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~ Abstract— Simultaneous localization and mapping (SLAM) Although sonar sensors are not as accurate and do not pro-
is a well-studied problem in mobile robotics. However, the vjde as dense observations as laser rangefinders, theyllare st

majority of the proposed techniques for SLAM rely on the use ¢ . . . .
accurate and dense measurements provided by laser rangefind an attractive alternative to laser rangefinders when it coime

ers to correctly localize the robot and produce accurate and COSt, power consumption, size and weight, and computdtiona
detailed maps of complex environments. Little work has been requirements. Compared to laser rangefinders, sonars cost
done on the use of low-cost but noisy and sparse sonar sensorsseyeral orders of magnitude less, consume less power, are

for SLAM in large indoor environments involving large loops. - . . g .
In this paper, we present our approach to SLAM with sonar  SMall and lightweight, and impose minimal computational

sensors by applying particle filtering and a line-segment-ased requirements. As such, sonar sensors are well-suited #r us
map representation with an orthogonality assumption to map in inexpensive consumer-oriented and minimally-equipped

indoor environments much larger and more challenging than i i i _
those previously considered with sonar sensors. Resultsoin robots that are typically limited in both power and compu

robotic experiments demonstrate that it is possible to prodce tational capability.

good maps of large indoor environments with large loops deste In this paper, we present our approach to SLAM with sonar
the inherent limitations of sonar sensors. sensors by applying particle filtering and an orthogonad-lin
segment-based map representation to map indoor environ-
. INTRODUCTION ments much larger and more challenging than those previ-

ously considered with sonar sensors. Rather than employing

Since it was first introduced by Smith and Cheesemaa grid-based representation for the map, we use a feature-
[1], the simultaneous localization and mapping (SLAM)oased representation where the features are represented as
problem has become one of the mainstream research ar¢iae segments. Line segments are suitable for compactly
in mobile robotics. The SLAM problem involves estimatingdescribing most structured indoor environments that are
the position and orientation of the robot while building ausually composed of walls, doors, glass windows, etc. that
map of the environment in parallel. In order to accomplistare either parallel or perpendicular to each other. Similar
SLAM, the robot is usually equipped with sensors (e.gto [11], we also make use of tharthogonality assumption
wheel encoders, range sensors, cameras) that allow it 4out the shape of the environment in order to reduce the
observe (though only partially and inexactly) the state ofomplexity, mapping only lines that are either parallel or
the world including itself. The SLAM problem is inherently perpendicular to each other.
difficult and complex although the specific sensor used also A major difficultly in using line segments as an envi-
contributes to the hardness of SLAM. ronment’s representation is extracting them from noisy and

SLAM is a well-studied problem in mobile robotics andsparse sensors such as sonars (in our case, an array of
a number of techniques have been proposed. However, thenar transducers) compared to a single dense scan of a
majority of the proposed techniques for SLAM rely on180° laser rangefinder. Thus, in this work, we adopt the
the use of accurate and dense measurements provided riyltiscan approach [12] to group consecutive sparse scans
laser rangefinders to correctly localize the robot and pcedu so that measurements from multiple time frames can be used
accurate and detailed maps of complex environments (s&eextract line segments, although our work differs on how
e.g. [2], [3], [4]. [5], [6]. [7], [8], [9], [10], [11]). Reldively the sparse scans are collected and the frequency at which the
little work has been done on the use of low-cost but noisy arféature extraction is performed.
sparse sonar sensors for SLAM in large indoor environments The contributions of this paper can be summarized as
involving large loops. Obviously, the SLAM problem is muchfollows. We show through extensive experiments that it is
more difficult and challenging in the case of sonar sensopossible to produce good quality maps of large indoor envi-
than laser rangefinders (which have become deefacto ronments with large loops even with noisy and sparse sonar
range sensors for SLAM). Despite the difficulty, we believesensors. To our knowledge, the environments we consider in
that it is interesting to investigate the extent to whichaon our experiments are much larger and more challenging than
sensors can be used for SLAM especially in mapping largdose previously reported in the literature for SLAM with
indoor environments with large loops. sonars. The results provide significant supportive evidenc



for the potential viability of sonars for large-scale indoo Rencken [17] although experiments were only performed in
SLAM. Our method employs a particle filtering techniquea simulation of @&m x 5m room.
vv_he_re (_each particle carries a single map rather than % nstead of jointly estimating the robot state and the lo-
distribution over possible maps. Moreover, we apply the_.. : .
. X . ; cations of line segment features via the EKF, Lorenzo et
orthogonality assumption to reduce the complexity. Finall :
; . I. [18] used the EKF to estimate only the robot state. The
we discuss how we extract line segments from sonar data .
. ; . environment was described by a global segment-based map
and we introduce a simple sensor model for computing t . . .
. . at was built using local sonar-based occupation maps to
likelihood of the observations. . . .
identify obstacle boundaries. The Hough transform was used
to extract the segments that represent the obstacle bdaadar

Il. PRIOR WORK The segments were then incorporated to the global segment-

While much of the work on SLAM with proximity sensors based map. The Hough-based approach provided a correction
has focused on laser scanners (see e.g. [2], [3], [4], [3], [60f the estimated robot pose which was integrated with
[7], [8], [9], [10], [11]), some researchers have used sgnarodometric information via the EKF. The approach was tested
In this section, we briefly describe some of the technique4ith @ Nomad 200 mobile robot equipped with a ring of 16
proposed for carrying out SLAM with sonars. There are twOnar Sensors traversing a corridor environment.

main criteria that can be used to categorize existing sonar-pjore recently, Schroter, Bhme, and Gross [19] presented
based SLAM techniques: the representation used to modglcompination of map-matching with a Rao-Blackwellized
the_ env!ronme_nt and the technique used to estimate the statgticle filter (RBPF) [20] which enabled them to solve the
belief distribution. SLAM problem with low-resolution sonar range sensors.
Zunino and Christensen [13] described an algorithm forhey introduced a simple and fast but very efficient shared
SLAM based on the extended Kalman filter (EKF). The EKkepresentation of gridmaps which reduced the memory cost
approach was used to build and maintain the map of th&erhead caused by inherent redundancy between the par-
environment. Their method used point features as landmarfg|es. Experimental results were presented with a SCITOS

(representing corners, edges, and thin poles detectable R robot platform navigating in a home store environment.
standard sonar sensors through a triangulation technique) _
They also presented a method for detecting the failures Other notable recent related work on SLAM with sparse

of the EKF approach and recovering from such failuresSensors include the work of Beevers and Huang [12] on
Experiments were performed using a Nomadic SuperScogi-AM Wwith sparse sensing using the multiscan approach and
mobile robot in a living room of sizém x 9m. RBPF, Abrate, Bor_@ and Indp [21] on experimental EKF_—

Tardos et al. [14] described a technique for the creation ¢25€d SLAM for mini-rovers with IR sensors only, and Choi,
feature-based stochastic maps using standard Polaroi soh€€: @nd Oh [22] on a line based SLAM with infrared sensors
sensors. In their work, they used the Hough transform [1515'ng geometric constraints and active exploration.

for detecting point features (representing corners aneég€dg The focus of our work reported in this paper is on
and line segment features (representing walls) from son&_AM in large structured indoor environments involving
data acquired from multiple uncertain vantage pointseladt large loops using sonar sensors. The largest environment
of building one global map from the start, they generated we consider has an approximate area76fOom x 53.7m
sequence of local maps of limited size, and then joined thegbntaining two major loops and is made up of various types
together, to obtain the global map. Techniques for joiningf obstacles (e.g. brick walls, tiled walls, glass windowsl a
and combining several stochastic maps were presented. Tdiors, and cable railings). Our work differs from [19] in
locations of geometric features in the environment and th@at we use a line-segment-based instead of a grid-based
position of the robot were jointly estimated in a stochastigepresentation for the map. By adopting a line-segment-
framework via the EKF. Experiments were carried out usingpased map representation, we can avoid the usual problems
a B21 mobile robot equipped with a ring @ft Polaroid associated with a grid-based representation such as data
sensors in d2m x 12m environment. smearing [14], the strong independence assumption between
A similar approach to that of Tarddés was proposed byhe grid cells, and the considerable amount of memory
Leonard et al. [16] except that they incorporated past robegquired for storage. However, a major difficulty with line
positions to the state vector and explicitly maintained theegments is extracting them from sparse and noisy sonars. To
estimates of the correlations between current and previoggercome the sparseness, we apply the multiscan approach
robot states. By doing so, it became possible to consigten{l12] to group consecutive sparse scans. In order to redwce th
initialize new map features by combining data from multiplecomplexity of SLAM, similar to [11], we make use of the
vantage points. Experiments were conducted in a testirlg taorthogonality assumption about the shape of the environmen
of size 10m x 3m x 1m for underwater sonar-based SLAM, by mapping only lines that are parallel or perpendicular to
a simple “box” environment made of plywood, and along @ach other. Unlike [14], [16], [17], [18], we use particladils
25m long corridor. to sample the distribution over the most recent robot poses.
A much earlier work along the same lines of featureEach particle in our particle filter is associated with a &ng
based stochastic mapping using the EKF was given bwap rather than a distribution over possible maps.



[1l. OUR LOCALIZATION APPROACH (bad) particles. The weights are used during the resampling

The basis of our approach is a particle filter, where eacffade of the particle filtgr suph that part!gles with higher
particle is an estimate of the recent robot poses. Thus, ngghts are re;ampled with higher prolbab|I_|ty. than paeticl
the particles collectively sample the space of the receH‘f'th lower weights. Through resampling, it is hoped that

m robot poses. Here we assume that the robot moves %)od particles (those that can explain the data well) are
a planar environment so that its pose at timean be retained while bad particles are eliminated. Typicallye th

represented asq = (1, yr,0;)7, where (1, y,)7 is its sensor model (usually expressed in probabilistic formtiis u
Cartesian coordinates afdis its heading or orientation with 12€d in computing the appropriate weights for the parscle

respect to some global reference frame. Each particleet:sarri':_Or SLAM, the_welght aSS|gned_ to particiéis commonl_y
an estimated map of the environment that is representglffectI 9 pro{gortlonal to the likelihood of the observatson
as a set of line segments. Because of the orthogonali@ySt|x: > ;") wheres; = {sisf,..s'} is the set of
assumption about the shape of the environment, the m&pnser measurements taken by thieavailable sensors at

will contain only two types of lines: horizontal and vertica ime ¢. From the preceeding discussion, it is evident that
Horizontal (vertical) lines are assigned to be paralleltte t USing an accurate and robust sensor model is thereforeatruci

z-axis (y-axis) of the global reference frame. Extracted lind© the success of the particle filter and other state estmati

segments that are not close to being either horizontal &chniques in general. However, deriving an accurate and

vertical are simply discarded and not placed in the map. "oPust model for sensors is generally a difficult problem.
In this paper, we propose a heuristic but simple way to

A. Motion Model calculate the weights of the particles which is inspiredHy t
Let theith particle at timet be pz[fi] = ( [i] Mt[i]), work of Schroter, Bohme, and Gross [19] on map matching.

’ xt—m+1:t7
where xﬁmﬂ.t is the sequence of the recent robot In [19], they neec_zl to match a chal map to a global one. They
' calculate the weight of particleas

pose5x£ilm+1,x£ilm+2, ...,xﬁi] according to particle and
M7 is the set of line segments representing the map of , mlil

Lo . . : [l _ 1)
particle ¢ at time ¢. The particles move according to the Wy =¢€ ’

probabilistic motion modep(x[x;-1, ¢,), wheree; is the where f is a free parameter that influences the spread of
_control command executed by the rpbot during the Hime e particle weights andzf] is a measure of the quality of
interval [t — 1,t), to account for the inherent uncertamtythe match. [19] employs a grid-based map, so we replace
in robot motion. The control commane} is given by the their definition ofm!" with our own. For eack’w sonar ran
; b X : . ; . ge
pair (dy,r;) ", whered, is the distance traveled anq is rpeasuremenif obtained by sensor at timet, we perform
e )

the rotation made by the robot, according to the whe : . S o
o . fay tracing along the facing direction of sensotwice: a)
encoders. Due to the probabilistic nature of the motion ° (1] ,
sing the current mag/;- and b) using the current map

model, the particles spread and generate different p@ssi t with the li i tended b rtain lenath
robot trajectories. Here we use the motion model in [23]: ut wi € line segments extended by a certain leng
of Lex (e.9.200mm) at both ends.For each ray tracing

Ty = X417 + czt cos(B,—1 + 7¢) operation for sensok at time ¢, we calculate the “true”
Yt = Ye—1 + dpsin(Op_1 + ) (expected) range measurentesit* for sensork at timet. If
0 = (0¢—1 +7¢) mod 27 , the absolute difference between the actual and expectgd ran

measurements is less than or equal to the standard deviation
of the sonar measurements (50mm) (i.e.|sf — sF*| < o),

we count it as+1. Otherwise, we count it as-1. We then

take the average of the counts obtained from the two ray
tracing operations for sensérand use that as the sensor’s
Jt = dt + Oranddt| + €trans contribution. We sum these contributions to obtaiﬁ]. Fig.

7t = 1+ + Orot|di| + €rot 1 illustrates how the match value is computed. In this way,
a particle whose map can explain the current measurements
well will be assigned a higher weight than one that cannot.
We should point out that the above procedure to compute the
match value is just a simple heuristic that is found to work
well in our experiments. We believe that better scheme for
computing the particle weights would produce better plrtic

B. Sensor Model filter performance.

When using Par“de ﬂl_te”ng for state ESt!matlon’ paﬁg:l Iwe exclude those measuremesfsthat are equal to the maximum sonar
are usually assigned weights based on their current egimatange smax (€.9. 5000mm) since they provide us with little information as

and the current measurements or observations obtained ab@@?ﬁ 'OHCta“OP (Of Obi‘iCtdS) or obstacles. < intended to be th
. . . e 'lrue’ (expecte range measuremmﬁ[ IS Intenae: 0 be e
the system. The we|ghts are aSS|gned in such a way tnﬁétance to the nearest obstacle in the map along the fagiagtidn of the

likely (good) particles receive higher weights than urljke sensor. If the ray doesn't intersect with any obstacle imtla@,sF* = +-co.

where d;, and 7, denote the robot's true translation and
rotation, respectively. The true translation and rotatiath
differ from the translation and rotation measured by theotob
due to systematic and random errors. Specifically,

wheredyans anddror describe the systematic error angns ~
N(0,024,9 and et ~ N(0,02;) are the additive random
variables representing the random errors. In our experispen
Strans = 1.0 X 1072, 10t = 1.0 x 1072, oyans = 2mm, and
Orot — 2°,



Fig. 1.

Computation of the match value. (Left) Result of thstfray tracing operation using the estimated line segmedtsint values are shown in

parenthesis beside their corresponding sonar measureniissing sonar measurements are equalqig and are not considered in computing the match
value. (Middle) Result of the second ray tracing operatising the extended line segments. (Right) Average countevidu each sonar measurement.

The match valuen; = —2 for this example.

C. Particle Filtering

along the central axis (facing direction) of the transducer

It is well-known that the resampling stage of the particléVith respect to the robot pose where the measurement was
filter can eliminate the correct particle. This is called thdaken. LetP be the set of such points. We then use the RHT

particle depletion problem [7]. In order to reduce the risk t© find groups of (almost) collinear points iff and extract
of particle depletion, we also adopt the selective resargpli the parameters of the lines that fit those groups of points.
approach reported in [7] by computing the effective number The Hough transform [15] is a technique used in digital

1

of particlesNett = =xv——+—
p eff Zf\[:l(w

1/ [4]
Ty (wherew!!" = —¥—) and

resampling only whenVexr < N/2, where N is the sample

size of the patrticle filter.

The following summarizes our sonar SLAM approach:

For timet =1,2,...,T":

1) For each particlg)l[ﬂ_l,z' =1,2,...,N:

a) Update the position of partici;ey]_1 by sampling
from the motion modeb(xt|x£ﬂ1,ct) to get the

new positionx,’ and thusp}”.

b) Update the weight of particlpy] according to:

ml] .
(4] ' (4]

t
wy —e FoXwy

2) Compute the effective number of sampi¥g:.

image processing for extracting features such as lines and
curves in binary edge images. It is a voting scheme where
each point (pixel) in the image votes for a set of features
(lines, curves) that pass through it. Voting is performed
in a discretized parametric space, called thaugh space,
representing all possible feature locations. The mostdvote
cells in the Hough space should correspond to the features
actually present in the image.

The RHT is an improvement on the original Hough
transform by reducing the computation time and memory
usage. The basis of the method lies on the fact that a single
parameter space point can be determined uniquely with a
pair, triple, or generallyn-tuple of points from the image.
Such ann-tuple of points can be chosen randomly from the

3) If Net < N/2, resample from the set of weightedimage and hence the name. Unlike in the original Hough
particles{(p}", wl”’ )} ¥, with replacement with each transform where each point in the image votes for a set of
particle having the probabilty of bqing selected proporeells in the Hough space, a group ofrandomly chosen
tional to the normalized Weight;y and set weights points from the image votes for only one parameter space

wl[f] to 1. .
4) For each particlep,[f],i =1,2,...,N:

a) Extract line segment features from recensonar
scanss;_.,+1.¢ and recentn posescl[f]_mﬂ:t.

b) Incorporate extracted line segments to nMB].

c) Adjust mathM .

point in the RHT. The presence of a specific feature in
the image is quickly revealed by the accumulation of a
small number of parameter space points. Rather than having
a fixed-size array structure for implementing the Hough
space (also called thaccumulator space) as in the original
Hough transform (thus imposing some predefined accuracy
in parameter point location), in RHT, it is possible to use

In the next section, we discuss how we extract liney dynamic tree structure to store the accumulator cells with
segment features from the group of recen{e.g.15) sonar

scanss;—,+1:+ and how the line segments are incorporate@chieve as high an accuracy as required while at the same

into the map as well as how the map is maintained.

IV. OUR MAP BUILDING APPROACH

A. Line Segment Extraction

non-zero votes in the parameter space. This way, one can

time bringing memory usage to near minimal.

To use the RHT for line segment extraction, we use the
polar coordinate parametrizatidp, 6) for lines, wherep is
the length of the normal from the origin to the line afd

For extracting line segments from the group of recent s the angle that the normal makes with the positivexis.
sonar scans, we use the randomized Hough transform (RHj}ing this parametrization, the equation of the line can be
[24] technique proposed by Kultanen, Xu, and Oja. Beforgitten as

line segments can be extracted, we first plot each sonar
measurement as a point (in the global reference frame) that
represents the nominal position of the sonar return, coatput

p=x-cosf+y-sinb .



Overlapping and Non-overlapping Lines

To ensure unique parametrization of lines, we impose that —_— - I

}Jerpendlcu\ar

0 < p < prmae and—180° < 0 < 180°. ——e erpendicula
In our implementation, we discretize the Hough space | e gudeEne

using the resolutiong\p = 50mm andAf = 1°. Let A amaneb o

be the fixed-size accumulator array for implementing the separation

discretized HOUgh space. A pOi(m 9) in t.he HOUgh space Fig. 2. The perpendicular distance and distance of separdietween
corresponds to the accumulator cﬁljj with 7 = Lp/ApJ overlapping and non-overlapping horizontal lines.

andj = | (0 — 0yin)/A6]. The following outlines the RHT
to extract line segments from the set

While P contains at leasfV, points and the maximum  , they do not overlap but the perpendicular distance

number of trials has not been reached: between them is less than or equal igs; and their
1) Reset the accumulator celis; to 0. distance of separation is less than or equalig,
2) While the accumulator arrayt does not have a global Fig. 2 jljustrates the perpendicular distance and distafce
maximum that exceeds a thresheide.g.100) separation between overlapping and non-overlapping hori-
a) Pick two pointg, andp, randomly fromP. zontal lines. A similar interpretation exists for vertidales.
b) Solve the line parametery,d) from the line  To merge two line segments, we first compute the position
equation with pointg, and py. (i.e. thep-value) of the resulting line segment. The position
c) Increment the accumulator cell;; correspond- of the resulting line segment is the sum of the positions of
ing to (p, 0) by 1. the given line segments, weighted by their respective numbe
3) Let(p,0) be the line determined by the location of theof points. We then project the endpoints of the given line
maximum in A. segments onto the resulting line and the two projectiont tha
4) Let @ be the set of points i that are close to the are farthest apart define the endpoints of the resulting line
line (p,6). . segment. The number of points of the resulting line segment
5) If @ contains at leasiV, points, useQ) and (p,0) to is just the sum of the number of points of the given line
extract line segments. segments. If a line segment cannot be merged with the line

6) Remove fromP points in@ used to generate segmentssegments already in the map, it is simply added to the map.
Prior to extracting line segments in Step 5 above, we After incorporating the line segments into the map, we
apply the orthogonality assumption and proceed with theontinue to merge segments that meet our criteria until
line segment extraction only if the lings, ) is close to no further mergings are possible. This step can have the
being horizontal or vertical. This is done by testing whethedesirable effect of integrating two distinct line segments
6 is within a certain thresholdy = 5° from 90° or —90°  representing the same environmental feature into one (e.g.
for horizontal line and-180°, 0°, or 180° for vertical line. a long stretch of wall occassionally occluded by dynamic

If so, we then set to be one of{—180°,—90°,0°,90°}  obstacles or relatively small and insignificant objects).

accordingly and updatg so as to best fit the points iy V. EXPERIMENTAL RESULTS

in the least-square sense. We denote the line resulting from .
applying the orthogonality assumption &, 0/). We have implemented our SLAM approach for sonars and

Given (4, '), we project the points irQ onto the line tested it on the ActivMedia robotics P3-DX mobile robot

([’5’,9’). Let R = {p|,p},..} be the set of projected plgtfor_m. The robot is equipped yvith a frqnt sonar array
points arranged sequentially starting from one of the enére with eight sensors, one on each side and six facing forward

endpoints. We then sequentially partitidh into subsets &t 20° intervals. It also has a rear sonar array with eight
Sp,h = 1,2, ..., with eachS; representing the set of points SENSOrs, one on each side and six facing backwarzbat

belonging to a line segment. We break the line into segmerffdervals. Therefore, a single sonar scan yields a total of
if there is a gap greather than a threshdi]gi;p: 500mm. 16 sonar measurements. Of thé sonar measurements in

After partitioning R into subsetsSy,h = 1,2, ..., the line & single scan, only a small fraction actually corresponds to
segments are easily obtained as those that connect §RiTect measurements while the rest are unreliable due to
extreme endpoints in each,. To increase the reliability of a@ngular uncertainty20° to 30° for sonars), specular and

the line segment extraction phase, only those line segmefff&lltiple reflections, crosstalk, etc. This is in stark castr
that are made up of at leadt, = 8 points and with length to typical laser rangefinders that produce accurate (with

at leastLmin = 200mm are incorporated into the map. a statistical error of~ bmm in range measurement and
angular beam width o< 1° for each beam) and dense

B. Line Merging and Map Management measurements (e.d80 or 360 measurements in each scan)
When incorporating a line segment into the map, we firsind are not affected by problems such as specular reflections
test whether it can be merged with the line segments of thend crosstalk. As such, SLAM with sonars is much more
same type already in the map. Two line segments can lgéfficult and challenging than SLAM with laser rangefinders.
merged if Despite the shortcomings of sonars, our experimental tesul
« they overlap and the perpendicular distance betweeshow that it is possible to produce good quality maps of large
them is less than or equal s (300mm); or indoor environments with large loops using sonars.



In our experiments, the robot is controlled by an IBMmap matching [19] and the resulting maps for all three test
ThinkPad X32 notebook computer and navigated around diénvironments are also shown in Fig. 3 (col. 5). Note that
ferent environments by visiting predefined waypoints whileve used the same set of parameter values for generating
collecting control and sensor data along the way. We consithe results for all three test environments with our apphoac
ered three test environments of increasing sizes and campléexcept for the number of particles) while we had to use
ities. The first test environment is a makeshift environmerdifferent sets of parameter values to generate the regultin
that represents a scaled-down version of a typical officgridmaps shown in Fig. 3 (col. 5) using RBPF with map
environment. The associated map of the environment hasatching. We can easily see the effect of data smearing
an approximate size o6.7m x 6.7m. It is mostly made when using a cell-based approach to SLAM; measurements
up of smooth cardboard walls. The second test environmeate often blurred onto a region of the map to account for
is a portion of the faculty suite on the third floor of ourangular and distance uncertainty.

Engineering Building 1l. It is bigger than the first with an

approximate map size df8.6m x 12.7m and contains two VI. CONCLUSIONS

major loops. Finally, the third test environment is the enti
hallway of the third floor of our Engineering Building I,
including the two bridges connecting to the old engineerin
building. It is the biggest environment in our experiment
with a map size of approximately0.0m x 53.7m and
contains two major loops. The third test environment is ma

SLAM has received considerable attention in the mobile
obotics community for the last two decades. However, much
f the research effort for SLAM has focused on the use

of highly accurate and dense measurements provided by
dIgser rangefinders to correctly localize the robot and peedu

up of various types of obstacles such as brick walls, tileaccurate and detailed maps of complex environments. In this

walls, cable railing, glass windows, trash bins, etc. Ualik paper, we presen_ted an approach t(.) SLAM for a mobile
r{f)bot equipped with low-cost but noisy and sparse sonar

is dynamic with people walking along the corridors durin sensors navigating in large indoor environments involving
g%rge loops. The proposed approach applies particle fitgeri

the experiments. Fig. 3 (cols. 1 and 2) shows the thre

test environments and their associated maps while TabIeWIhere each particle is an estimate of the recent robot poses

. . . . and carries a map of the environment represented as a set
provides summary information about our experiments. P P

To show the effectiveness of our SLAM approach using?f line segments. To overcome the sparseness of sonars and

sonars to compensate for odometric errors, we show in Fig.fg allot\/r\]/ for thg rellablte extractlog (:I]“ne sr;gment feature h
(col. 2) the trajectory from the raw encoder readings (broke rom the environment, we use € multiscan approac

lines) against the desired path of the robot (solid lines) foand grouped consecutive sparse scans into muitiscans. To

all three test environments. It is evident from Fig. 3 (coI.reduce the compl_exity of SLAM pa_rticularly wr_]en sonars
2) that the robot's odometry suffers from drift that getsare used, we applied the orthogonality assumption about the

more pronounced in larger environments. Therefore, rglyinShape of the enV|rQnment by mapping only lines that are
only on the robot's odometry for performing SLAM is not parallel or perpendicular to each other. The orthogonality

sufficient and sonar measurements taken must be used ?c')srsumptlon is reasonable especially for most man-made

correcting the robot’s pose. Fig. 3 (col. 3) shows the rasyilt m_dc(ajor enviro dnrgents whergﬂ:najor stlrlulctures such d"."s Ivvaltls,
maps and robot trajectories with our approach for the thre@'NdOWs, and doors are either paraflel or perpendicular to

test environments. Although the generated maps are n%?Ch other. The randomized H(_)UQh transform was used to
exactly the same as the true maps, they do capture the mg?ﬁ[raqt line segments from multiscans and was qw.te robust
structure of the environments. Additionally, our approac:ﬁO ncilse cauds_ed by sglecular and” mqupIg tre;lec_ttlrc])ns and
managed to close the loops properly in all test environmeng]an 'om readings, problems usually associated with sonars
which is generally considered a difficult problem in SLAM. espite the inherent limitations of sonars, results of eiogi

Lines in our maps correspond to actual major obstacles sugﬁ“datlon’ carried out using a real mobile robet platform

as walls, glass windows, doors, cable railings, as well as {bavigatin_g in differgnt environ-ments.of increasing sized a
some minor ones such as trash bins and posts. Because of?ﬂ%.p.lex't'es’ provide supportive ewdence.for the potnti
Hough transform, our line extraction procedure is quite rov'd llity of sonars for complex large-scale indoor SLAM.
bust to noise caused by specular and multiple reflections and
phantom readings. Also, since we only consider horizontal
and vertical lines, our line extraction procedure is efferct [1] R. C. Smith and P. Cheeseman, “On the representation stirdation
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