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Abstract— Simultaneous localization and mapping (SLAM)
is a well-studied problem in mobile robotics. However, the
majority of the proposed techniques for SLAM rely on the use of
accurate and dense measurements provided by laser rangefind-
ers to correctly localize the robot and produce accurate and
detailed maps of complex environments. Little work has been
done on the use of low-cost but noisy and sparse sonar sensors
for SLAM in large indoor environments involving large loops.
In this paper, we present our approach to SLAM with sonar
sensors by applying particle filtering and a line-segment-based
map representation with an orthogonality assumption to map
indoor environments much larger and more challenging than
those previously considered with sonar sensors. Results from
robotic experiments demonstrate that it is possible to produce
good maps of large indoor environments with large loops despite
the inherent limitations of sonar sensors.

I. INTRODUCTION

Since it was first introduced by Smith and Cheeseman
[1], the simultaneous localization and mapping (SLAM)
problem has become one of the mainstream research areas
in mobile robotics. The SLAM problem involves estimating
the position and orientation of the robot while building a
map of the environment in parallel. In order to accomplish
SLAM, the robot is usually equipped with sensors (e.g.
wheel encoders, range sensors, cameras) that allow it to
observe (though only partially and inexactly) the state of
the world including itself. The SLAM problem is inherently
difficult and complex although the specific sensor used also
contributes to the hardness of SLAM.

SLAM is a well-studied problem in mobile robotics and
a number of techniques have been proposed. However, the
majority of the proposed techniques for SLAM rely on
the use of accurate and dense measurements provided by
laser rangefinders to correctly localize the robot and produce
accurate and detailed maps of complex environments (see
e.g. [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]). Relatively
little work has been done on the use of low-cost but noisy and
sparse sonar sensors for SLAM in large indoor environments
involving large loops. Obviously, the SLAM problem is much
more difficult and challenging in the case of sonar sensors
than laser rangefinders (which have become thede facto
range sensors for SLAM). Despite the difficulty, we believe
that it is interesting to investigate the extent to which sonar
sensors can be used for SLAM especially in mapping large
indoor environments with large loops.

Although sonar sensors are not as accurate and do not pro-
vide as dense observations as laser rangefinders, they are still
an attractive alternative to laser rangefinders when it comes to
cost, power consumption, size and weight, and computational
requirements. Compared to laser rangefinders, sonars cost
several orders of magnitude less, consume less power, are
small and lightweight, and impose minimal computational
requirements. As such, sonar sensors are well-suited for use
in inexpensive consumer-oriented and minimally-equipped
robots that are typically limited in both power and compu-
tational capability.

In this paper, we present our approach to SLAM with sonar
sensors by applying particle filtering and an orthogonal line-
segment-based map representation to map indoor environ-
ments much larger and more challenging than those previ-
ously considered with sonar sensors. Rather than employing
a grid-based representation for the map, we use a feature-
based representation where the features are represented as
line segments. Line segments are suitable for compactly
describing most structured indoor environments that are
usually composed of walls, doors, glass windows, etc. that
are either parallel or perpendicular to each other. Similar
to [11], we also make use of theorthogonality assumption
about the shape of the environment in order to reduce the
complexity, mapping only lines that are either parallel or
perpendicular to each other.

A major difficultly in using line segments as an envi-
ronment’s representation is extracting them from noisy and
sparse sensors such as sonars (in our case, an array of16
sonar transducers) compared to a single dense scan of a
180◦ laser rangefinder. Thus, in this work, we adopt the
multiscan approach [12] to group consecutive sparse scans
so that measurements from multiple time frames can be used
to extract line segments, although our work differs on how
the sparse scans are collected and the frequency at which the
feature extraction is performed.

The contributions of this paper can be summarized as
follows. We show through extensive experiments that it is
possible to produce good quality maps of large indoor envi-
ronments with large loops even with noisy and sparse sonar
sensors. To our knowledge, the environments we consider in
our experiments are much larger and more challenging than
those previously reported in the literature for SLAM with
sonars. The results provide significant supportive evidence



for the potential viability of sonars for large-scale indoor
SLAM. Our method employs a particle filtering technique
where each particle carries a single map rather than a
distribution over possible maps. Moreover, we apply the
orthogonality assumption to reduce the complexity. Finally,
we discuss how we extract line segments from sonar data
and we introduce a simple sensor model for computing the
likelihood of the observations.

II. PRIOR WORK

While much of the work on SLAM with proximity sensors
has focused on laser scanners (see e.g. [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11]), some researchers have used sonars.
In this section, we briefly describe some of the techniques
proposed for carrying out SLAM with sonars. There are two
main criteria that can be used to categorize existing sonar-
based SLAM techniques: the representation used to model
the environment and the technique used to estimate the state
belief distribution.

Zunino and Christensen [13] described an algorithm for
SLAM based on the extended Kalman filter (EKF). The EKF
approach was used to build and maintain the map of the
environment. Their method used point features as landmarks
(representing corners, edges, and thin poles detectable by
standard sonar sensors through a triangulation technique).
They also presented a method for detecting the failures
of the EKF approach and recovering from such failures.
Experiments were performed using a Nomadic SuperScout
mobile robot in a living room of size5m× 9m.

Tardós et al. [14] described a technique for the creation of
feature-based stochastic maps using standard Polaroid sonar
sensors. In their work, they used the Hough transform [15]
for detecting point features (representing corners and edges)
and line segment features (representing walls) from sonar
data acquired from multiple uncertain vantage points. Instead
of building one global map from the start, they generated a
sequence of local maps of limited size, and then joined them
together, to obtain the global map. Techniques for joining
and combining several stochastic maps were presented. The
locations of geometric features in the environment and the
position of the robot were jointly estimated in a stochastic
framework via the EKF. Experiments were carried out using
a B21 mobile robot equipped with a ring of24 Polaroid
sensors in a12m× 12m environment.

A similar approach to that of Tardós was proposed by
Leonard et al. [16] except that they incorporated past robot
positions to the state vector and explicitly maintained the
estimates of the correlations between current and previous
robot states. By doing so, it became possible to consistently
initialize new map features by combining data from multiple
vantage points. Experiments were conducted in a testing tank
of size10m× 3m× 1m for underwater sonar-based SLAM,
a simple “box” environment made of plywood, and along a
25m long corridor.

A much earlier work along the same lines of feature-
based stochastic mapping using the EKF was given by

Rencken [17] although experiments were only performed in
a simulation of a5m× 5m room.

Instead of jointly estimating the robot state and the lo-
cations of line segment features via the EKF, Lorenzo et
al. [18] used the EKF to estimate only the robot state. The
environment was described by a global segment-based map
that was built using local sonar-based occupation maps to
identify obstacle boundaries. The Hough transform was used
to extract the segments that represent the obstacle boundaries.
The segments were then incorporated to the global segment-
based map. The Hough-based approach provided a correction
of the estimated robot pose which was integrated with
odometric information via the EKF. The approach was tested
with a Nomad 200 mobile robot equipped with a ring of 16
sonar sensors traversing a corridor environment.

More recently, Schröter, Böhme, and Gross [19] presented
a combination of map-matching with a Rao-Blackwellized
particle filter (RBPF) [20] which enabled them to solve the
SLAM problem with low-resolution sonar range sensors.
They introduced a simple and fast but very efficient shared
representation of gridmaps which reduced the memory cost
overhead caused by inherent redundancy between the par-
ticles. Experimental results were presented with a SCITOS
A5 robot platform navigating in a home store environment.

Other notable recent related work on SLAM with sparse
sensors include the work of Beevers and Huang [12] on
SLAM with sparse sensing using the multiscan approach and
RBPF, Abrate, Bona, and Indri [21] on experimental EKF-
based SLAM for mini-rovers with IR sensors only, and Choi,
Lee, and Oh [22] on a line based SLAM with infrared sensors
using geometric constraints and active exploration.

The focus of our work reported in this paper is on
SLAM in large structured indoor environments involving
large loops using sonar sensors. The largest environment
we consider has an approximate area of70.0m × 53.7m
containing two major loops and is made up of various types
of obstacles (e.g. brick walls, tiled walls, glass windows and
doors, and cable railings). Our work differs from [19] in
that we use a line-segment-based instead of a grid-based
representation for the map. By adopting a line-segment-
based map representation, we can avoid the usual problems
associated with a grid-based representation such as data
smearing [14], the strong independence assumption between
the grid cells, and the considerable amount of memory
required for storage. However, a major difficulty with line
segments is extracting them from sparse and noisy sonars. To
overcome the sparseness, we apply the multiscan approach
[12] to group consecutive sparse scans. In order to reduce the
complexity of SLAM, similar to [11], we make use of the
orthogonality assumption about the shape of the environment
by mapping only lines that are parallel or perpendicular to
each other. Unlike [14], [16], [17], [18], we use particle filters
to sample the distribution over the most recent robot poses.
Each particle in our particle filter is associated with a single
map rather than a distribution over possible maps.



III. OUR LOCALIZATION APPROACH

The basis of our approach is a particle filter, where each
particle is an estimate of the recentm robot poses. Thus,
the particles collectively sample the space of the recent
m robot poses. Here we assume that the robot moves in
a planar environment so that its pose at timet can be
represented asxt = (xt, yt, θt)

T , where (xt, yt)
T is its

Cartesian coordinates andθt is its heading or orientation with
respect to some global reference frame. Each particle carries
an estimated map of the environment that is represented
as a set of line segments. Because of the orthogonality
assumption about the shape of the environment, the map
will contain only two types of lines: horizontal and vertical.
Horizontal (vertical) lines are assigned to be parallel to the
x-axis (y-axis) of the global reference frame. Extracted line
segments that are not close to being either horizontal or
vertical are simply discarded and not placed in the map.

A. Motion Model

Let the ith particle at timet be p
[i]
t = (x

[i]
t−m+1:t, M

[i]
t ),

where x
[i]
t−m+1:t is the sequence of the recentm robot

posesx[i]
t−m+1,x

[i]
t−m+2, ...,x

[i]
t according to particlei and

M
[i]
t is the set of line segments representing the map of

particle i at time t. The particles move according to the
probabilistic motion modelp(xt|xt−1, ct), wherect is the
control command executed by the robot during the time
interval [t − 1, t), to account for the inherent uncertainty
in robot motion. The control commandct is given by the
pair (dt, rt)

T , where dt is the distance traveled andrt is
the rotation made by the robot, according to the wheel
encoders. Due to the probabilistic nature of the motion
model, the particles spread and generate different possible
robot trajectories. Here we use the motion model in [23]:

xt = xt−1 + d̂t cos(θt−1 + r̂t)
yt = yt−1 + d̂t sin(θt−1 + r̂t)
θt = (θt−1 + r̂t) mod 2π ,

where d̂t and r̂t denote the robot’s true translation and
rotation, respectively. The true translation and rotationboth
differ from the translation and rotation measured by the robot
due to systematic and random errors. Specifically,

d̂t = dt + δtrans|dt|+ ǫtrans

r̂t = rt + δrot|dt|+ ǫrot ,

whereδtrans andδrot describe the systematic error andǫtrans∼
N (0, σ2

trans) and ǫrot ∼ N (0, σ2
rot) are the additive random

variables representing the random errors. In our experiments,
δtrans = 1.0 × 10−2, δrot = 1.0 × 10−5, σtrans = 2mm, and
σrot = 2◦.

B. Sensor Model

When using particle filtering for state estimation, particles
are usually assigned weights based on their current estimates
and the current measurements or observations obtained about
the system. The weights are assigned in such a way that
likely (good) particles receive higher weights than unlikely

(bad) particles. The weights are used during the resampling
stage of the particle filter such that particles with higher
weights are resampled with higher probability than particles
with lower weights. Through resampling, it is hoped that
good particles (those that can explain the data well) are
retained while bad particles are eliminated. Typically, the
sensor model (usually expressed in probabilistic form) is uti-
lized in computing the appropriate weights for the particles.
For SLAM, the weight assigned to particlei is commonly
directly proportional to the likelihood of the observations
p(st|x

[i]
t , M

[i]
t ) where st = {s1

t , s
2
t , ..., s

K
t } is the set of

sensor measurements taken by theK available sensors at
time t. From the preceeding discussion, it is evident that
using an accurate and robust sensor model is therefore crucial
to the success of the particle filter and other state estimation
techniques in general. However, deriving an accurate and
robust model for sensors is generally a difficult problem.

In this paper, we propose a heuristic but simple way to
calculate the weights of the particles which is inspired by the
work of Schröter, Böhme, and Gross [19] on map matching.
In [19], they need to match a local map to a global one. They
calculate the weight of particlei as

w
[i]
t = e

m
[i]
t
f , (1)

where f is a free parameter that influences the spread of
the particle weights andm[i]

t is a measure of the quality of
the match. [19] employs a grid-based map, so we replace
their definition ofm[i]

t with our own. For each sonar range
measurementsk

t obtained by sensork at timet, we perform
ray tracing along the facing direction of sensork twice: a)
using the current mapM [i]

t and b) using the current map
but with the line segments extended by a certain length
of Lext (e.g. 200mm) at both ends.1 For each ray tracing
operation for sensork at time t, we calculate the “true”
(expected) range measurement2 sk∗

t for sensork at timet. If
the absolute difference between the actual and expected range
measurements is less than or equal to the standard deviation
of the sonar measurementsσd (50mm) (i.e.|sk

t −sk∗
t | ≤ σd),

we count it as+1. Otherwise, we count it as−1. We then
take the average of the counts obtained from the two ray
tracing operations for sensork and use that as the sensor’s
contribution. We sum these contributions to obtainm

[i]
t . Fig.

1 illustrates how the match value is computed. In this way,
a particle whose map can explain the current measurements
well will be assigned a higher weight than one that cannot.
We should point out that the above procedure to compute the
match value is just a simple heuristic that is found to work
well in our experiments. We believe that better scheme for
computing the particle weights would produce better particle
filter performance.

1We exclude those measurementssk
t

that are equal to the maximum sonar
rangesmax (e.g. 5000mm) since they provide us with little information as
to the location of objects or obstacles.

2The “true” (expected) range measurementsk∗
t

is intended to be the
distance to the nearest obstacle in the map along the facing direction of the
sensor. If the ray doesn’t intersect with any obstacle in themap,sk∗

t
= +∞.



Fig. 1. Computation of the match value. (Left) Result of the first ray tracing operation using the estimated line segments. Count values are shown in
parenthesis beside their corresponding sonar measurements. Missing sonar measurements are equal tosmax and are not considered in computing the match
value. (Middle) Result of the second ray tracing operation using the extended line segments. (Right) Average count value for each sonar measurement.
The match valuemt = −2 for this example.

C. Particle Filtering

It is well-known that the resampling stage of the particle
filter can eliminate the correct particle. This is called the
particle depletion problem [7]. In order to reduce the risk
of particle depletion, we also adopt the selective resampling
approach reported in [7] by computing the effective number
of particlesNeff = 1

P

N
i=1(w[i]′)2

(wherew[i]′ = w[i]
P

N
i=1 w[i] ) and

resampling only whenNeff < N/2, whereN is the sample
size of the particle filter.

The following summarizes our sonar SLAM approach:
For time t = 1, 2, ..., T :

1) For each particlep[i]
t−1, i = 1, 2, ..., N :

a) Update the position of particlep[i]
t−1 by sampling

from the motion modelp(xt|x
[i]
t−1, ct) to get the

new positionx[i]
t and thusp[i]

t .
b) Update the weight of particlep[i]

t according to:

w
[i]
t ← e

m
[i]
t
f × w

[i]
t−1

2) Compute the effective number of samplesNeff.
3) If Neff < N/2, resample from the set of weighted

particles{(p[i]
t , w

[i]′

t )}Ni=1 with replacement with each
particle having the probabilty of being selected propor-
tional to the normalized weightw[i]′

t and set weights
w

[i]
t to 1.

4) For each particlep[i]
t , i = 1, 2, ..., N :

a) Extract line segment features from recentm sonar
scansst−m+1:t and recentm posesx[i]

t−m+1:t.

b) Incorporate extracted line segments to mapM
[i]
t .

c) Adjust mapM
[i]
t .

In the next section, we discuss how we extract line
segment features from the group of recentm (e.g.15) sonar
scansst−m+1:t and how the line segments are incorporated
into the map as well as how the map is maintained.

IV. OUR MAP BUILDING APPROACH

A. Line Segment Extraction

For extracting line segments from the group of recentm
sonar scans, we use the randomized Hough transform (RHT)
[24] technique proposed by Kultanen, Xu, and Oja. Before
line segments can be extracted, we first plot each sonar
measurement as a point (in the global reference frame) that
represents the nominal position of the sonar return, computed

along the central axis (facing direction) of the transducer,
with respect to the robot pose where the measurement was
taken. LetP be the set of such points. We then use the RHT
to find groups of (almost) collinear points inP and extract
the parameters of the lines that fit those groups of points.

The Hough transform [15] is a technique used in digital
image processing for extracting features such as lines and
curves in binary edge images. It is a voting scheme where
each point (pixel) in the image votes for a set of features
(lines, curves) that pass through it. Voting is performed
in a discretized parametric space, called theHough space,
representing all possible feature locations. The most voted
cells in the Hough space should correspond to the features
actually present in the image.

The RHT is an improvement on the original Hough
transform by reducing the computation time and memory
usage. The basis of the method lies on the fact that a single
parameter space point can be determined uniquely with a
pair, triple, or generallyn-tuple of points from the image.
Such ann-tuple of points can be chosen randomly from the
image and hence the name. Unlike in the original Hough
transform where each point in the image votes for a set of
cells in the Hough space, a group ofn randomly chosen
points from the image votes for only one parameter space
point in the RHT. The presence of a specific feature in
the image is quickly revealed by the accumulation of a
small number of parameter space points. Rather than having
a fixed-size array structure for implementing the Hough
space (also called theaccumulator space) as in the original
Hough transform (thus imposing some predefined accuracy
in parameter point location), in RHT, it is possible to use
a dynamic tree structure to store the accumulator cells with
non-zero votes in the parameter space. This way, one can
achieve as high an accuracy as required while at the same
time bringing memory usage to near minimal.

To use the RHT for line segment extraction, we use the
polar coordinate parametrization(ρ, θ) for lines, whereρ is
the length of the normal from the origin to the line andθ
is the angle that the normal makes with the positivex-axis.
Using this parametrization, the equation of the line can be
written as

ρ = x · cos θ + y · sin θ . (2)



To ensure unique parametrization of lines, we impose that
0 ≤ ρ ≤ ρmax and−180◦ ≤ θ < 180◦.

In our implementation, we discretize the Hough space
using the resolutions∆ρ = 50mm and∆θ = 1◦. Let A
be the fixed-size accumulator array for implementing the
discretized Hough space. A point(ρ, θ) in the Hough space
corresponds to the accumulator cellAij with i = ⌊ρ/∆ρ⌋
andj = ⌊(θ − θmin)/∆θ⌋. The following outlines the RHT
to extract line segments from the setP :

While P contains at leastN0 points and the maximum
number of trials has not been reached:

1) Reset the accumulator cellsAij to 0.
2) While the accumulator arrayA does not have a global

maximum that exceeds a thresholdτ (e.g.100)
a) Pick two pointspa andpb randomly fromP .
b) Solve the line parameters(ρ, θ) from the line

equation with pointspa andpb.
c) Increment the accumulator cellAij correspond-

ing to (ρ, θ) by 1.
3) Let (ρ̂, θ̂) be the line determined by the location of the

maximum inA.
4) Let Q be the set of points inP that are close to the

line (ρ̂, θ̂).
5) If Q contains at leastN0 points, useQ and (ρ̂, θ̂) to

extract line segments.
6) Remove fromP points inQ used to generate segments.
Prior to extracting line segments in Step 5 above, we

apply the orthogonality assumption and proceed with the
line segment extraction only if the line(ρ̂, θ̂) is close to
being horizontal or vertical. This is done by testing whether
θ̂ is within a certain thresholdǫθ = 5◦ from 90◦ or −90◦

for horizontal line and−180◦, 0◦, or 180◦ for vertical line.
If so, we then set̂θ to be one of{−180◦,−90◦, 0◦, 90◦}
accordingly and updatêρ so as to best fit the points inQ
in the least-square sense. We denote the line resulting from
applying the orthogonality assumption as(ρ̂′, θ̂′).

Given (ρ̂′, θ̂′), we project the points inQ onto the line
(ρ̂′, θ̂′). Let R = {p′1, p

′

2, ...} be the set of projected
points arranged sequentially starting from one of the extreme
endpoints. We then sequentially partitionR into subsets
Sh, h = 1, 2, ..., with eachSh representing the set of points
belonging to a line segment. We break the line into segments
if there is a gap greather than a thresholdLsep = 500mm.
After partitioning R into subsetsSh, h = 1, 2, ..., the line
segments are easily obtained as those that connect the
extreme endpoints in eachSh. To increase the reliability of
the line segment extraction phase, only those line segments
that are made up of at leastN0 = 8 points and with length
at leastLmin = 200mm are incorporated into the map.

B. Line Merging and Map Management

When incorporating a line segment into the map, we first
test whether it can be merged with the line segments of the
same type already in the map. Two line segments can be
merged if

• they overlap and the perpendicular distance between
them is less than or equal toLdist (300mm); or

distance
perpendicular

distance
perpendicular

distance of
separation

Overlapping and Non−overlapping Lines

Fig. 2. The perpendicular distance and distance of separation between
overlapping and non-overlapping horizontal lines.

• they do not overlap but the perpendicular distance
between them is less than or equal toLdist and their
distance of separation is less than or equal toLsep.

Fig. 2 illustrates the perpendicular distance and distanceof
separation between overlapping and non-overlapping hori-
zontal lines. A similar interpretation exists for verticallines.

To merge two line segments, we first compute the position
(i.e. theρ-value) of the resulting line segment. The position
of the resulting line segment is the sum of the positions of
the given line segments, weighted by their respective number
of points. We then project the endpoints of the given line
segments onto the resulting line and the two projections that
are farthest apart define the endpoints of the resulting line
segment. The number of points of the resulting line segment
is just the sum of the number of points of the given line
segments. If a line segment cannot be merged with the line
segments already in the map, it is simply added to the map.

After incorporating the line segments into the map, we
continue to merge segments that meet our criteria until
no further mergings are possible. This step can have the
desirable effect of integrating two distinct line segments
representing the same environmental feature into one (e.g.
a long stretch of wall occassionally occluded by dynamic
obstacles or relatively small and insignificant objects).

V. EXPERIMENTAL RESULTS

We have implemented our SLAM approach for sonars and
tested it on the ActivMedia robotics P3-DX mobile robot
platform. The robot is equipped with a front sonar array
with eight sensors, one on each side and six facing forward
at 20◦ intervals. It also has a rear sonar array with eight
sensors, one on each side and six facing backward at20◦

intervals. Therefore, a single sonar scan yields a total of
16 sonar measurements. Of the16 sonar measurements in
a single scan, only a small fraction actually corresponds to
correct measurements while the rest are unreliable due to
angular uncertainty (20◦ to 30◦ for sonars), specular and
multiple reflections, crosstalk, etc. This is in stark contrast
to typical laser rangefinders that produce accurate (with
a statistical error of≈ 5mm in range measurement and
angular beam width of≤ 1◦ for each beam) and dense
measurements (e.g.180 or 360 measurements in each scan)
and are not affected by problems such as specular reflections
and crosstalk. As such, SLAM with sonars is much more
difficult and challenging than SLAM with laser rangefinders.
Despite the shortcomings of sonars, our experimental results
show that it is possible to produce good quality maps of large
indoor environments with large loops using sonars.



In our experiments, the robot is controlled by an IBM
ThinkPad X32 notebook computer and navigated around dif-
ferent environments by visiting predefined waypoints while
collecting control and sensor data along the way. We consid-
ered three test environments of increasing sizes and complex-
ities. The first test environment is a makeshift environment
that represents a scaled-down version of a typical office
environment. The associated map of the environment has
an approximate size of6.7m × 6.7m. It is mostly made
up of smooth cardboard walls. The second test environment
is a portion of the faculty suite on the third floor of our
Engineering Building II. It is bigger than the first with an
approximate map size of38.6m× 12.7m and contains two
major loops. Finally, the third test environment is the entire
hallway of the third floor of our Engineering Building II,
including the two bridges connecting to the old engineering
building. It is the biggest environment in our experiments
with a map size of approximately70.0m × 53.7m and
contains two major loops. The third test environment is made
up of various types of obstacles such as brick walls, tiled
walls, cable railing, glass windows, trash bins, etc. Unlike
the first two test environments, the third test environment
is dynamic with people walking along the corridors during
the experiments. Fig. 3 (cols. 1 and 2) shows the three
test environments and their associated maps while Table I
provides summary information about our experiments.

To show the effectiveness of our SLAM approach using
sonars to compensate for odometric errors, we show in Fig. 3
(col. 2) the trajectory from the raw encoder readings (broken
lines) against the desired path of the robot (solid lines) for
all three test environments. It is evident from Fig. 3 (col.
2) that the robot’s odometry suffers from drift that gets
more pronounced in larger environments. Therefore, relying
only on the robot’s odometry for performing SLAM is not
sufficient and sonar measurements taken must be used for
correcting the robot’s pose. Fig. 3 (col. 3) shows the resulting
maps and robot trajectories with our approach for the three
test environments. Although the generated maps are not
exactly the same as the true maps, they do capture the main
structure of the environments. Additionally, our approach
managed to close the loops properly in all test environments
which is generally considered a difficult problem in SLAM.
Lines in our maps correspond to actual major obstacles such
as walls, glass windows, doors, cable railings, as well as to
some minor ones such as trash bins and posts. Because of the
Hough transform, our line extraction procedure is quite ro-
bust to noise caused by specular and multiple reflections and
phantom readings. Also, since we only consider horizontal
and vertical lines, our line extraction procedure is effective
at filtering out dynamic objects particularly for the third test
environment.

We also performed experiments without using the orthog-
onality assumption and the final maps and robot trajectories
are shown in Fig. 3 (col. 4). Without the orthogonality
assumption, the resulting maps and robot trajectories are
not properly estimated and corrected. Finally, we also im-
plemented a RBPF using gridmaps for SLAM based on

map matching [19] and the resulting maps for all three test
environments are also shown in Fig. 3 (col. 5). Note that
we used the same set of parameter values for generating
the results for all three test environments with our approach
(except for the number of particlesN ) while we had to use
different sets of parameter values to generate the resulting
gridmaps shown in Fig. 3 (col. 5) using RBPF with map
matching. We can easily see the effect of data smearing
when using a cell-based approach to SLAM; measurements
are often blurred onto a region of the map to account for
angular and distance uncertainty.

VI. CONCLUSIONS

SLAM has received considerable attention in the mobile
robotics community for the last two decades. However, much
of the research effort for SLAM has focused on the use
of highly accurate and dense measurements provided by
laser rangefinders to correctly localize the robot and produce
accurate and detailed maps of complex environments. In this
paper, we presented an approach to SLAM for a mobile
robot equipped with low-cost but noisy and sparse sonar
sensors navigating in large indoor environments involving
large loops. The proposed approach applies particle filtering
where each particle is an estimate of the recent robot poses
and carries a map of the environment represented as a set
of line segments. To overcome the sparseness of sonars and
to allow for the reliable extraction of line segment features
from the environment, we used the multiscan approach
and grouped consecutive sparse scans into multiscans. To
reduce the complexity of SLAM particularly when sonars
are used, we applied the orthogonality assumption about the
shape of the environment by mapping only lines that are
parallel or perpendicular to each other. The orthogonality
assumption is reasonable especially for most man-made
indoor environments where major structures such as walls,
windows, and doors are either parallel or perpendicular to
each other. The randomized Hough transform was used to
extract line segments from multiscans and was quite robust
to noise caused by specular and multiple reflections and
phantom readings, problems usually associated with sonars.
Despite the inherent limitations of sonars, results of empirical
validation, carried out using a real mobile robot platform
navigating in different environments of increasing sizes and
complexities, provide supportive evidence for the potential
viability of sonars for complex large-scale indoor SLAM.
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