
Data-Driven Structured Thermal Modeling for
COTS Multi-Core Processors

Seyedmehdi Hosseinimotlagh, Daniel Enright, Christian R. Shelton, and Hyoseung Kim
University of California, Riverside

{shoss007, denri006, cshelton, hyoseung}@ucr.edu

Abstract—Thermal awareness is increasingly important for
real-time systems deployed in harsh environments. As high chip
temperature can cause frequency throttling or shutdown of
processor cores at unexpected times, many real-time scheduling
techniques have been developed to ensure continuous, fail-safe op-
eration of safety-critical tasks with stringent timing constraints.
However, their practical use remains largely limited due to the
fact that it is extremely difficult to obtain a precise thermal model
of commercial processors without using special measurement
instruments or access to proprietary information, such as the
power traces of micro-architectural units and detailed floorplans.

In this paper, we propose a data-driven structured thermal
modeling scheme that is directly applicable to commercial off-the-
shelf multi-core processors used in real-time embedded systems.
By using a small number of thermal profiles obtained from on-
chip temperature sensors, our scheme can accurately predict
the processor operating temperature under dynamic real-time
workloads at various CPU frequencies and ambient conditions.
The thermal model derived from our scheme is fast to converge
and robust against different sources of errors. Our scheme
is non-intrusive, meaning that it does not require changes to
the software code or the hardware packaging of the target
system. Furthermore, our scheme can estimate the relative
power consumption of the processor for a given workload and
clock frequency level. Experimental results from a multi-core
ARM platform indicate that our scheme estimates the operating
temperature with a maximum error of 2.5% while the latest prior
work results in 23% error. This highly accurate modeling enables
us to obtain the maximum achievable processor utilization that
does not cause a thermal safety violation.

I. INTRODUCTION

A major concern in recent embedded systems is the high

heat dissipation caused by complex applications running on

high-performance multi-core systems-on-chips (SoCs). The

high temperature also increases power consumption [2], re-

duces the chip reliability [35], [36], and leads to chip burnout.

Due to these reasons, many modern operating systems (OSs)

monitor SoC operating temperatures using on-chip tempera-

ture sensors to ensure thermal-safe operation.

The reactive thermal management mechanisms implemented

to protect the system from burnout raise a challenging problem

in real-time embedded systems. To protect the processor from

thermal damage, OS thermal governors define a set of policies

to dynamically throttle CPU core frequencies or shut cores

down [5], [12], [37] when temperatures exceed operationally

safe limits. Such thermal countermeasures, however, lead to

timing unpredictability since the deadlines of tasks could

be unexpectedly violated by reduced processing speed or

temporarily unavailable CPU cores.

To prevent the negative impact of such performance dis-

ruption, extensive studies have been conducted including the

techniques based on Dynamic Voltage Frequency Scaling

(DVFS) [10], [26], [30], [34], [38] and forced sleeping dur-

ing the execution of hot applications [4], [16], [22], [20],

[19], [38]. Moreover, offline analysis has been proposed to

guarantee the thermal safety of real-time tasks by bound-

ing the maximum operating temperature in the steady [13],

[14] and transient states [29] of a given system. These ap-

proaches assume a priori knowledge of a precise thermal

model for temperature prediction, resource management, and

task scheduling, and require accurate simulation tools or extra

equipment for validation. Therefore, identifying an accurate

thermal model of a given multi-core SoC is the fundamental

requirement to substantiate these techniques in practice, and

we call it a thermal system identification problem in this paper.

Such a thermal model should also be in a format compatible

with those used in prior work so that it is applicable to the

timing and thermal analysis of a wide range of real-time

systems.

Despite its importance, the thermal system identification

of commercial off-the-shelf (COTS) processors still remains

a challenging problem. Existing numerical simulation tools

like HotSpot [18] can construct a compact thermal model

for modern VLSI devices by using a resistance-capacitance

(RC) thermal network to capture the transient temperature and

generate a heatmap at each time instant. However, they are

not difficult to use with modern COTS multi-core processors

because the information required by these tools is proprietary

and not publicly available. An exhaustive search approach for

approximating this information through reverse engineering

is time-consuming and prone to unacceptably high inaccura-

cies [31], especially for transient temperature estimation.

The latest work [1], [31], [32] partially addresses these

issues by calibrating the parameters of thermal models without

power traces and detailed floorplans. However, it is not appli-

cable to systems using priority-based preemptive scheduling

where execution patterns are dynamic [13], [14], [29], [1],

[7]. Similar to HotSpot, it uses a time-driven prediction model

where the temperature is calculated for each time instant under

static workloads. This makes the model not only slow but

also infeasible to capture the correct operating temperature

when multiple tasks with different periods are concurrently

scheduled. Due to the extensive transient temperature data

needed for system identification, it suffers from the numerical

instability in the temperature model especially in the presence

of different types of errors and sensor limitations.

In this paper, we propose a data-driven structured thermal

modeling scheme for COTS multi-core processors in real-time

embedded systems. Our scheme requires only a small number

of temperature traces from on-chip thermal sensors which are

standard in today’s processors. To achieve a precise thermal

model of SoCs, our scheme estimates the location of CPU

cores on the chip floorplan and considers this information dur-

ing thermal parameter estimation. This reduces the number of

unknown parameters so that a thermal model can be estimated

with fewer temperature profiles. Besides, it allows obtaining

a model with robustness against noise, reduced order, and

ensured stability. We also provide techniques to improve the

accuracy of thermal parameters through the ensemble of mea-

surements from different frequency levels, execution patterns,

or redundant experiments. Unlike prior work, our scheme is

particularly well suited for use in real-time systems because

the thermal model obtained by our work does not assume fixed

execution patterns of application tasks and is thus applicable

to any systems with preemptive work-conserving schedulers.

Contributions. The contributions of this paper are as follows:

• We present a thermal modeling scheme that has low com-

putational cost by design. Given that steady-state profiles are

much compact than transient-state profiles, our scheme first

estimates the thermal parameters of a given system using

only steady-state profiles, and then uses transient-state data

for calibration purposes.

• We characterize various sources of errors in thermal system

identification, and reduce their negative effects through the

multiple refinement stages of our scheme. Our scheme also

enables locating errors in the temperature profiles.

• Our scheme identifies the relative distance between CPU

cores and produces an estimated chip floorplan from tem-

perature profiles. It can also estimate the relative power

consumption for a given workload on each CPU core.

• We present techniques to further improve the accuracy

of thermal parameters by exploiting the ensemble of mea-

surement data obtained at various frequency and workload

settings.

• The effectiveness and accuracy of our proposed scheme is

demonstrated with extensive experiments on a real ARM

embedded platform. The results show that our scheme es-

timates the operating temperature with the maximum error

ratio of 2.5% while the state-of-the-art gives 23%. Our

scheme also addresses the problems of the start-of-the-art

that disallows preemptive scheduling and overestimates the

maximum achievable utilization by up to 18%.

II. RELATED WORK

There exist well-known numerical tools to estimate the chip

operating temperature. For instance, HotSpot [18] solves the

system of differential equations using the fourth-order Runge-

Kutta numerical method through fine-granularity iterations.

ATMI [27] proposed an analytical method to provide explicit

solutions to the heat equation more efficiently than the Finite

element method (FEM) and finite-difference methods (FDM).

The authors of [11], [21] constructed a thermal model with the

measured power and temperature trace of each subsystem on a

real mobile platform. Power Blurring [39] calculates tempera-

ture distributions using a matrix convolution technique, unlike

the finite-element analysis (FEA) used in other simulation

tools like HotSpot.

There are several studies that estimate or bound chip oper-

ating temperature based on HotSpot, IR thermal imaging, and

hardware performance counter measurements. An analytical

method proposed in [17] utilizes a reduced RC thermal model

that considers only vertical thermal conduction while ignoring

the lateral thermal conduction. This method requires signifi-

cantly less computational effort and less memory demand for

temperature estimation than tools like HotSpot. The neural

network approach to temperature estimation introduced in [33]

predicts the rate of temperature changes by using hardware

performance counters and the current estimate of the thermal

map. During dynamic task execution in the design space

exploration process, several features are extracted for the

model by recording data taken from performance counters and

dynamic heatmaps generated from IR imaging. Their run-time

method is able to estimate temperature changes, but cumulative

error forces the absolute temperature estimation to diverge

from the actual chip temperature. The authors of [6] proposed

a simplified temperature model that considers the transient

and steady state thermal behavior (temporal effect) of multi-

core processors in addition to the thermal conductance and

dependency (spatial effect) of nearby cores. Data gathered

from offline simulation using Hotspot was used to generate

a temperature model considering only the temporal effect and

another model based on the regression analysis of that data

was then used to consider the spatial effect. The combination

of both approaches led to temperature overestimation of up

to 6°C. However, to apply these approaches in practice, they

require detailed information about device power traces and

floorplans which are not publicly available for commercial

SoCs. Furthermore, some of these approaches require highly

precise thermal imaging from IR cameras, assuming the ab-

sence of cooling packages like heat-sinks and fans.

There have been other studies that focus on thermal sys-

tem identification based on on-chip sensors and linear con-

trol systems [31], [32], [8], [1], [24], [23]. The authors of

[31], [32] proposed a calibration-based method to predict

thermal behavior by modeling the thermal impulse response

of each CPU core with respect to core utilization. Simi-

lar to [8], they utilized a modified Generalized-Pencil-Of-

Function (GPOF) [15] to estimate the impulse response of

each application from utilization and temperature traces. In

their work, the thermal effects due to conduction between

CPU cores are taken into account by the transfer matrices

constructed from self-core and other-core transfer functions.

The fundamental contribution of [31], [32] is based on the

assumption that a thermal model can be constructed using

thermal fingerprint of different applications on SoCs. However,

some of the key thermal parameters of SoCs are characteristics

of semiconductor technology and can be obtained independent

of the workloads executing on the systems. Hence, only relying

on thermal fingerprints may lead to inaccurate thermal system

identification and a large stored volume of transfer functions

in the profiling stage because each transfer function has to be

estimated for each application on each CPU core at different

frequency levels. Moreover, if a task is preempted by another

task or is suspended, the current thermal model is no longer

valid. In order to maintain consistency in the temperature

estimation, for each context switch, a convolution of the

utilization trace of the new application with the application’s

thermal impulse response vector has to be performed, which

can cause additional errors in the temperature estimation of

the whole SoC. This spatio-temporal thermal dependency is

hard to capture in their model for preemptively-scheduled tasks

on the same CPU core or concurrently-executing tasks on

other CPU cores. Due to this reason, despite all the other

benefits provided, the applicability of their approach to real-

time systems is limited. In [23], the thermal parameters of

mobile devices equipped with SoCs and cooling packages are

estimated. In their work, the chip temperature is considered as

a single value and thermal conduction between CPU cores and

other subsystems are not taken into account. The parameter

identification process proposed in [24] estimates thermal-

coupling coefficients by running CPU benchmarks on CPU

cores one at a time measuring the steady state data from

measurements. Lastly, the authors of [1] proposed a thermal-

isolation server to ensure the thermal safety of real-time multi-

core systems. Their server policy introduces a new direction

to real-time system design and has inspired other thermal-

aware real-time systems [14], [13]. However, since the thermal

modeling part of their work is almost similar to the thermal

fingerprinting approach in [31], [32], they also have the same

limitations mentioned above.

All aforementioned research suffers from two major prob-

lems. The first is the lack of persistency of excitation in

system identification, which means that the collected input-

output data may not be rich enough to capture all the thermal

characteristics of the chip. The need for a sizable amount of

noiseless data due to a large number of unknown parameters

limits their applicability in practice. Second, an exhaustive

search is required for thermal system identification. However,

because of the existence of noises, poor precision of samples,

and low sampling rate of on-chip sensors, an enormously high-

order model can be obtained, which leads to heavy intensive

computation in running the models with estimated parameters.

A reduced order model is particularly important to achieve an

accurate and fast thermal model as the number of CPU cores

in embedded SoCs increases.

In this paper, we present a thermal modeling scheme

solved by the matrix exponential method, which overcomes

the limitations of prior work. Our scheme can estimate the

thermal parameters of the chip that represent its semiconductor

technology and cooling package, without requiring any infor-

mation about the applications running on the system. We

propose a two-stage scheme that first extracts the thermal

information from quantized and imprecise measurements of

steady-state temperature profiles with on-chip temperature

sensors and estimates relative location of CPU cores on

chip floorplans. With the information from the first stage,

the second stage gathers information from a limited amount

of transient data to complete the estimation of the thermal

parameters. This structured estimation of thermal parameters

ensures the stability of and accuracy of our thermal model

and reduces the order of model while filtering out noises from

various sources.

III. SYSTEM MODEL

We consider a homogeneous multi-core processor where

each CPU core uses the same microarchitecture. Each core

is assumed to have a dedicated temperature sensor that is

accessible by the OS at runtime. This assumption can be easily

met in many commercial processors such as Samsung Exynos

and Intel Core processors. We assume that the following

information is not available to use: the chip floorplan, the exact

locations of on-chip temperature sensors, and the power traces

of the processor. In the rest of this section, we introduce the

power and temperature model used in this paper.

A. Power Model

The total power consumption of CMOS circuits at time

t is modeled as the summation of dynamic and static pow-

ers [3], i.e., P (t) = PS(t) + PD(t). Static power PS depends

on the semiconductor technology and the operating temper-

ature caused by current leakage. Hence, it can be modeled

as: PS(t) = k1θ(t) + k2, where k1 and k2 are technology-

dependent system constants, and θ(t) is the operating tem-

perature [25]. Dynamic power PD(t) is the amount of power

consumption due to the processor operating frequency f at

time t, modeled as PD(t) = k0f(t)
s, where s and k0 are the

system constants that depend on semiconductor technology.

B. Temperature Model

We consider the temperature model widely used in real-

time systems [1], [7], [13], [14], [22], [24], which follows

the well-known linear time-invariant (LTI) model. Hence, the

temperature model for a multi-core CPU with n cores is given

by the following equation:

[θ′(t)]n×1 = An×n [θ(t)]n×1 +Bn×n [P(t)]n×1 (1)

where θ(t) is the n × 1 matrix of the CPU core operating

temperatures relative to the ambient temperature, and P(t) is

the power consumption of all cores at time t. A is an invariant

n×n matrix and it is based on the characteristics of the semi-

conductor technology. It quantifies the effect of conduction

between adjacent cores, convection among all cores, and a

difference between ambient and operating temperature.

B is the diagonal n × n matrix and it captures the effect

of power consumption on the temperature of each core. For

homogeneous multi-core CPUs, since all CPU cores follow

the same power model, the matrix B can be represented as

b× I, where I is the n× n identity matrix. Similar to A, the

values of b are invariant to the changes in power consumption.

Hence, the problem will be estimating the values of the

matrices A and B (= b× I) without any prior knowledge or

direct measurement of CPU power consumption. We will show

that it is impossible to estimate the value of b without having

any knowledge of CPU power consumption; instead, we will

estimate B×P which matters in calculating the temperature

in the LTI model.

C. Problem Description

Given a multi-core CPU equipped with on-chip temperature

sensors, construct an accurate and fast thermal RC model by

estimating A and B×P of the CPU from a limited number

of temperature profiles, without requiring a priori knowledge

of the floorplan, cooling package, and power traces.

IV. LIMITATIONS AND ERRORS

Before continuing our discussion, we must identify some

limitations to thermal parameter estimation on real-life plat-

forms. Identifying these potential sources of error is critical

to our data analysis and comprehension. It allows us to

address the noise and limitations of our profile data set by

preprocessing raw data and improve the accuracy of thermal

parameters through the ensemble of measurements from dif-

ferent frequency levels and workload settings.

The largest sources of error in the raw data are the on-

chip temperature sensors. In CPUs for embedded systems, the

sampling rate of temperature sensors is, generally, very low.

This limitation may cause inaccuracies in data measurements

since sudden changes in CPU-core utilization and their effects

on operating temperature may go undetected by the sensors.

Furthermore, the location of temperature sensors on each

CPU-core may vary and may not coincide with the cpu-

core’s hotspot. Additionally, the data sampled from the on-

chip temperature sensors is subject to quantization and, thus,

limits the precision of measurement. This imprecision can be

exacerbated due to the superposition law in thermal modeling

for multi-core CPUs [13]. Moreover, due to differences in

the construction and architecture of on-chip thermal sensors,

their response time may vary. Hence, the sensor data may not

represent the actual temperature if the CPU utilization changes

in a relatively short time interval. Over time, if there is no

fluctuation in CPU utilization, the sensor data will converge

to the actual CPU core temperature. Therefore, we can assume

that this type of error only affects the transient-state data while

the steady-state data is unaffected.

Our thermal model considers temperatures relative to the

ambient temperature. Although we assume that the ambient

temperature remains invariant during profiling, in reality, it

may change even in a room or a thermal furnace. The fluctua-

tion of the ambient temperature while profiling can introduce

noise into the raw data. Heat convection caused by room fans,

air conditioners, or active temperature control in a furnace

can also lead to noisy thermal profiles, by directly affecting

the heat transfer between the device and the surrounding

environment.

V. THE PROPOSED SCHEME

In this section, we introduce our scheme for thermal system

identification of a given multi-core processor. The entire work-

flow of the proposed scheme is illustrated in Fig. 1. The very

first step is profiling steady-state temperature data for a set of

designed workloads. Then, the scheme removes noise from the

raw data set and detects possible inconsistencies in thermal

profiles (2), and performs the floorplan estimation (3).

By using the estimated floorplan template and the collected

steady-state data, the value of the matrix A is estimated in

terms of the power parameters (4). The parameters B × P
are then estimated by analyzing a subset of the transient-state

data at the final stage (5). One of the reasons that we propose

dividing analysis into the steady-state and the transient-state

stages (4 and 5) is to cope with the various types of errors

that may be introduced during temperature profiling. If one

tries to tackle this problem by using both data at the same

time, errors in the transient-state data can adversely affect

the characterization of the system in steady state because the

transient-state data has a much larger number of data points

than the steady-state data. Moreover, our proposed scheme

has a low computational cost as it requires processing only a

few data points in the steady-state stage to obtain the thermal

characteristics of the system.

A. Thermal Analysis and Steady-State Profiling

The proposed scheme primarily uses the steady-state data

for thermal parameter estimation since it is more robust

to measurement errors than the transient-state data but still

contains the required information about semiconductor tech-

nology and power consumption. Hence, before introducing the

detailed stages of our scheme, we analyze the thermal model

and provide the reasoning behind the steady-state profiling.

Our goal is to estimate the thermal parameters related to

the steady-state data. After solving the first order equation of

Eq. 1, we have

θ(t) = θchip + e(t−t0)Aθ0 +

∫ t

t0

e(t−s)ABP(s)ds (2)

where [θchip]n×1 is the total heat dissipation caused by IP

blocks on the chip and idle power of CPU cores. We assume

that all IPs generate a constant amount of heat. This term

captures the heat conduction between all parts of the chip

and the CPU. When the CPU cores are idle for a long time,

θchip can be measured. It is worth noting that due to the

location of CPU cores and their sensors on the floorplan, the

steady-state temperature of each idle core can be different.

The second term is the homogeneous solution which is the

thermal response due to the initial temperature difference from

the ambient. The third term is the non-homogeneous solution

caused by the input power signal.

For thermal profiling, our scheme collects thermal data

while the CPU is running at a fixed frequency level. It is

worth noting that this is only for profiling purposes and the

thermal model found by our scheme can be used with DVFS

policies. Given that we analyze the data collected at a fixed

Profile 1

Profile n+1

Profile 2

Steadydy-y-State Steaddyy taStS
Profiling
SS
PP

① ②② Anomaly Detection during Data Preprocessing

Thermal profile (()
Anomaly y detection

Floorplan EstimationF③

Thermal Adjacency mal Adjac
GraphGraph

(template construction)
④⑤⑤

Thermal Parameter Estimation Thermal Paramete
with Transient

ete
nn -

r Estimationrete
tt--State Data

④
Thermal Parameter Estimation hermal Paramet

with Steady
met
dydy-

er Estimatioemet
yy--State Data

Figure 1: Proposed thermal system identification scheme.

CPU frequency, the total power can be considered as a function

of temperature at any time instant t because the other factors

remain invariant during task execution. For homogeneous

multi-core CPUs, the power for each core is PS(t) when the

CPU is idle, and PS(t)+PD(t) when the CPU executes some

workload and all cores are fully utilized. Hence, Eq. 2 can

be written as:

θ(t) = θchip + e(t−t0)Aθ0 −A−1 (I− eAt)BP. (3)

In the steady state, the second term disappears because the

steady-state operating temperature depends only on the power

consumption (third term) and it is unaffected by initial tem-

perature θ0. Suppose θ∞ represents the operating temperature

in the steady state, then:

θ∞ = lim
t→∞θ(t) = θchip −A−1BP. (4)

We are interested in finding the value of matrices A and

BP. It is worth noting that the only control parameter is the

power signal. It means that for each profiling procedure, it is

possible to execute workload on any subset of CPU cores or

hot-unplug them but the actual value of the power remains

unknown. Let [Yi]n×1 denote the operating temperature of

the CPU cores when the i-th core is fully-utilized and Y0

represent the temperature of the CPU when all CPU cores

are idle. Furthermore, let [Y]n×n = [Y1Y2 . . .Yn]
T be the

matrix of temperature profiles of the CPU in the steady state.

For instance, yi,j in the row i and column j of Y is the

temperature of the j-th CPU core when tasks are executing

only on the i-th CPU core. Hence, according to Eq. 4,

Y − [Y0Y0...Y0]
T
n×n = PD (−A−1B). (5)

We solve the equation to find the value of A. Therefore,

A = −PD b (Y − [Y0Y0...Y0]
T)−1. (6)

By denoting Ã = (Y − [Y0Y0...Y0]
T)−1 and γ = b PD,

we have

A = −γÃ. (7)

Therefore, by estimating Ã and γ, we can determine the value

of A. Ã can be determined by profile without any knowledge

of power consumption. The value of γ cannot be determined

by the information from the steady-state profiles even with

temperature profiles encompassing various CPU frequencies.

As shown in Eq. 7, we only need n+1 profiles to estimate

the value of Ã, i.e., one profile measured when all cores are

off, and n profiles when each core is fully utilized one at a

time. However, because of errors and limitations discussed in

Section IV, there may be a considerable amount of noises in

estimating the value of Ã. If the profiles are noiseless, Ã will

be a symmetric matrix with positive values on diagonal and

non-positive values on non-diagonal elements. Zeros at ãi,j of

Ã represent that there is no heat conduction between cores

i and j. It is noteworthy that a non-symmetric Ã caused by

noisy data sets can lead to imaginary eigenvectors which is

impossible in practice. We will later propose several methods

to address different types of noises. Moreover, we will extend

our analysis to reach a more precise Ã by fusing more data

profiles. By using those techniques, it is not necessary to have

the exhaustive combinations of Yi for profiling purposes, but it

is still possible to benefit from multiple auxiliary data obtained

from the same core configuration.

One interesting property of A and Ã is that both have the

same eigenvectors. Additionally the eigenvalues of A are −γ
times the eigenvalues of Ã. We will use these properties to

find the value of γ later and justify why it is impossible to

estimate absolute power consumption from thermal profiling.

B. Anomaly Detection during Data Preprocessing

Compensating for various sources of errors in the steady-

state data is critical to accurately estimate the system thermal

parameters. For instance, the negative impact of limited sensor

precision and transient noises can be reduced by applying a

low-pass filter to each steady-state temperature profile before

constructing an observation matrix. Beyond these basic meth-

ods, this section presents how our scheme detects inconsisten-

cies and anomalies when multiple thermal profiles exist.

As we discussed in Sec. V-A, our scheme needs steady-

state temperature profiles which are obtained when only one

of the CPU cores is fully utilized at a time. If there are

more profiled data, it is possible to detect if there is any

inconsistency in some of the temperature profiles. For instance,

if the ambient temperature in one profile is different from that

in other profiles, it can be detected and rectified. Our post-

processing error detection tests if the observed data Yi are

consistent with other auxiliary profiles that are obtained when

more than one CPU core is fully utilized. If any error is found

from the observed data Yi, the corresponding column of Y
will be rectified with the correct value.

We now present the details. Let XZ denote the steady-state

temperature of CPU cores. Z = z1z2 . . . zn is the predicate that

shows the status of CPU cores in the profile test where zi ∈
{0, 1} represents whether the i-th CPU core is fully utilized

(zi = 1) or not (zi = 0). We are interested to test primary

observed data Yi by using auxiliary data Xs to detect the

prospective error in Y . According to the thermal superposition

theorem [13],

XZ =

n∑
i=1

zi × (Yi −Y0) +Y0. (8)

Suppose that the available tests for a hypothetical 3-core

CPU are Yi for i ∈ [1, 3] and the auxiliary test X101. Hence,

X101 = Y1 +Y3 −Y0. In the idle condition where there is

no errors in the data, the equation much hold. Let’s suppose

there is an error data in one of them. We are interested to

detect or correct it. By adding an error term ε to the equation,

we have X101 = Y1 +Y3 −Y0 + ε1,3. If there is no error in

data, one can assume that ε1,3 = [0, 0, 0]T . If there is an error

in one of the tests, it can be detectable but not correctable.

Now suppose that there is another test X011 available, hence

X011 = Y2 +Y3 −Y0 + ε2,3.

In order to detect and correct the error, we design a test in an

n-hypercube format. Each corner of the hypercube represents

one measurement setting Z, and there is only a one-bit differ-

ence in the Z values of two neighboring corners. Therefore,

the hamming distance of Zs of each pair of neighbor corners

is 1. In this way, it is possible to examine the correctness of

each test with its neighbors. It is also possible to spot the error

with a sufficient number of tests.

X000 = Y0
X001 = Y1

X010 = Y2

X011

(a)
 Y0 Y1

X100 = Y3 X101

(b)
Y0 Y1

Y2

Y3

X011

X101

X111

(c)

Figure 2: a) Auxiliary test for detect one error in either Y1 or Y2. b)
Auxiliary test for detect one error in either Y1 or Y3. c) Second-tier
testing of auxiliary tests.

We explain the procedure by making an example. Fig. 2a

illustrates the auxiliary test X011. The blue side shows the

verification of the Y1 and Y2. If all the data are consistent,

one can conclude that there is no single error in Y1 and Y2.

If there is an error in one data an additional test is needed

that we will explain later. The green side in Fig. 2b shows

the verification for Y1 and Y3. If there is no single error, the

data on this side is also consistent.

Now suppose that both sides are inconsistent, then it is easy

to say that the data of Y1 is faulty because we assume that

there is only one error in observation profiles and the edge of

(Y0,Y1) is the intersection of both sides. Since Y0 is zero

base and not faulty, Y1 is noisy.

We now discuss the case where ε1,3 �= 0 and ε2,3 = 0. To

locate the error in the data, we use the auxiliary test that make

a side with two of suspicious tests (the yellow side in Fig. 2c).

In this case, we consider X111 that can make a side with X001,

X011 and X101. If the data of this side is consistent, the error

will belong to Y1, otherwise to the test X101.

In generalization, any subset of verified steady-state tem-

perature profiles X = {XZ1
, XZ2

, · · · , XZr
} such that Ze =

⊕r
i=1Zi where ⊕ is the bitwise exclusive disjunction operator

(XOR) can validate the data of the profile XZe . By using

it, the total number of auxiliary profiles with the hamming

distance of 1 for a single anomaly detection is bounded by(
n
2

)− 1. For spotting the error, at most one extra profile with

the hamming distance of 1 from two suspicious profiles is

required. In fact, the profile that contains the error can be found

by performing bitwise exclusive disjunction on predicates of

inconsistent profiles. Only when there exist two inconsistent

profiles, an extra auxiliary profile is required. The timing

complexity of the proposed anomaly detection algorithm is

O(n2) for detecting and correcting one single error.

By employing the same technique, it is easily possible to

extend the proposed method for two errors in the tests by

adding another tier to test the auxiliary tests with each other.

Additionally, it is possible to conclude that there exists a single

error or two errors in the data. It is important to mention that

in this paper, it is assumed that errors in the two tests cannot

conceal each other.

C. Floorplan Estimation

Hereby, we introduce a greedy algorithm to estimate the

topography of the CPU cores in the chip. Later, we use

this information to calibrate the thermal term b PD in the

temperature model by using the transient-state data. One of the

steps to refine the thermal parameters of a chip is to estimate

the parameters complying with the floorplan. We present a

mechanism to estimate the relative location of the CPU cores

on a given chip.

The intuition behind our proposed algorithm is that the

amount of heat dissipation from a heat source to a closer

object is more than that to a farther object. Therefore, we

expect that the temperature increase due to heat conduction

of adjacent CPU cores is more than that of non-adjacent CPU

cores. We introduce a fully-connected weighted graph where

the edge weight represents the temperature increase of a CPU

core when its neighboring cores are fully utilized. For instance,

suppose there is a quad-core CPU where each core is labeled

as Ci with i ∈ [1, 4]. The fully-connected graph of this CPU is

illustrated in Fig. 3a. The weight of each edge, wi,j , represents

the temperature increase of a core Cj when another core Ci is

fully utilized (i.e., yi,j−y0i). It is worth noting that wi,j �= wj,i

not only because of noise but also due to the location of

the on-chip temperature sensor relative to the hotspot of each

CPU core, although the amount of heat dissipation from each

homogeneous core is ideally the same.

C1 C2

C3 C4

(a)

C1 C2

C3 C4

(b)

C1

C2
C3

C4
(c)

Figure 3: a) Example of adjacency graph of a quad-core CPU. b)
Reduced uni-directed graph c) Final CPU affinity graph.

We are interested in the relative temperature increase of

core Ci when it is fully utilized compared to when another

core Cj is fully-utilized. Hence, we have w′
i,j = yi,i − yi,j .

We also remove self-loops from the graph for simplicity. After

this, the graph of Fig. 3 is reduced to a graph where all

weights are positive. Next, we convert the bi-directed graph to

a uni-directed graph by taking minimum of the edges in the

different direction (i,e., min{w′
i,j , w

′
j,i}) as shown in Fig. 3b.

It is noteworthy that one can use average, maximum or any

reduction operation for this stage. As shown in Fig. 3b, the

temperature increase of CPU core C4 when the CPU core C1

is fully utilized is because of heat conduction of CPU cores

C2 and C3. In other words, the CPU core C4 is heated up

because of transitive heat transfer from C1 to both C2 and C3

and then heat transfer occurs from these CPU cores to the CPU

core C4. Therefore, there is only transitive heat conductivity

between the CPU core C1 and the core C4.

The floorplan estimation algorithm is shown in Algorithm 1.

By using this graph (line 2-4) and also the aforementioned

intuition, we estimate the relative location of the CPU cores

on the floorplan. To do this end, we begin from one arbitrary

core (line 9), let’s say C1, and find the minimum value of

all weights connected to its corresponding node in the graph

(line 29-31). In this example, the minimum weight is 2 for both

CPU cores C2 and C3. Next, we find the minimum weight of

CPU cores C2 and C3 from the unvisited node list, one at

a time (line 16-25). We continue this step until all nodes are

visited (line 8). If some of the visited CPU cores have the same

value (within some error margin δ), they are connected. In this

example, the error margin is 1 so the cores are connected as

illustrated in Fig. 3c. The time complexity of this algorithm

is O(|E||V |) because each node is visited only once for its

edges and the function findMinEdges can be O(1) using

precomputed tables or memoization.

Furthermore, if the temperature profiles of on-chip IPs such

as an integrated GPU are available, the same approach can be

applied to locate the corresponding IP by using the temperature

increase when each CPU core is fully-utilized. In this way,

there is only one edge from each CPU core Ci to the IP.

D. Thermal Parameter Estimation with Steady-State Data

We propose a method to calibrate the thermal parameters

based on the floorplan estimation discussed in the previous

Algorithm 1: Floorplan estimation algorithm

1 FloorPlanEst
Input: Ã and error margin δ
Output: G(V , E)

2 B = diag(Ã) ∗ 11,n − Ã /* 1 is the matrix of

ones and diag gets diagonal elements of

matrix */

3 C = min(B,BT)

4 Construct graph G′ from C
5 Q = [] // empty queue

6 E = [] // edge set

7 V = [] // vertex set

8 while |V | �= |C| do
9 node = select randomly one unvisited node

from G′

10 Q.push(node)

11 while |Q| > 0 do
12 node = Q.top()

13 node.visited = true

14 Q.pop()

15 neighbors = findMinEdges (node, δ)

16 foreach Node x ∈ neighbors do
17 if x.visited = false then
18 Q.push(x)

19 V .insert(x)

20 E.insert({node,x})

21 end
22 else if E.contains({node,x}) = false

then
23 E.insert({node,x})

24 end
25 end
26 end
27 end
28 return G(V,E)

29 Function findMinEdges(node, δ):
30 min = the minimum value of weights of edges

with the source vertex node
31 return a list of nodes directly connected to node

whose edges weights are less than min+ δ

section. The thermal parameter estimation without consider-

ing the floorplan may not be applicable in practice.1 Some

important properties of A according to heat transfer are as

follows:

• A is a symmetric matrix.

• The elements on diagonal of A are negative.

• The zero values of non-diagonal elements represent a pair

of corresponding CPU cores are not adjacent.

• All non-zero values of non-diagonal elements are positive.

These properties of A guarantee that there exist n real

1This is because Y can be inaccurate and the properties of A may be
violated if the floorplan is not considered.

negative eigenvalues and a set of n eigenvectors, one for each

eigenvalue, that are mutually orthogonal. The negative values

of all eigenvalues ensure the obtained thermal model is stable.

This stage estimates the values of thermal parameters in way

that it not only complies with the floorplan but also reduces

the effect of noisy data observed data in A.

The matrix Ã is constructed according to the estimated

floorplan. If there is no thermal interference between two cores

Ci and Cj in the estimated floorplan, the corresponding value

in the matrix, i.e., ai,j , is zero. A single value can be used

for all adjacent CPU cores in the matrix Ã as they share

the same heat dissipation increase value. It is worth noting

that, depending on the user’s accuracy demand, more distinct

non-zero values may be used. For the explained example, the

structure of matrix Ã will be

Ã =

⎡
⎢⎢⎣
a1 a5 a5 0
a5 a2 0 a6
a5 0 a3 a5
0 a6 a5 a4

⎤
⎥⎥⎦ .

We propose a gradient descent algorithm to find the param-

eters according the estimated floorplan. For the calibration of

the parameters, Ã is compared with the inverse of Y, which

means that Ã follows the estimated floorplan template and its

inverse must be close to the temperature profiles. We propose

the cost function as follows

argmin
ai: i ∈ [1, r]

||Ã−1 − Y ||2F (9)

where r is the number of unknown parameters. The sign of

each parameter has to be carefully considered in the imple-

mentation, taking into account the properties of A discussed

before (e.g., diagonal elements of Ã should be positive and

the rest be non-positive).

E. Thermal Parameter Estimation with Transient-State Data

In this section, we discuss how to estimate the matrix B for

homogeneous multi-core platforms. As we mentioned in Sec.

III-B, it is impossible to determine γ from the steady-state

observations, hence, we must process the transient-state data.

As discussed in the steady-state section, if the power

remains the same, the temperature equation will become

Eq. 3. To estimate the value of A, we only need γ which

is commensurate to the power consumption. Substituting Eq.7

in Eq. 3, we have:

θ(t) = θchip+e(t−t0)−γÃθ0+(γÃ)
−1

(I−eAt)bIP. (10)

Suppose that V and Λ are the eigenvectors and eigenval-

ues of Ã, respectively. Therefore, e(t−t0)−γÃ can be repre-

sented as V e(t−t0)−γΛ V−1. From our proposed steady-state

scheme, V and λ are determined. We can estimate the value

of γ from the transient-state data of a singular observation. To

better calibrate γ, multiple profiles may also be considered.

Hence,

θ(t) = θchip + e−(t−t0)γÃθ0 + Ã−1 (I− eA(t−t0))H (11)

where H is an n × 1 control signal whose i-th element is

hi ∈ {0, 1}. It is noteworthy that hi = 1 when i-th core

is fully utilized. By substituting the eigenvalues and eigen-

vectors, the equation can be represented as θ(t) = θchip +
V e−(t−t0)γΛ V −1θ0+Ã−1 (I−V e−(t−t0)γΛ V−1)H. The

only missing part in the temperature model is γ which can be

estimated by curve fitting on transient-state temperature. The

values of Pd(t), θchip and Ã change at different frequency

levels but the values of Λ, V and b remain invariant against

frequency change. Although the value of γ can be estimated

and is embedded in the temperature data, it is impossible to

estimate absolute power even with temperature information at

different frequency levels.

Since γ is a scalar value, we observed that curve fitting on

only a few cores can provide good results. The simplest test

for estimating the value of γ is when all cores are cooling

down because the third term of Eq. 11 can be eliminated.

VI. ACCURACY ENHANCEMENT

In this section, we extend our proposed scheme to improve

accuracy using additional steady-state data from different core

settings and extra data observed at different frequencies.

A. Use of Steady-State Data Ensembles

We discuss how to use the ensemble of extra observations

at one frequency level to obtain a more accurate thermal

observation profile. As discussed in the previous section,

our method requires n + 1 observed steady-state temperature

profiles for a n-core system to construct the matrix Y: one

profile when all cores are idle and n profiles when each of

CPU core is only fully-utilized. Now, we extend our analysis

to answer the following questions:

• Is it possible to collect different CPU core usage settings

(other than the aforementioned n + 1 observed data) to

construct Y?

• Is it possible to have a more precise Y if there exist multiple

instantiations from an identical setting and use all of them?

• Is it possible to construct Y with more than n+ 1 steady-

state data?

We are interested in generalizing the construction of Y
to include any possible thermal traces of fully-utilized CPU

core combinations and the ensemble of more thermal traces.

It is noteworthy that if there is no noise in the observed

data and also data is not quantized, no extra data or multiple

instantiations are needed due to superposition law in Eq. 8.

Now, suppose we have m profiles such that n ≤ m ≤
2n − 1 and each profiling was done under a different CPU

core setting Zi. Based on that, we can construct the predicate

matrix [D]m×n = [Z1Z2 . . .Zm]T from the auxiliary profiles

in U = [Xz1Xz2 . . .Xzm]T . The matrix Y is then generated

as follows

Y = ((D×DT)−1 ×D×UT)−1. (12)

Because of the inversion in the equation, the equation works

when the number of the profiles is more than the number of

CPU cores. It also works when there exist enough orthogonal

profiles, meaning that there is at least one profile for each CPU

core where the core is idle. The matrix Ã is then calculated

as explained in Sec. V-D.

B. Use of Multi-Frequency Data Ensembles

We now discuss how to obtain a more accurate A by

using additional data collected at multiple frequency levels. As

explained in Sec. III-B, the thermal parameter A is dependent

on the semiconductor technology and remains invariant against

frequency changes. Therefore, it would be logical to assume

that having observed temperature profiles from different fre-

quency levels would lead to an identical A. However, due

to the term γ in Eq. 7, Ã is proportional to the power

consumption and the clock frequency of CPU cores. Based on

this, we extend our scheme to answer the following questions:

• Is it possible to have an identical A from different Y s

collected at different frequency levels?

• Is it possible to estimate relative power consumption at

different frequency levels?

To answer these questions, we propose a thermal parameter

estimation approach based on multi-frequency data ensembles.

Let Yi denote the temperature increase matrix constructed

from the data when the CPU frequency is fi, and γi denote

its power effect on temperature at the frequency fi. Unlike the

method presented in Sec. V-D which estimates the parameters

in Ã, we will estimate Ã1, which is the base at f1. Addi-

tionally, we consider γ1 = 1 and estimate γi

γ1
, ∀i > 1. In such

case, tracking the values of γ over different frequency levels

gives the power consumption of CPU cores proportional to

the γ1 of the base frequency level f1, and all Ys share the

same thermal parameter A. Using the same procedure as in

Sec. V-E allows estimating the value of γ1; hence, all γs can

be estimated. It is noteworthy that, even in this case, the actual

value of the power consumption cannot be computed, but

the relative power consumption at different frequency levels

can be obtained. Therefore, one can see the effect of power

consumption embedded in the temperature profiles.

We change the cost model of Eq. 9 to

argmin
aj : j ∈ [1, r]
γi
γ1

: i ∈ [1, |f |]

|f |∑
1

||Ã1
−1 − γi

γ1
Yi||2F (13)

The problem is estimating the values of Ã1 and also γi

γ1
.

One can expect that fi > fj leads to γi < γj due to dynamic

power increase and this can be considered as a constraint in

the implementation.

VII. EVALUATION

This section presents the experimental evaluation of our

proposed scheme on a real embedded platform. We first

evaluate the accuracy and validity of our techniques in thermal

modeling and temperature prediction. We then conduct a case

study to demonstrate the practical effectiveness and implica-

tions of our work in the context of real-time mixed-criticality

systems (MCS).

A. Platform

We performed our experiments on an ODroid-XU4 develop-

ment board [28] equipped with a Samsung Exynos5422 SoC

based on the ARM big.LITTLE architecture. The Exynos CPU

Table I: Descriptions of steady-state traces on big cores.
Case name Experiments Traces (decimal) # of traces
CA1 one core Z1, Z2, Z4, Z8 4
CA3 three cores Z7, Z11, Z13, Z14 4
CA2 two cores Z3, Z5, Z6, Z9,

Z10, Z12

6

CA1, 3 one core & three
cores

Z1, Z2, Z4, Z7,

Z8, Z11, Z13, Z14

8

CA1, 2 one core & two
cores

Z1, Z2, Z3, Z4, Z5,

Z6, Z8, Z9, Z10, Z12

10

CA1, 2, 3, 4 all cores Z1, Z2, . . . , Z15 15

(a) Core 1 (b) Core 2

(c) Core 3 (d) Core 4

Figure 4: The error of steady-state temperature of CPU cores by using
different cases in construction of Y .

package contains two different quad-core CPU clusters of little

Cortex-A7 and big Cortex-A15 cores. On-chip temperature

sensors with a sampling rate of 10 Hz and precision of 1° C

are available for each big CPU core as well as the GPU

to measure the operating temperature2. The DTM throttles

the frequency of the entire big CPU cluster to 900 MHz

when one of its cores exceeds the hardware-defined maximum

temperature threshold of 95° C. There is no active or passive

cooling mechanism enabled on the CPU. The big CPU cluster

frequency can be dynamically adjusted within the range of

[0.2, 2.0] GHz. However, for each experiment, it was pinned

at a fixed frequency in the range of [0.7, 1.4] GHz to avoid

thermal violations that have occurred when all CPU cores

run fully-utilized beyond 1.4 GHz in our environment where

ambient temperature is regulated at around 21° C.

B. Anomaly Detection and Steady-State Data Ensembles

We evaluate our scheme in improving the accuracy of

thermal parameter estimation by using the ensemble of steady-

state profiles from multiple frequency levels. We apply the

superposition theorem as in Eq. 8 to estimate the steady-state

temperature of CPU cores when different subsets of them

are fully-utilized. We use the data collected from a subset

of all possible combinations of CPU cores at the fixed clock

2There is no temperature sensor for little cores since the power consumption
and heat dissipation of the little cluster is substantially lower than that of the
big cluster.

Figure 5: MSE of CPU cores from all setting in different cases.

frequency of 1.4 GHz.3 The details on the subsets used to

construct the matrix Y are given in Table I. Some cases

contain the least number of orthogonal profiles (i.e., 4 profiles)

while others contain more profiles. The case CA1, 2, 3, 4
includes all profiles to construct the matrix Y. The name of

each case indicates the number of fully-utilized CPU cores.

For instance, CA1, 2 includes four profiles of one CPU core

and six profiles of two cores.

Fig. 4 depicts the error in steady-state temperature of

each CPU core under different utilization scenarios (Y from

Eq. 12). As shown in the figure, using more profiles helps

reduce the effect of noise in constructing Y. The proposed

anomaly detection mechanism presented in Sec. V-B was

applied to the profiles and the outliers were excluded from

consideration for Y. For instance, applying this mechanism

detected an anomaly in the profile Z6 by comparing it with

the other profiles. Hence, while constructing Y, we were able

to find out that the anomaly was not because of an error in

the other profiles but rather due to the error in Z6. The mean

square errors (MSE) of the temperature model for all CPU

cores under all different settings are shown in Fig. 5. The x
axis is sorted in ascending order in terms of the number of

profiles used during the construction of Y. Some spikes in the

results, e.g., the yellow line at CA1, 2, are due to that addi-

tional traces contained noisy data. However, the error generally

decreases as more profiles are used for the construction of Y.

This trend indicates that our proposed approach to considering

data ensembles can reduce the negative impact of noisy data

and improve the accuracy of thermal parameter estimation.

C. Floorplan Estimation

We validate our proposed floorplan estimation method on

the Exynos5422 SoC. We draw the proposed adjacency graph

according to the data collected at 1.4 GHz. Figures 6a-c

show the steps to construct the final adjacency graph for

Exynos5422. As we observe in Fig. 6c, the cores C3 and

C4 have greater spatial proximity than cores C3 and C2.

Although the physical layout of the cores on the CPU package

is bi-symmetrical, the primary reason for the asymmetrical

layout shown in Fig. 6c is that the location of the on-chip

3Note that the total number of core combinations is 24 in a quad-core

system and the number of selecting a subset from the combinations is 22
4

.

C1 C2

C3 C4

(a)

C1 C2

C3 C4
(b)

C1

C2
C4

C3
(c)

C1

C2
C4

C3

G

(d)

C4

GPU

Cache and Peripherals

C3

C2 C1

(e)

Figure 6: Floorplan estimation of Exynos5422 based on data of 1.4
GHz. (a) The fully-connected graph from the temperature increase
data, (b) Graph reduction stage (c) The CPU affinity graph, (d)
Estimation of GPU location relative to CPU location, and (e) The
actual Exynos5422 floorplan [11].

temperature sensors on each processor may vary between

cores. Additionally, the L2 cache and peripheral controllers

may have an effect on the modeled spatial proximity between

the core pairs of C1, C2 and C3, C4 . Using the same approach

and GPU temperature data, we are also able to locate the

embedded GPU by profiling the heat conduction between

each CPU cores and the GPU. Fig. 6d depicts the final

estimated locations of the embedded GPU and CPU cores on

Exynos5422. Since this is similar to the actual layout reported

in [11]4, we conclude that our floorplan estimation can provide

a sufficient level of accuracy for thermal parameter calibration

(Sec. V-D).

We construct the template of the matrix A to be compatible

with the estimated floorplan. The matrix Ã at 1.4 GHz is

then computed by using the steady-state data of CA1, 2, 3, 4
at different frequency levels:

Ã =

⎡
⎢⎢⎣

0.2961 −0.1324 0 −0.1194
−0.1324 0.3017 −0.1579 0

0 −0.1579 0.3088 −0.1269
−0.1194 0 −0.1269 0.2798

⎤
⎥⎥⎦ .

D. Relative Power Estimation

The relative power consumption of each CPU core can

be estimated while estimating Ã, as explained in Sec. VI-B.

Fig. 7 illustrates the estimated power consumption. The results

are obtained using profiles from different frequency ranges. As

depicted in the figure, the estimated relative power closely

follows the actual data collected from the built-in power

sensors of the XU3 board that is equipped with the same

Exynos5422 SoC.

4The CPU core labeling in [11] is different from the labels in the driver and
it is verified with infrared imaging captured by an FLIR A325sc IR camera [9].

(a)

(b)

Figure 7: Power data of CPU cores in Exynos5422. (a) Comparison
between the estimated relative power consumption and the normalized
actual power data from built-in power sensors for CA1, and (b)
Comparison for CA1, 2, 3, 4.

E. Temperature Prediction

We estimate the parameter γ1 as the base parameter for the

clock frequency 1.4 GHz in our experiments. Based on this, the

absolute value of other γs can be determined. As discussed in

Sec. V-E, we use the transient-state trace when all CPU cores

are cooling down. After estimating the values of γs, we apply

our model to predict the operating temperature of CPU cores.

We evaluated our proposed scheme against the state-of-

the-art power-agnostic thermal modeling method given in [1]

(referred to as “TF”), which is based on the thermal fingerprint

and calibration techniques [31], [32]. For the thermal profiling

of TF, we left the CPU idle for 10 minutes before capturing

the transient data of each thermal profile so that their model

can estimates the initial states of transfer functions accurately.

Next, we captured temperature data for all cores while each

core was individually being fully-utilized for 30 minutes and

then idle for 10 minutes. As in our scheme, a low-pass filter

was applied to the raw data to reduce noise. This step gives

us the idle steady state, active steady state, and transient

state temperatures for every core. We performed the above

steps when CPU operates at 1.0 GHz and 1.4 GHz. Then,

we used Matlab’s tfest function to estimate the self-core

transfer functions [1] that represent the thermal response of

each CPU core as a function of CPU core utilization. Finally,

we performed an exhaustive search to tune the number of

poles and zeros required for more accurate estimation of the

transfer functions. The modeling results of TF have the average

goodness fit of 89.96% at 1.0 GHz and 88.31% at 1.4 GHz,

(a) core 1 (b) core 2

(c) core 3 (d) core 4

(e)

Figure 8: (a-d) CPU temperature from sensor, our model, and TF
when three cores are fully utilized. (e) Utilization overestimation error
of server period of 50 and 100 ms at frequency level of 1.4 GHz.

which is reasonable given that the sensor precision is 1° C.

Fig. 8a-d depict the CPU temperatures when three CPU

cores are fully utilized. The legends “sensor”, “mdl”, and “TF”

refer to actual temperature collected from CPU sensors, the

estimated temperature by our proposed scheme, and the state-

of-the-art [1], respectively. Our proposed model can estimate

the temperature values more accurately than TF especially

when the frequency is higher (see the steady-state temperature

of cores 1 and 2 at 1.4 GHz).5 Since the precise estimation of

the steady-state temperature is the key to ensure thermal safety,

we expect that our proposed scheme can be effectively used in

the thermal-aware design of COTS-based real-time systems.

One of the most important metrics during system design is

the maximum achievable utilization (MAU) while the system

remains thermally safe (i.e., a higher utilization than MAU

leads to thermal violations). For instance, when designing a

system using thermal-aware periodic servers [1], [14], [13], an

underestimated steady-state temperature is particularly danger-

5We also observe that the underestimation error of TF increases with the
number of fully-utilized CPU cores but demonstrate only the three-core case
due to space limit.

ous since it can lead to an overestimation of server budget,

which in turn jeopardizes thermal safety. The amount of

overestimation depends on temperature estimation accuracy,

the number of active CPU cores, and the server settings

used (i.e., period and budget replenishment policy). Hereby,

we show in Fig. 8e the overestimated server utilization due

to temperature estimation error under TF and our model

when different number of CPU cores are active. The budget

replenishment period of 50 ms and 100 ms and the polling

server policy are used. In this figure, anything higher than zero

means thermally unsafe. TF results in a large overestimation

of MAU (up to 18% per core), and this trend increases with

active core counts due to the thermal superposition. On the

other hand, our scheme does not make any overestimation,

so it is thermally safe. The underestimated MAU from our

scheme is only less than 3% per core.

F. Case Study on MCS Application

We performed a case-study to evaluate the performance of

our model for a mixed-critical Flight Management System

(FMS) [1]. All low-criticality tasks are assigned to a polling

server with a replenishment budget of 50 milliseconds and

utilization of 50% on CPU core 1. High-criticality tasks are

partitioned using worst-fit bin packing and executed on cores 2

and 4 using thermal-aware periodic servers [1], [14], [13] with

a replenishment budget of 50 ms and utilization of 65%. Since

TF assumes static scheduling and no preemption between

servers, we used only one server per core for both ours and TF.

All OS tasks are isolated on the little CPU cluster and CPU

core 3 is idle. We carry on the experiment at CPU frequency

of 1.4 GHz. As shown in Fig. 9, our scheme can estimate

the temperature with a marginal error of 0.5° C while the TF

method estimates the temperature with error that approaches

5.3° C. The ratio of the error to the temperature increase

from the idle steady state is 23.07% for TF and 2.53% for

our scheme. This large improvement in accuracy enables a

thermally-safe system design (recall the impact of accuracy

in utilization discussed in Sec. VII-E) and demonstrates the

effectiveness of our work. Also, our scheme allows real-time

tasks and thermal-aware servers to be scheduled preemptively,

which TF cannot do.

VIII. CONCLUSION

In this paper, we proposed a novel and accurate scheme

to estimate the thermal parameters of COTS multi-core pro-

cessors for real-time embedded systems. By decomposing

our estimation scheme into steady-state and transient-state

stages, we substantially reduce the number of transient-state

profiles needed to estimate the system’s thermal parameters.

We presented methods to improve the accuracy of our scheme

by utilizing additional temperature profiles in the parameter

estimation. Our proposed scheme is fast to converge and has

a low computational cost for the prediction of chip operating

temperature. Hence, it can be even used in an event-driven

manner, e.g., at the arrival and the departure of each job of

(a) core 1 (b) core 2

(c) core 3 (d) core 4

Figure 9: CPU temperature from sensor, our model, and TF for FMS
application at 1.4 GHz.

periodic real-time tasks, with negligible memory and com-

putational overhead. We derived the thermal characteristics

of a multi-core processor which remain unchanged across

different frequency levels. We also showed the effectiveness

of our scheme in extracting the relative power consumption

information from temperature profiles.

There are several interesting directions for future work. Our

scheme can be extended to identify the thermal models of

SoCs under various cooling conditions or those with hetero-

geneous processor units. One may consider using statistical

approaches to estimate the floorplan of SoCs rather than the

fixed error margin used in this work. A formal mathematical

analysis to quantify the robustness of data-driven thermal

modeling against noisy profiles is an important research issue

and will be a valuable addition to our work.

ACKNOWLEDGMENT

This work is in part supported by the National Science

Foundation (NSF) grant 1943265.

REFERENCES

[1] R. Ahmed, P. Huang, M. Millen, and L. Thiele. On the design and
application of thermal isolation servers. ACM Trans. Embed. Comput.
Syst., 16(5s):165:1–165:19, Sept. 2017.

[2] R. Ahmed, P. Ramanathan, and K. K. Saluja. Necessary and sufficient
conditions for thermal schedulability of periodic real-time tasks under
fluid scheduling model. ACM Transactions on Embedded Computing
Systems, 15(3):49, 2016.

[3] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware scheduling
and assignment for hard real-time applications on mpsocs. In 2008
Design, Automation and Test in Europe, pages 288–293, March 2008.

[4] T. Chantem, X. S. Hu, and R. P. Dick. Temperature-aware scheduling
and assignment for hard real-time applications on mpsocs. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 19(10):1884–
1897, 2010.

[5] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff
based on the ratio of off-chip access to on-chip computation times.
IEEE transactions on computer-aided design of integrated circuits and
systems, 24(1):18–28, 2004.

[6] A. Das, A. Kumar, and B. Veeravalli. Reliability and energy-aware
mapping and scheduling of multimedia applications on multiprocessor
systems. IEEE Transactions on Parallel and Distributed Systems,
27(3):869–884, 2015.

[7] S. M. D’Souza and R. Rajkumar. Thermal implications of energy-saving
schedulers. In ECRTS, 2017.

[8] T. J. A. Eguia, S. X. . Tan, R. Shen, E. H. Pacheco, and M. Tirumala.
General behavioral thermal modeling and characterization for multi-core
microprocessor design. In 2010 Design, Automation Test in Europe
Conference Exhibition (DATE 2010), pages 1136–1141, 2010.

[9] FLIR A325sc. https://www.flir.com/products/a325sc, 2019.

[10] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. D. Koutsoukos, and H. Wang.
Feedback thermal control for real-time systems. In 2010 16th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages
111–120. IEEE, 2010.

[11] Y. H. Gong, J. J. Yoo, and S. W. Chung. Thermal modeling and
validation of a real-world mobile ap. IEEE Design Test, 35(1):55–62,
Feb 2018.

[12] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors. In Proceedings of the 2007 international
symposium on Low power electronics and design (ISLPED’07), pages
38–43. IEEE, 2007.

[13] S. Hosseinimotlagh, A. Ghahremannezhad, and H. Kim. On dynamic
thermal conditions in mixed-criticality systems. In 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium, pages
336–349, 2020.

[14] S. Hosseinimotlagh and H. Kim. Thermal-aware servers for real-time
tasks on multi-core gpu-integrated embedded systems. In 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium,
pages 254–266, 2019.

[15] Y. Hua and T. K. Sarkar. Generalized pencil-of-function method for
extracting poles of an em system from its transient response. IEEE
transactions on antennas and propagation, 37(2):229–234, 1989.

[16] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu. Throughput
maximization for periodic real-time systems under the maximal temper-
ature constraint. ACM Trans. Embed. Comput. Syst., 13(2s):70:1–70:22,
Jan. 2014.

[17] P.-S. Huang, Q.-C. Chen, C.-W. Huang, and S.-L. Tsao. An efficient
thermal estimation scheme for microprocessors. In 2014 IEEE 20th In-
ternational Conference on Embedded and Real-Time Computing Systems
and Applications, pages 1–10. IEEE, 2014.

[18] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan. Hotspot: A compact thermal modeling methodology for
early-stage vlsi design. IEEE Transactions on VLSI systems, 14(5):501–
513, 2006.

[19] R. Jayaseelan and T. Mitra. Temperature aware task sequencing and
voltage scaling. In Proceedings of the 2008 IEEE/ACM International
Conference on Computer-Aided Design, pages 618–623. IEEE Press,
2008.

[20] P. Kumar and L. Thiele. System-level power and timing variability
characterization to compute thermal guarantees. In Proceedings of the
seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 179–188. ACM, 2011.

[21] O. Kwon, W. Jang, G. Kim, and C. Lee. Accurate thermal prediction
for nans (n-app n-screen) services on a smart phone. In 2018 IEEE
13th International Symposium on Industrial Embedded Systems (SIES),
pages 1–10, 2018.

[22] Y. Lee, H. Chwa, K. G. Shin, and S. Wang. Thermal-aware resource
management for embedded real-time systems. In Embedded Software
(EMSOFT), 2018 International Conference on. IEEE, 2018.

[23] Y. Lee, E. Kim, and K. G. Shin. Efficient thermoelectric cooling for
mobile devices. In 2017 IEEE/ACM International Symposium on Low
Power Electronics and Design, pages 1–6. IEEE, 2017.

[24] Y. Lee, K. G. Shin, and H. S. Chwa. Thermal-aware scheduling
for integrated cpus–gpu platforms. ACM Transactions on Embedded
Computing Systems (TECS), 18(5s):1–25, 2019.

[25] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-
dependent integrated circuit leakage power estimation is easy. In 2007

Design, Automation Test in Europe Conference Exhibition, pages 1–6,
April 2007.

[26] Y. Ma, T. Chantem, X. S. Hu, and R. P. Dick. Improving lifetime of
multicore soft real-time systems through global utilization control. In
Proceedings of the 25th edition on Great Lakes Symposium on VLSI,
pages 79–82. ACM, 2015.

[27] P. Michaud and Y. Sazeides. Atmi: analytical model of temperature in
microprocessors. In Third Annual Workshop on Modeling, Benchmark-
ing and Simulation (MoBS), volume 2, page 7, 2007.

[28] ODROID-XU4. http://www.hardkernel.com/, 2016.
[29] S. Pagani, J.-J. Chen, M. Shafique, and J. Henkel. Matex: Efficient

transient and peak temperature computation for compact thermal models.
In 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1515–1520. IEEE, 2015.

[30] F. Paterna and T. S. Rosing. Modeling and mitigation of extra-
soc thermal coupling effects and heat transfer variations in mobile
devices. In 2015 IEEE/ACM International Conference on Computer-
Aided Design, pages 831–838, Nov 2015.

[31] D. Rai and L. Thiele. A calibration based thermal modeling technique
for complex multicore systems. In 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1138–1143. IEEE,
2015.

[32] D. Rai, H. Yang, I. Bacivarov, and L. Thiele. Power agnostic technique
for efficient temperature estimation of multicore embedded systems.
In Proceedings of the 2012 international conference on Compilers,
architectures and synthesis for embedded systems, pages 61–70, 2012.

[33] M. Rapp, O. Elfatairy, M. Wolf, J. Henkel, and H. Amrouch. Towards
nn-based online estimation of the full-chip temperature and the rate of
temperature change. In Proceedings of the 2020 ACM/IEEE Workshop
on Machine Learning for CAD, pages 95–100, 2020.

[34] O. Sahin and A. K. Coskun. Providing sustainable performance in ther-
mally constrained mobile devices. In 2016 14th ACM/IEEE Symposium
on Embedded Systems For Real-time Multimedia (ESTIMedia), pages
1–6, Oct 2016.

[35] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The impact of
technology scaling on lifetime reliability. In Dependable Systems and
Networks, 2004 International Conference on, pages 177–186. IEEE,
2004.

[36] R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur, et al. Thermal
performance challenges from silicon to systems. Intel Technology
Journal, Q3, 2000.

[37] Y. Wang, K. Ma, and X. Wang. Temperature-constrained power control
for chip multiprocessors with online model estimation. ACM SIGARCH
computer architecture news, 37(3):314–324, 2009.

[38] S. Zhang and K. S. Chatha. Thermal aware task sequencing on embedded
processors. In Proceedings of the 47th Design Automation Conference,
pages 585–590. ACM, 2010.

[39] A. Ziabari, J.-H. Park, E. K. Ardestani, J. Renau, S.-M. Kang, and
A. Shakouri. Power blurring: Fast static and transient thermal analysis
method for packaged integrated circuits and power devices. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 22(11):2366–
2379, 2014.

