figure 12, see figure 13
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million neurons, we estimate that for each of the about twelve objects that the
monkeys had learned to recognize there were, at the time of the recordings, a
few hundred view-tuned cells and in the order of 40 or so view-invariant cells.

5.4 A New Model

Models like the one of figure 12 leave open the issue of the mechanisms and cir-
cuitry underlying the properties of the view-tuned cells, from their view tuning
to their invariance to image-based transformations such as scaling and transla-
tion. In fact, the invariance of the view-tuned neurons to image-plane trans-
formation and to changes in illumination has been tested experimentally by
Logothetis, Pauls, and Poggio (1995) who report an average rotation invariance
over 30 degrees, translation invariance over 2 degrees, and size invariance of up
to 1 octave around the training view.

These recent data put in sharp focus and in quantitative terms the question
of the circuitry underlying the properties of the view-tuned cells. The key prob-
lem is to explain in terms of biologically plausible mechanisms their viewpoint
invariance obtained from just one object view, which arises from a combination
of selectivity to a specific object and tolerance to viewpoint changes.

Riesenhuber and Poggio (1998) have described a model that conforms to the
main anatomical and physiological constraints, reproduces all the data obtained
by Logothetis et al. and makes several predictions for experiments on a subpop-
ulation of IT cells. A key component of the model is a cortical mechanism that
can be used to either provide the sum of several afferents to a cell or to enable
only the strongest one. The model explains the receptive field properties found
in the experiment based on a simple hierarchical feedforward model. The struc-
ture of the model reflects the idea that invariance and specificity must be built
up through separate mechanisms. Figure 16 shows connections to “invariance”
units in green and to “specificity” units in blue.

This new model is an expansion of the previous model to include non-linear
maximum (MAX) operation (similar to Nearest Neighbor classication) to allow a
high degree of invariance. This new model in simulations shows agreement with
several physiological experiements from different labs. In particular, figure 17
shows the predictionsof the model in comparison with experimental data.

6 Conclusions

The diagram at the beginning of this article in figure 1 shows our research
process as a continuous loop. Because of the linearity of the print medium, we
have mainly been able to show how theory has inspired applications and how
their success have influenced research in neuroscience.
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Figure 16: Model to explain receptive field properties of the view-tuned units of
figure 12 found in experiments (from Riesenhuber and Poggio, in preparation)
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Figure 17: Comparison of theoretical model and experimental data
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However, the flows of ideas also go the other way. The results shown for
pedestrian detection of the influence of the number of features on the final
classification results begs a very important theoretical question: “What is the
optimal feature set and how can we find it?” Furthermore, applications seem
to beat the theoretical upper bounds by quite a large margin. This is espe-
cially true when one considers that the data-independent bounds derived for
structural risk minimization should be overly optimistic since, as actually imple-
mented, support-vector machines require data-dependent bounds (which should
be worse). So, the applications pose another theoretical question: “Can we find
good data-dependent bounds for machine learning algorithms?”

The neuroscience work also raises theoretical and application questions. For
example, the model depicted in figure 16 is inspired by invariances found in
neurons. So the next step is to try to use such results to direct new theories
which might explain why such a model is a good one and use similar banks of
filters as feature detectors in applications.

The supervised learning learning paradigm outlined here can be applied to
other domains as well, beyond the area of vision. For instance, over the years we
have applied it to computer graphics. By analogy to the view-based paradigm for
computer vision we were led to the paradigm of image based rendering which is
just now becoming an important research direction in the graphics community
(Librande 1992; Beymer and Poggio 1996; Ezzat and Poggio 1998). Other
applications of our learning techniques have been in the domain of time series
and finance (see for instance Hutchinson, Lo, and Poggio (1994)), in control,
and in search engines.

Despite a number of interesting and useful applications, it is clear that the
problem of building machines that learn from experience and the problem of
understanding how our brain learns are still wide open. Most of the really
challenging questions are unsolved. There are still gaps between theory and
applications and between machine learning and biological learning. Such com-
parisons raise a number of interesting questions including:

e Why is there a large difference between the number of examples a machine
learning algorithm needs (usually thousands) and the number of examples
the human brain requires (just a few)?

e What is the best way of naturally incorporating unlabeled examples into
the supervised learning framework?

e Can supervised learning methods be used to attack or solve other types of
learning problems such as reinforcement learning and unsupervised learn-
ing?

e To what extent can supervised learning explain the adaptive systems of
the brain?

We hope that the work we described represents a few small steps in the
right direction, in addition to providing a lot of fun for the mathematicians, the
engineers, and the neuroscientists who are involved.
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