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Abstract

This thesis considers three complications that arise from applying rein-
forcement learning to a real-world application. In the process of using
reinforcement learning to build an adaptive electronic market-maker,
we find the sparsity of data, the partial observability of the domain,
and the multiple objectives of the agent to cause serious problems for
existing reinforcement learning algorithms.

We employ importance sampling (likelihood ratios) to achieve good
performance in partially observable Markov decision processes with few
data. Our importance sampling estimator requires no knowledge about
the environment and places few restrictions on the method of collect-
ing data. It can be used efficiently with reactive controllers, finite-state
controllers, or policies with function approximation. We present theo-
retical analyses of the estimator and incorporate it into a reinforcement
learning algorithm.

Additionally, this method provides a complete return surface which
can be used to balance multiple objectives dynamically. We demon-
strate the need for multiple goals in a variety of applications and nat-
ural solutions based on our sampling method. The thesis concludes
with example results from employing our algorithm to the domain of
automated electronic market-making.
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Chapter 1

Introduction

“A little learning is a dangerous thing.”
Essay on Criticism. part ii. line 15.

Alexander Pope

Designing the control algorithm for the robot can be difficult for
many robotic tasks. The physical world is highly variable: the same
exact situation seldom arises twice, measurements of the world are
noisy, much of the important information for a decision is hidden, and
the exact dynamics of the environment are usually unknown. When the
robot is created, we may not be able to anticipate all possible situations
and tasks. In many applications, writing software to explicitly control
the robot correctly is difficult if not impossible.

Similar situations arise in other areas of control. Virtual robots, or
software agents, have similar difficulties navigating and solving prob-
lems in electronic domains. Agents that search the world wide web for
prices or news stories, programs that trade securities electronically, and
software for planning travel itineraries are all becoming more popular.
They don’t operate in the physical world, but their virtual environ-
ments have many of the same characteristics. The agents have actions
they can take, such as requesting information from online services or
presenting data to the user. They have observations they make, such
as the web page provided by a server or the user’s current choice. And
they have goals, such as finding the best price for a book or finding the
quickest way to travel from New York to Los Angeles.

This thesis considers learning as a tool to aid in the design of robust
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algorithms for environments which may not be completely known ahead
of time. We begin in this chapter by describing reinforcement learning,
some of its background, and the relationship of this work to other
algorithms and methods. Chapter 2 develops the main algorithm and
theoretical contributions of the thesis. Chapters 3 and 4 extend this
algorithm to deal with more complex controllers, noisy domains, and
multiple simultaneous goals. Chapter 5 uses these techniques to design
an adaptive electronic market-maker. We conclude in chapter 6 by
discussing the contribution of this work and possible future directions.

1.1 Task Description

A learning algorithm has the potential to be more robust than an ex-
plicit control algorithm. Most programmed control policies are de-
signed by beginning with assumptions about the environment’s dy-
namics and the goal behavior. If the assumptions are incorrect, this
can lead to critically suboptimal behavior. Learning algorithms begin
with few assumptions about the environment dynamics and therefore
less often fail due to incorrect assumptions. However, as with all adap-
tive methods, the trade-off is that the algorithm may perform poorly
initially while learning. The relaxed assumptions come at the cost of
a more general model of the environment. In order to be effective, the
algorithm must use experience to fill in the details of the environment
that the designer left unspecified.

In practice, it is not unsurprising that hybrid systems that have
adaptation for some parts and engineered preset knowledge for other
parts are the most successful. Yet, for this work, we will try to make
only the most necessary assumptions so as to push the learning aspects
of agent control as far as possible.

There are a number of separate fields of learning within artificial
intelligence. Supervised learning is the most common. In a supervised
learning scenario, the agent is presented with a number of example situ-
ations and the corresponding correct responses. Its task is to generalize
from the examples to a rule or algorithm that will produce the correct
response for all situations. Bishop (1995) has a good introductory de-
scription of supervised learning and the related field of unsupervised
learning. Schölkopf, Burges, and Smola (1999) and Jordan (1999) show
some examples of more current research in this area.

Supervised learning requires a teacher who can give enlightening
examples of what to do in which situation. This is often difficult.
While we might know that it is useful for the robot to move forward in
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Figure 1.1: Block diagram of the reinforcement learning setting

order to progress down the hallway, the exact ideal velocity to get to
the destination without colliding into obstacles is probably unknown.
Supervised learning usually requires a human trainer; if an algorithm
already exists to produce the correct response to all situations, the task
has been already solved and no learning is required. Human training
can be expensive and requires that someone already understands a
significant portion of the desired solution. Instead, it is often easier to
specify how well the agent is doing rather than what the agent should be
doing. While “how well” is less informative than “what,” an indication
of the quality of the current situation can often be supplied continuously
for all situations, usually without human intervention.

Reinforcement learning (RL) takes this approach. The quality of
situation is embodied by rewards (and their sum, the return). Fig-
ure 1.1 shows a block diagram of the interaction cycle. The agent is
the part of the world that learning algorithm controls. In our examples
above, the agent would be the robot or the internet application. The
environment encompasses all of the rest of the world. In general, we
limit this to be only the parts of the world that have a measurable
effect on the agent. The symbol π is used to stand for the controlling
policy of the agent. The reinforcement learning algorithm’s job is to
find a policy that maximizes the return.

The reward is not part of either the agent or the environment but is
a function of one or both of them. The task of the agent is to maximize
the return, the total reward over all time. It might be in the agent’s
best interest to act such as to decrease the immediate reward if that
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leads to greater future rewards. The agent needs to consider the long-
term consequences of its actions in order to achieve its objective. The
reward defines the agent’s objective and is a fixed part of the problem’s
definition. Whether it is defined by the system’s designers or is a signal
from the environment is left unspecified. For the purposes of this thesis,
it is assumed to be fixed prior to invoking learning.

All parts of this model are unknown to the learning algorithm. The
learning algorithm knows the interface to the world (the set of possible
actions and observations), but no more. The dynamics of the envi-
ronment, the meaning of the observations, the effects of actions, and
the reward function are all unknown to the agent. As the agent inter-
acts with the environment, it experiences observations and rewards as
it tries actions. From this experience, the algorithm’s job is to select
a control policy for the agent that will, in expectation, maximize the
total reward.

Narrowing the definition can be difficult without omitting some type
of reinforcement learning. Kaelbling, Littman, and Moore (1996) do a
good job of describing the many aspects to reinforcement learning and
the range of the different approaches. The definition of return, the
type of controller, and the knowledge about the task domain can vary.
Yet, two properties are universal to almost all reinforcement learning
research: time passes in discrete increments and the return is the sum
of rewards, one per time step.

1.1.1 Agent-Environment Cycle

The discrete nature implies that the environment and the agent take
turns (or are at least modeled that way). The system is a closed loop
and thus the output generated by the agent affects the output gen-
erated by the environment and, symmetrically, the environment af-
fects the agent. These changes are sequential and occur in time steps.
Usually the environment is considered to be fixed to begin the cycle
and the description takes an agent-centric point-of-view. The environ-
ment’s output is called an observation (because it is what the agent
senses about the environment) and the agent’s output is called an ac-
tion (because it is what the agent uses to affect the environment). The
agent senses the current observation from the environment; the agent
executes its controller policy to select an action; and the environment
changes in response to the action (thus affecting the next observation).
This completes one time step after which the cycle repeats.

After each time step, the agent receives a real scalar value called
a reward. The return is the sum of all of the rewards across all time
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steps. This sum can be undiscounted, discounted, or averaged. The
latter two are popular for tasks with no stopping time because they
prevent infinite sums. If we let rt be the reward at time step t and T
be the number of time steps, these definitions of return can be written
as

undiscounted: R =

T
∑

t=0

rt

discounted: R =

T
∑

t=0

γtrt, for 0 ≤ γ < 1

average: R = lim
τ→T

[

1

τ + 1

τ
∑

t=0

rt

]

.

For the discounted case, the parameter γ controls time horizon consid-
ered by the agent. For larger values of γ, the distant future is more
relevant to the agent’s goal. Smaller values of γ encourage the agent to
optimize the more immediate rewards and not to worry as much about
the far future. Both discounted and average reward are valid measures
of return even if T =∞.

1.1.2 Example Domains

We can now instantiate our robot and internet search scenarios from
before, as reinforcement learning problems. In the case of electronic
trading, the agent would be the trading program and the environment
would consist of the other traders and the trading system. Actions
might include placing bids on the market and querying news agencies
for financial stories. Observations would include the current value of
the traded securities, headlines from news sources, the current status of
placed bids, and text from requested articles. The most obvious reward
would be the current estimated value of the portfolio. The agent’s task
would be to request information and trade securities to maximize the
value of its portfolio.

For robot navigation, the set of observations might be the current
values of the sensors on the robot (e.g., sonars, laser range finder, bump
sensors). The actions allowed might be settings of the motor voltages
for the robot. At each time step, the robot would receive a positive
reward if it successfully navigated to the mail room and a negative
reward if it collided with a wall. The learning task would be to find
a control policy that drives the robot to the mail room as quickly as
possible without colliding with walls. We could also take a higher level
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view and provide the RL algorithm with more broad statistics of the
sensor readings and change the set of actions to be target velocities or
positions for fixed control subroutines (like PID controllers). With this
more abstract view of the problem, the provided fixed procedures for
sensor fusion and motor control become part of the environment from
the RL problem formulation standpoint. This is a common method to
provide domain knowledge to reinforcement learning algorithms in the
form of known useful subroutines.

1.1.3 Environment Knowledge

Generally, it is assumed that the RL algorithm has no a priori knowl-
edge about the environment except to know the valid choice of actions
and the set of possible observations. This is what defines RL as a
learning task. By trying actions or policies, the algorithm gains infor-
mation about the environment which it can use to improve its policy. A
fundamental struggle in reinforcement learning is achieving a balance
between the knowledge gained by trying new things and the benefit
of using the knowledge already gained to select a good policy. This is
known as the exploration-exploitation trade-off and it pits immediate
knowledge benefits against immediate return benefits. Although maxi-
mizing the return is the overall goal of the algorithm, gaining knowledge
now might lead to greater returns in the future.

1.2 Environment Models

To aid in addressing RL in a mathematically principled fashion, the en-
vironment is usually assumed to be describable by a particular math-
ematical model. We first outline two of the basic models and then
describe the types of RL algorithms that have been studied in conjunc-
tion with these models.

1.2.1 POMDP Model

The most general commonly-used model is the partially observable
Markov decision process (POMDP). A POMDP consists of seven el-
ements: S,A,X , ps, px, p0, r. They are:

• S is the set of all possible environment states. It is often called
the state space.

• A is the set of all agent actions. It is often called the action space.
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• X is the set of all observations. It is often called the observation
space.

• ps is a probability distribution over S conditioned on a value from
S ×A. It the probability of the world being in a particular state
conditioned on the previous world state and the action the agent
took and is often written as ps(st|at−1, st−1).

• px is a probability distribution over X conditioned on a value
from S. It is the probability of an observation conditioned on the
state of the world and is often written as px(xt|st).

• p0 is a probability distribution over S. It is the probability that
the world begins in a particular state and is often written p0(s0).

• r is a function from S to the real numbers. It is the reward the
agent receives after the world transitions to a state and is often
written as r(s).

The generative POMDP model is run as follows. To begin, s0 (the
state at time step 0) is picked at random from the distribution p0. From
that point on, for each time step t (beginning with t = 0), the following
four steps occur:

1. The agent receives reward r(st).

2. Observation xt is drawn from the distribution px(xt|st).

3. The agent observes xt and makes calculations according to its
policy. This results in it producing at, the action for this time
step.

4. The new world state st+1 is drawn from ps(st+1|at, st).

After these four steps, the time index increase (i.e., t← t + 1) and the
process repeats.

There are variations on this basic POMDP definition. The reward
can depend not only on the current state, but also on the last action
taken. This new model can be reduced to a POMDP of the form above
with an increase in the size of S. The POMDP definition above can also
be simplified either by making the start state deterministic, by mak-
ing the observation a deterministic function of the state, or by making
the transition function deterministic. Any of these three (although not
more than one) simplifications can be placed on the POMDP model
above without changing the class of environments modeled. Again,
however, any of these changes might affect the size of S. Finally, the
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action space can be modified to depend on the observation space. This
can have an effect on the problem difficulty but complicates the math-
ematical description unnecessarily for our purposes.

The POMDP model is Markovian in the state sequence. In particu-
lar, if one knows the current state of the system and all of the internals
of the agent, no additional information about past states, observations,
or actions will change one’s ability to predict the future of the system.
Unfortunately, this information is not available to the agent. The agent,
while knowing its own internal system, does not observe the state of
the environment. Furthermore, in the general case, it does not know
any of the probability distributions associated with the environment
(ps, px, p0), the state space of the environment (S), or the reward func-
tion (r). It is generally assumed, however, that the agent knows the
space of possible observations and actions (X and A respectively). The
observations may contain anywhere from complete information about
the state of the system to no information about the state of the sys-
tem. It depends on the nature of the unknown observation probability
distribution, px.

1.2.2 MDP Model

The POMDP model is difficult to work with because of the potential
lack of information available to the agent. The MDP, Markov decision
process, model can be thought of as a specific form of the POMDP
model for which the observation space is the same as the state space
(i.e., X = S) and the observation is always exactly equal to the state
(i.e. px(x|s) is 1 if x = s and 0 otherwise). Thus the model is fully
observable: the agent observes the true state of the environment. The
only other difference from the POMDP model is that the reward func-
tion is now stochastic to make the learning problem slightly more diffi-
cult. Formally, it is best to remove the observation from consideration
entirely. The MDP consists then of five elements: S,A,R, ps, p0, pr.
They are:

• S is the set of all possible environment states (state space).

• A is the set of all agent actions (action space).

• R is the set of possible rewards. R ⊂ <.

• ps is a probability distribution over S conditioned on a value from
S ×A. It the probability of the world being in a particular state
conditioned on the previous world state and the action the agent
took and is often written as ps(st|at−1, st−1).
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• p0 is a probability distribution over S. It is the probability that
the world begins in a particular state and is often written p0(s0).

• pr is a probability distribution overR conditioned on a value from
S. It is the probability of a reward conditioned on the current
world state and is often written as pr(rt|st).

The generative MDP model is run very similarly to the POMDP
model. The beginning state s0 is picked at random from p0 as before.
Three steps occur for each time step:

1. The reward rt is drawn from the distribution pr(rt|st).

2. The agent observes st and makes calculations according to its
policy. This results in it producing at, the action for this time
step.

3. The new world state st+1 is drawn from ps(st+1|at, st).

After these three steps, the time index increases (i.e., t ← t + 1) and
the process repeats.

MDP models are often augmented by allowing the reward probabil-
ity distribution to depend also on the action taken by the agent. This
does change the model slightly, but not significantly for our consider-
ations. Just as in the POMDP case, the MDP definition is sometimes
augmented to allow the action set to depend on the state of the envi-
ronment. This also slightly, but not significantly, changes the model.
Although the agent observes the true state value at each time step, ps,
po, and pr are still unknown. However, estimating them or functions
of them is much easier than it would be for POMDPs because samples
from the distributions are directly observed.

1.2.3 Previous Work

Value functions are the single most prevalent reinforcement learning
concept. They do not play a role in this thesis, but are useful in un-
derstanding other algorithms. It is beyond the scope of this thesis to
fully describe value functions, but we will outline their definition and
use briefly.

Two types of value functions exist. V-values are associated with
states and Q-values are associated with state-action pairs. Informally,
V π(s) is the return expected if the environment is in state s and the
agent is executing policy π. Qπ(s, a) is the expected return if the
environment is in state s, the agent executes action a and then on
subsequent time steps the agent executes policy π.
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Because in an MDP the agent can observe the true state of the
system, it can estimate the quality (or value) of its current situation
as represented by the value functions. The current state, as mentioned
before, provides as much information as possible to predict the future
and thereby the rewards that the agent is likely to experience later.

The most popular value function methods are temporal difference
(TD) algorithms, the best known variants of which are Q-learning and
SARSA. Sutton and Barto (1998) provide a nice unified description of
these algorithms. In temporal difference algorithms, the value func-
tions are updated by considering temporally adjacent state values and
adjusting the corresponding value function estimates to be consistent.
As an example, if the problem definition uses undiscounted reward,
then consistent value functions will have the property that

V π(st) = E[rt + V π(st+1)]

for any state st. This expresses that the value of being in a state at
time t should be equal to the expected reward plus the expected value
of the next state. V π(st) should represent all future rewards. They can
be broken down into the immediate next reward and all rewards that
will occur after the environment reaches its next state (V π(st+1)). By
keeping track of all value function values and modifying them carefully,
a consistent value function can be estimated from experience the agent
gathers by interacting with the environment. One possible method is
for the agent to adjust the value of V π(st) towards the sum of the
next reward and the value function at the next state. This uses the
interactions with the environment to sample the expectation in the
above equation.

Such methods have been very well studied and for environments
which adhere to the MDP model, they work consistently and well. In
particular for MDPs, we do not need to keep a separate value function
for each policy. A number of methods exist for estimating the value
function for the optimal policy (even if the policy is unknown) while
learning. Once the value function has converged, it is simple to extract
the optimal policy from it. Bertsekas and Tsitsiklis (1996) give a nice
mathematical treatment of the convergence conditions for temporal
difference methods in MDPs.

Yet, TD algorithms do not solve all problems. In many situations,
the space of states and actions is large. If value function estimates
must be maintained for every state-action pair, the number of esti-
mated quantities is too big for efficient calculation. The amount of
experience needed grows with the number of quantities to estimate.
Furthermore, we might expect that many such estimates would have
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similar values which might be able to be grouped together or otherwise
approximated to speed up learning. In general, we would hope be to
be able to represent the value function with a parameterized estima-
tor instead of a large table of values, one for each state-action pair.
Unfortunately, while some approximators forms do yield convergence
guarantees (Boyan and Moore 1995), the class of allowable approxima-
tors is restricted.

For environments that are not fully observable, the situation is
worse. The general POMDP problem is quite difficult. Even if the
model is known (and therefore no learning needs to take place, the
model must only be evaluated), finding the best policy is PSPACE-
hard (Littman 1996) for the finite time episodic tasks of this thesis.
Therefore, it is more reasonable to search for the optimal policy within
a fixed class of policies or to settle for a locally optimal policy of some
form. Unfortunately, temporal difference methods cannot yet do either.
TD, SARSA, and Q-learning can all be shown to fail to converge to the
correct best policy for some simple POMDP environments. While Q-
learning can be shown to diverge in such situations, TD and SARSA
have been shown to converge to a region. Unfortunately, the region
of convergence is so large as to be useless (Gordon 2001). Thus, no
performance guarantees can be made for any of these algorithms if run
on POMDP problems.

However, value functions can be otherwise extended to POMDPs.
Actor-critic methods have been used to extend value function meth-
ods to partially observable domains. Jaakkola, Singh, and Jordan
(1995) and Williams and Singh (1999) present one such method and
Konda and Tsitsiklis (2000) and Sutton, McAllester, Singh, and Man-
sour (2000) describe another. They use value function estimation on
a fixed policy (this type of estimation is stable) to estimate the value
for that policy and then improve their policy according to the gradient
of the expected return of the policy as estimated by the value func-
tion. After each policy change, the old value function estimates must
be thrown away and the new ones recomputed from scratch in order to
maintain convergence guarantees.

Other more direct methods for POMDPs also exist. REINFORCE
(Williams 1992) is the most classic and enduring RL algorithm for
POMDPs. In this method, each policy trial is used to adjust the pol-
icy slightly and is then discarded. No value functions are required.
It is similar to an actor-critic algorithm where the value function es-
timation is performed using only a single trial of the policy. In fact
the hope of actor-critic methods such as that of Sutton, McAllester,
Singh, and Mansour (2000) is that the use of a value function would
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value functions model solvingpolicy search

experiment design reinforcement learning control theory

REINFORCE actor-criticPB1, Q2

type:

example: SARSA Q-learning

noisy optimization

dynamic programming

Figure 1.2: An abstract positioning of algorithms from reinforcement
learning and associated areas. From left to right the line moves from
fewer to more assumptions. We view the main contribution of this
thesis as fitting in roughly at the position of the dot.

reduce the variance of the gradient estimate and lead to faster con-
vergence in comparison to REINFORCE. However, initial theoretical
results (McAllester 2000) seem to indicate that there is no extra gain
with such a variance reduction. In fact, the update rule may be the
same in formula and differ only in method of calculation.

VAPS (Baird and Moore 1999) is a different method for using value
methods with POMDP environments. It combines the criteria from
REINFORCE and SARSA to create a single algorithm. It is relatively
new and its success is as of yet unevaluated.

1.3 Contribution

Figure 1.2 shows one possible ranking of algorithms from fewest to most
assumptions about the world. On the far left is the problem of func-
tion maximization from limited stochastic samples. In this problem,
the goal of the algorithm is to find the parameters that maximize a
particular unknown function. The algorithm can propose parameter
settings (called experiments) and in response receive the value of the
true function at that point, possibly corrupted by noise. Examples of
algorithms in this domain include the Q2 algorithm (Moore, Schneider,
Boyan, and Lee 1998), pairwise bisection (Anderson, Moore, and Cohn
2000), and response surface methods (Box and Draper 1987). Rein-
forcement learning can be viewed as a subset of this problem. If we
can describe the class of policies we are willing to consider by a set
of parameters, experiment design can solve the problem by proposing
parameter settings (policies) and observing the return experienced by
executing the proposed policy. The goal of the experiment design algo-
rithm is the same as the reinforcement learning goal: to maximize the
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value of an unknown function.
In the middle of the figure is a sampling of RL algorithms organized

by their world assumptions. On the left are algorithms which assume
POMDP environments and on the right are algorithms which assume
MDP environments.

On the far right is the problem of control given a known world
model. The world model is described completely and the goal of the
algorithm is to find a policy that maximizes the expected return. No
experience needs to be gathered from the world. Instead, the algorithm
can compute based on the given model without interacting with the
world. When finished, it should have found an optimal policy for acting
in the described environment.

We classify only the algorithms in the middle as reinforcement learn-
ing. The class of problems labeled “experiment design” does qualify as
learning because with each new sample from the world, the algorithm
can do better on the next trial. However, it does not adapt the view of
a dynamical system that is essential to reinforcement learning. Each
trial is considered a black box out of which only the return is used.
When applied to reinforcement learning, the observation, action, and
reward sequences contain potentially useful information that is ignored.
Conversely, the problems labeled “control theory” do qualify as rein-
forcement problems because they seek to maximize the series of rewards
from a dynamical system. However, there is no learning involved. The
algorithm has no need to gather experience in the world in order to ar-
rive at a better policy; it has already been presented with the complete
world model.

Yet, the positioning of the algorithms along the line is as much
about influences as it is about assumptions. REINFORCE shares a
lot in common with general function maximization algorithms. In fact,
it employs the popular and generic gradient ascent maximization al-
gorithm modified only slightly because of the domain constraints of
reinforcement learning. Similarly on the opposite end, temporal differ-
ence methods draw their roots from the dynamic programming methods
based on Bellman equations used to solve known MDPs.

Although actor-critic methods explicitly acknowledge partial ob-
servability, they are placed near temporal difference learning because
they are an attempt to solve the problem by importing the value func-
tion ideas from MDP solution methods. We place this thesis near the
other end of the RL spectrum. The most fundamental new contri-
bution of this thesis is the importance sampling algorithm presented
in the next chapter. Its motivation is from the left side of the fig-
ure. Instead of extending methods from MDP algorithms to work on
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POMDP problems, this thesis extends methods from stochastic opti-
mization and estimation which are more general than reinforcement
learning. However, we do so without ignoring the information inherent
in the sequential control problem.

Problems such as the electronic market-marking agent in chapter 5
have forced us to search for new solution methods. The hidden state in-
herent to this and other problems makes temporal difference techniques
untenable. Unfortunately methods aimed at POMDPs such as REIN-
FORCE and actor-critic architectures forget all previous data each time
the policy is modified. For RL to be a viable solution method, it must
learn quickly and efficiently. We, therefore, need a method that makes
use of all of the data to make maximally informed decisions. Finally, we
found that most problems from real applications do not have a single
obvious reward function. Designing multiple reward functions sepa-
rately, each to describe a different objective of the agent, is simpler
and leads to more natural designs. The techniques of this thesis are
designed to address these three considerations: partial observability,
scarce data, and multiple objectives.

We make what we feel are a minimal number of assumptions about
reinforcement learning and develop an algorithm to solve this general
problem. Such an approach is not without flaws. Most problems are
not as difficult as the most general reinforcement learning problem can
be. By making few assumptions, the algorithm is inclined to treat
all problems as equally and maximally difficult. Because this thesis
presents a novel solution method, we have concentrated on theoretical
and experimental results for the algorithm’s most basic forms. How-
ever, we feel confident that, despite its current generality, useful biases
and heuristics can be added to allow better performance on practical
applications. We are not convinced that all of the useful biases are
towards full observability and value function approaches. By starting
from the other end of the spectrum we hope to develop a framework
that more easily allows for the incorporation of other types of heuristics
and information. We do not dismiss the usefulness of values functions
and temporal difference algorithms; we present this work as an alterna-
tive approach. Hopefully the connection between the two approaches
will become clearer in the future.
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Chapter 2

Importance Sampling for

Reinforcement Learning

“Solon gave the following advice: ‘Consider your honour, as a gen-
tleman, of more weight than an oath. Never tell a lie. Pay attention
to matters of importance.’ ”
Solon. xii.

Diogenes Laërtius

In this chapter, we jump right in and develop an algorithm for rein-
forcement learning based on importance sampling and greedy search.

There are a number of different ways to organize the experience
of the agent. For this thesis, we use the episodic formulation. The
agent’s experience is grouped into episodes or trials. At the beginning
of each trial, the environment is reset (the state is drawn from p0). The
agent interacts with the environment until the end of the trial when
the environment is reset again and the cycle continues. The agent is
aware of the trial resets. We are using fixed-length episodes: a trial
lasts for a set number of time steps. The current time step index may
or may not be available as part of the observations (it is not available
for any the problems in this thesis). We use the undiscounted return
definition. Because the number of time steps is fixed, there are no real
differences among the various return definitions.
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2.1 Notation

Throughout the thesis, we will use the following consistent notation
to refer to the experience data gathered by the agent. s represents
the hidden state of the environment, x the observation, a the action,
and r the reward. Subscripts denote the time step within a trial and
superscripts denote the trial number.

Let π(x, a) be a policy (the probability of picking action a upon
observing x). For this chapter, we will consider only reactive poli-
cies (policies that depend only on the current observation and have no
memory). Memory is added in the next chapter.

h represents a trial history1 (of T time steps). h is a tuple of four se-
quences: states (s1 through sT ), observations (x1 through xT ), actions
(a1 through aT ), and rewards (r1 through rT ). The state sequence is
not available to the algorithm and is for theoretical consideration only.
Any calculations performed by the algorithm must depend only on the
observation, action, and reward sequences. Lastly, we let R be the
return (the sum of r1 through rT ).

We assume the agent employs only one policy during each trial.
Between trials, the agent may change policies. π1 through πn are the
n policies tried (n increases as the agent experiences more trials). h1

through hn are the associated n histories with R1 through Rn being
the returns of those histories. Thus during trial i, the agent executed
policy πi resulting in the history hi. Ri is used as a shorthand notation
for R(hi), the return of trial i.

2.2 Overview of Importance Sampling

Importance sampling is typically presented as a method for reducing
the variance of the estimate of an expectation by carefully choosing a
sampling distribution (Rubinstein 1981). For example, the most direct
method for evaluating

∫

f(x)p(x) dx is to sample i.i.d. xi ∼ p(x) and
use 1

n

∑

i f(xi) as the estimate. However, by choosing a different distri-
bution q(x) which has higher density in the places where |f(x)| is larger,
we can get a new estimate which is still unbiased and has lower variance.

In particular, we can draw xi ∼ q(x) and use 1
n

∑

i f(xi)
p(xi)
q(xi)

as the new

estimate. This can be viewed as estimating the expectation of f(x) p(x)
q(x)

1It might be better to refer to this as a trajectory. We will not limit h to represent

only sequences that have been observed; it can also stand for sequences that might

be observed. However, the symbol t is over-used already. Therefore, we have chosen

to use h to represent state-observation-action-reward sequences.
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with respect to q(x) which is like approximating
∫

f(x)p(x)
q(x) q(x) dx with

samples drawn from q(x). If q(x) is chosen properly, our new estimate
has lower variance. It is always unbiased provided that the support
of p(x) and q(x) are the same. Because in this thesis we only consider
stochastic policies that have a non-zero probability of taking any action
at any time, our sampling and target distributions will always have the
same support.

Instead of choosing q(x) to reduce variance, we will be forced to
use q(x) because of how our data was collected. Unlike the traditional
setting where an estimator is chosen and then a distribution is derived
which will achieve minimal variance, we have a distribution chosen and
we are trying to find an estimator with low variance.

2.3 Previous Work

Kearns, Mansour, and Ng (2000) present a method for estimating the
return for every policy simultaneously using data gathered while ex-
ecuting a fixed policy. By contrast, we consider the case where the
policies used for gathering data are unrestricted. Either we did not
have control over the method for data collection, or we would like to
allow the learning algorithm the freedom to pick any policy for any trial
and still be able to use the data. Ng and Jordan (2000) give a method
for estimating returns from samples gathered under a variety of poli-
cies. However, their algorithm assumes the environment is a simulation
over which the learning algorithm has some control, such as the ability
to fix the random number sequence used to generate trials. Such an
assumption is impractical for non-simulated environments.

Importance sampling has been studied before in conjunction with
reinforcement learning. In particular, Precup, Sutton, and Singh (2000)
and Precup, Sutton, and Dasgupta (2001) use importance sampling to
estimate Q-values for MDPs with function approximation for the case
where all data have been collected using a single policy. Meuleau,
Peshkin, and Kim (2001) use importance sampling for POMDPs, but
to modify the REINFORCE algorithm (Williams 1992) and thereby
discard trials older than the most recent one. Peshkin and Mukher-
jee (2001) consider estimators very similar to the ones developed here
and prove theoretical PAC bounds for them. This chapter differs from
previous work in that it allows multiple sampling policies, uses normal-
ized estimators for POMDP problems, derives exact bias and variance
formulas for normalized and unnormalized estimators, and extends im-
portance sampling from reactive policies to finite-state controllers.
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In this chapter we develop two estimators (unnormalized and nor-
malized). Section 2.5 shows that while the normalized estimator is
biased, its variance is much lower than the unnormalized (unbiased)
estimator resulting in a better estimator for comparisons. Section 2.7
demonstrates some results on a simulated environment.

2.4 Importance Sampling Estimator

Policy evaluation is the task of estimating the expected return of a fixed
policy. Many reinforcement learning algorithms use such an evaluation
method as a key part to maximizing the expected return, although
there are algorithms which do not explicitly compute expected returns.

Usually an RL algorithm will fix a policy to be evaluated (a target
policy). It will then perform either on-policy or off-policy evaluation.
In the former, the algorithm executes the target policy (possibly repeat-
edly) and uses the experience to evaluate the expected return. In the
latter, the algorithm executes a different policy and uses the experience
to evaluate the expected return of the target policy.

We will extend the generality slightly further. Instead of picking the
target policy ahead of time, we will allow the agent to collect experience
with any desired series of execution policies. We develop an estimator
that can take this data and estimate the expected return for any target
policy. This will prove useful for efficient use of data.

2.4.1 Sampling Ratios

Every policy induces a probability distribution over histories. The
probabilities associated with the policy combined with the probabil-
ities of the environment produce a complete distribution over histories.
The returns are a deterministic function of the history. Therefore, we
desire to calculate E[R(h)|π] where the expectation is taken with re-
spect to the history probability induced by the policy π.

A key observation is that we can calculate one factor in the prob-
ability of a history given a policy. In particular, that probability has
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the form

p(h|π) = p(s0)

T
∏

t=0

p(xt|st)π(xt, at)p(st+1|st, at)

=

[

p(s0)
T
∏

t=0

p(xt|st)p(st+1|st, at)

][

T
∏

t=0

π(xt, at)

]

4
= W (h)A(h, π) .

A(h, π), the effect of the agent, is computable whereas W (h), the effect
of the world, is not because it depends on knowledge of the hidden state
sequence. However, W (h) does not depend on π. This implies that the
ratios necessary for importance sampling are exactly the ratios that
are computable without knowing the state sequence. In particular, if
a history h was drawn according to the distribution induced by π and
we would like an unbiased estimate of the return of π′, then we can use

R(h)p(h|π′)
p(h|π) and although neither the numerator nor the denominator

of the importance sampling ratio can be computed, the W (h) terms
from each cancel, leaving the ratio of A(h, π′) to A(h, π) which can be
calculated. A different statement of the same fact has been shown be-
fore by Meuleau, Peshkin, and Kim (2001). This fact will be exploited
in each of the estimators of this thesis.

2.4.2 Importance Sampling as Function Approxi-

mation

Because each πi is potentially different, each hi is drawn according to
a different distribution and so while the data are drawn independently,
they are not identically distributed. This makes it difficult to apply
importance sampling directly. The most obvious thing to do is to con-
struct n estimators (one from each data point) and then average them.
This estimator has the problem that its variance can be quite high.
In particular, if only one of the sampled policies is close to the target
policy, then only one of the elements in the sum will have a low vari-
ance. The other variances will be very high and overwhelm the total
estimate. We might then use only the estimate from the policy that
is most similar to the target policy. Yet, we would hope to do better
by using all of the data. To motivate the estimator of the next section
(which allows for multiple sampling distributions), we first demonstrate
how importance sampling can be viewed in terms of function approxi-
mation.

28



1 2

3

4
5

6

7

Figure 2.1: An example nearest-neighbor partitioning for seven sampled
points in a two-dimensional policy space. The shaded region is the basin
for sample 4 and the area of this region we denote α4.

Importance sampling in general seeks to estimate
∫

f(x)p(x) dx.

Consider estimating this integral by evaluating
∫

f̂(x)p̂(x) dx where f̂
and p̂ are approximations based on data of f and p. In particular,
with a bit of foresight we will choose f̂ and p̂ to be nearest-neighbor
estimates. Let i(x) be the index of the data point nearest to x. Then
the nearest-neighbor approximations can be written as,

f̂(x) = f(xi(x))

p̂(x) = p(xi(x)) .

We now must define the size of the “basin” near sample xi. In particular
we let αi be the size of the region of the sampling space closest to xi.
In the case where the sampling space is discrete, this is the number of
points which are closer to sampled point xi than any other sampled
point. For continuous sampling spaces, αi is the volume of space which
is closest to xi (see figure 2.1 for a geometric diagram). With this
definition,

∫

f̂(x)p̂(x) dx =
∑

i

αif(xi)p(xi) .

Both f̂ and p̂ are constant within a basin. We calculate the integral by
summing over each basin and multiplying by its volume.

αi cannot be computed and thus we need to approximate it as well.
Let q(x) be the distribution from which the data were sampled (we are

29



still considering case of a single sampling distribution). On average, we
expect the density of points to be inversely proportional to the volume
nearest each point. For instance, if we have sampled uniformly from
a unit volume and the average density of points is d, then the average
volume nearest any given point is 1

d
. Extending this principle, we take

the estimate of αi to be inversely proportional to the sampling density
at xi. That is, αi = k 1

q(xi) . This yields the standard importance

sampling estimator
∫

f(x)p(x) dx ≈
1

n

∑

i

f(xi)
p(xi)

q(xi)
.

More importantly, this derivation gives insight into how to merge
samples from different distributions, q1(x) through qn(x). Not until the
estimation of αi did we require knowledge about the sampling density.
We can use the same approximations for f̂ and p̂. When estimating
αi we need only an estimate of the density of points at αi to estimate
the volume near xi. The temporal ordering of the samples or which
distributions they come from is not important. Our only goal is to
estimate how much volume is in each basin. We therefore take the
mixture density, 1

n

∑

i qi(x) (the average of all of the sampling densities)
as the density of points in sample space. Applying this change results
in the estimator

∑

i

f(xi)
p(xi)

∑

j qj(xi)
.

which, when translated to the POMDP estimation problem, becomes

n
∑

i=1

Ri p(hi|π)
∑n

j=1 p(hi|πj)
. (2.1)

This estimator is unbiased (the full derivation is shown in the ap-
pendix) and has a lower variance than the sum of n single sample
estimators. The variance of an estimator depends on how much the
sampling distribution and the target distribution differ. The variance
of the estimator is worse for smaller sample weights (in general). The
estimator of equation 2.1 uses a mixture sampling distribution for the
weights. Therefore, if one sampling distribution is close to the target
distribution, it helps increase all of the weights. However, if instead
we were to take the sum of n single sample estimators, the same sin-
gle useful sampling distribution would cause only one element in the
sum to have low variance; the other elements would have very small
weights and their high variance would swamp the benefit provided by
that single term.
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2.4.3 Normalized Estimates

We can normalize the importance sampling estimate to obtain a lower
variance estimate at the cost of adding bias. Previous work has used
a variety of names for this including weighted uniform sampling (Ru-
binstein 1981), weighted importance sampling (Precup, Sutton, and
Singh 2000), and ratio estimation (Hesterberg 1995). All importance
sampling estimators have weights applied to the samples. We therefore
prefer the term normalized importance sampling to indicate that the
weights sum to one. Such an estimator has the form

∑

i f(xi)p(xi)
q(xi)

∑

i
p(xi)
q(xi)

.

This normalized form can be viewed in three different ways. First, it
can be seen just as a trick to reduce variance. Second, it has been
viewed as a Bayesian estimate of the expectation (Geweke 1989; Kloek
and van Dijk 1978). Unfortunately, the Bayesian view does not work for
our application because we do not know the true probabilities densities.
Hesterberg (1995) connects the ratio and Bayesian views, but neither
can be applied here.

Finally we can view the normalization as an adjustment to the func-
tion approximator p̂. The problem with the previous estimator can be
seen by noting that the function approximator p̂(h) does not integrate
(or sum) to 1. Instead of using p̂ = p(xi(x)), we make sure p̂ integrates
(or sums) to 1: p̂ = p(xi(x))/Z where Z =

∑

i αip(xi). When recast in
terms of our POMDP problem the normalized estimator is

∑n
i=1 Ri p(hi|π)

∑

n
j=1

p(hi|πj)
∑n

i=1
p(hi|π)

∑

n
j=1

p(hi|πj)

. (2.2)

2.5 Estimator Properties

It is well known that importance sampling estimates (both normal-
ized and unnormalized) are consistent (Hesterberg 1995; Geweke 1989;
Kloek and van Dijk 1978). This means that as the number of sam-
ple grows without bound, the estimator converges in the mean-squares
sense to the true estimate. Additionally, normalized estimators have
smaller asymptotic variance if the sampling distribution does not ex-
actly match the distribution to estimate (Hesterberg 1995). However,
our purpose behind using importance sampling was to cope with few
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data. Therefore, we are more interested in the case of finite sample
sizes.

The estimator of equation 2.1 is unbiased. That is, for a set of cho-
sen policies, π1, π2, . . . , πn, the expectation of the estimate evaluated at
π is the true expected return for executing policy π. The expectation is
over the probability of the histories given the chosen policies. Similarly,
the estimator of section 2.4.3 (equation 2.2) is biased. In specific, it is
biased towards the expected returns of π1, π2, . . . , πn.

The goal of constructing these estimators is to use them to choose a
good policy. This involves comparing the estimates for different values
of π. Therefore instead of considering a single point we will consider
the difference of the estimator evaluated at two different points, πA and
πB . In other words, we will use the estimator to calculate an estimate of
the difference in expected returns between two policies. The difference
estimate uses the same data for both estimates at πA and πB .

We denote the difference in returns for the unnormalized estimator
as DU and the difference for the normalized estimator as DN . First, a
few useful definitions (allowing the shorthand RX = E[R|πX ] where X
can stand for A or B):

p(h) =
1

n

∑

i

p(h|πi)

p̃(h, g) =
1

n

∑

i

p(h|πi)p(g|πi)

bA,B =

∫∫

[R(h)−R(g)]
p(h|πA)p(g|πB)

p(h)p(g)
p̃(h, g) dh dg

s2
X,Y =

∫

R2(h)
p(h|πX )p(h|πY )

p(h)
dh

s2
X,Y =

∫

(R(h)−RX )(R(h)−RY )
p(h|πX )p(h|πY )

p(h)
dh

η2
X,Y =

∫∫

R(h)R(g)
p(h|πX)p(g|πY )

p(h)p(g)
p̃(h, g) dh dg

η2
X,Y =

∫∫

(R(h)−RX)(R(g)−RY )

p(h|πX )p(g|πY )

p(h)p(g)
p̃(h, g) dh dg

(2.3)

Note that all of these quantities are invariant to the number of samples
provided that the relative frequencies of the sampling policies remains
fixed. p and p̃ are measures of the average sampling distribution. The
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other quantities are difficult to describe intuitively. However, each of
them has a form similar to an expectation integral. s2

X,Y and η2
X,Y

are measures of second moments and s2
X,Y and η2

X,Y are measures of

(approximately) centralized second moments.
bA,B

n
is the bias of the

normalized estimate of the return difference.
The means and variances are2

E[DU ] = RA −RB

E[DN ] = RA −RB −
1

n
bA,B

var[DU ] =
1

n
(s2

A,A − 2s2
A,B + s2

B,B)

−
1

n
(η2

A,A − 2η2
A,B + η2

B,B)

var[DN ] =
1

n
(s2

A,A − 2s2
A,B + s2

B,B)

−
1

n
(η2

A,A − 2η2
A,B + η2

B,B)

− 3
1

n
(RA −RB)bA,B + O(

1

n2
) .

(2.4)

The bias of the normalized return difference estimator and the variances
of both return difference estimators decrease as 1

n
. It is useful to note

that if all of the πi’s are the same, then p̃(h, g) = p(h)p(g) and thus
bA,B = RA−RB . In this case E[DN ] = n−1

n
(RA−RB). If the estimator

is only used for comparisons, this value is just as good as the true return
difference (of course, for small n, the same variance would cause greater
relative fluctuations).

In general we expect bA,B to be of the same sign as RA − RB . We

would also expect s2
X,Y to be less than s2

X,Y and similarly η2
X,Y to be

less than η2
X,Y . s2

X,Y and η2
X,Y depend on the difference of the returns

from the expected return under πX and πY . s2
X,Y and η2

X,Y depend on
the difference of the returns from zero. Without any other knowledge of
the underlying POMDP, we expect that the return from an arbitrary
history be closer to RA or RB than to the arbitrarily chosen value
0. If bA,B is the same sign as the true difference in returns and the
overlined values are less than their counterparts, then the variance of

2For the normalized difference estimator, the expectations shown are for the

numerator of the difference written as a single fraction. The denominator is a

positive quantity and can be scaled to be approximately 1. Because the difference

is only used for comparisons, this scaling makes no difference in its performance.

See the appendix for more details.
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Figure 2.2: Empirical estimates of the means and standard deviations
as a function of the number of trials points for the unnormalized and
normalized estimates of the return differences. The data were col-
lected by executing the policy corresponding to the point (0.4, 0.6) in
figure 2.3. The estimators were evaluated at the policies (0.3, 0.9) and
(0.4, 0.5). Plotted above are the means and standard deviations of these
estimates averaged over 10000 experiments. The horizontal dashed line
on the plots of the mean represent the true difference in returns.

the normalized estimator is less than the variance of the unnormalized
estimator.

These results are demonstrated empirically in figure 2.2 where we
compare the estimates for the problem described in section 2.7. We
took samples from a single policy and then used the data to estimate the
difference in returns between two other policies. We ran this experiment
10000 times for each sample size from 5 to 100 at increments of 5. The
empirical means and standard deviations are plotted. The standard
deviation of the unnormalized estimator is hundreds of times greater
than the normalized estimator’s standard deviation even for this small,
unnoisy problem.

The normalized plots fit the theoretical values well: the bias de-
creases as 1

n
and the standard deviation as 1√

n
. The unnormalized

plots demonstrate that even 10000 trials are not enough to get a good
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estimate of the bias or variance. The unnormalized mean should be con-
stant at the true return difference (no bias) and the standard deviation
should decay as 1√

n
. However, because the unnormalized estimator is

much more asymmetric (it relies on a few very heavily weighted unlikely
events to offset the more common events), the graph does not corre-
spond well to the theoretical values. This is indicative of the general
problem with the high variance unnormalized estimates.

2.6 Policy Improvement Algorithm

We can turn either of these estimators into a greedy learning algorithm.
To find a policy by which to act, the agent maximizes the value of the
estimator by hill-climbing in the space of policies until it reaches a
maximum. The agent uses this new policy for the next trial. After
the trial, it adds the new policy-history-return triple to its data and
repeats with the new estimator.

We use a table of conditional probabilities to represent the policy.
The hill-climbing algorithm must be carefully chosen. For many esti-
mates, the derivative of the estimate varies greatly in magnitude (as
shown in figure 2.4). Therefore, we have found it best to use the direc-
tion of the gradient, but not its magnitude to determine the direction
in which to climb. In particular, we employ a conjugate gradient ascent
algorithm using a golden-ratio line search (Press, Teukolsky, Vetterling,
and Flannery 1992).

As with most numerical optimization methods, care also must be
taken in coding the algorithm. Although standard problems with nu-
merical accuracy exist, the primary difficulty is with boundary condi-
tions. The optimal policy often lies on multiple boundary conditions.
Boundary conditions require that all policy probabilities be bounded
away from zero by a positive constant3 and that the proper sets of pol-
icy parameters sum to one. It is important to allow the optimization
procedure to easily move along a boundary when the gradient points
into the boundary (although not exactly perpendicular to it).

In our implementation, for each probability distribution we keep
track of the set of constraints currently active. The constraint that
all values sum to 1 is always active. If the line search extends past
one of the other boundary constraints (namely that each value must be
greater than some small positive constant), we active that constraint.
If the gradient points away from a constraint into the valid search
region, we clear that constraint. Each gradient calculated is projected

3This is to insure that all histories have a positive probability under all policies.
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Figure 2.3: Top: Diagram of the left-right world. This world has eight
states. The agent receives no reward in the outlined states and one
unit of reward each time it enters one of the solid states. The agent
only observes whether it is in the left or right set of boxed states (a
single bit of information). Each trial begins in the fourth state from
the left and lasts 100 time steps. Bottom: The true expected return as
a function of policy for this world. The optimal policy is at the point
(0.4, 1) which is the maximum of the plotted function.

onto the subspace defined by the current active constraints. Any policy
constructed during the line search is checked against all constraints and
projected into the valid region if it violates any constraints.

As a final performance improvement, we reduce the chance of being
stuck in a local minimum by starting the search at the previously sam-
pled policy that has the best estimated value. The estimated values of
previously sampled policies can be updated incrementally as each new
trial ends.

2.7 Results

Figure 2.3 shows a simple world for which policies can be described by
two numbers (the probability of going left when in the left half and the
probability of going left when in the right half) and the true expected
return as a function of the policy. Figure 2.4 compares the normalized
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Figure 2.4: Comparison of the normalized and unnormalized estimators
for single set of observations. For each estimator, the return estimates
are shown plotted after 5, 10, and 50 iterations (samples). The left
columns are for the greedy policy selection algorithm and the right
columns are for uniformly sampled policies. The first row shows the
returns as a function of trial number. The second shows the path taken
in policy space (or, for right columns, the random samples taken). Both
estimators were given the same sequence of data for the random case.
The last three rows show the plots of the estimated returns as a function
of the policy for increasing numbers of trials (compare to the right half
of figure 2.3). For the normalized estimator, the random sampling of
policies produces a better return surface in general, whereas the greedy
algorithm quickly maximizes the return (within 10 trials) and provides
a better estimate of the surface near the maximum. The unnormalized
estimator is plagued by large variance and produces poor results.
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(equation 2.1) and unnormalized (equation 2.2) estimators with both
the greedy policy selection algorithm and random policy selection. We
feel this example is illustrative of the reasons that the normalized es-
timate works much better on the problems we have tried. Its bias to
observed returns works well to smooth out the space. The estimator
is willing to extrapolate to unseen regions where the unnormalized es-
timator is not. This causes the greedy algorithm to explore new areas
of the policy space whereas the unnormalized estimator gets trapped
in the visited area under greedy exploration and does not successfully
maximize the return function.
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Chapter 3

Extensions of

Importance Sampling

“A liar should have a good memory.”
Institutiones Oratoriæ. iv. 2, 91.

Quintilian

We now move beyond reactive policies with action distributions
specified as tables. Although they are a good starting place, they are
not always practical. Many domains have too many observations (pos-
sibly a continuous space of observations) to make a table possible. Ad-
ditionally, a single instantaneous observation seldom captures all of the
necessary information. In this chapter we examine two extensions to
the previous algorithm: we allow for policies with memory and with
function approximators. We conclude the chapter with a pragmatic ex-
tension to the greedy search algorithm that will prove useful for more
noisy environments such as the one in chapter 5.

3.1 Memory

Memory is an important aspect to successful manipulation of the world.
Many memory models have been tried in the past. In this thesis, we
explore adding a fixed memory space that can be read and modified
as desired by the agent. In particular, we use a finite-state controller
model. In this model, the agent has an internal state which, in addition
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Figure 3.1: Dependency graph for agent-world interaction with memory
model. This is the same as the standard POMDP model except that
the current action depends on previous observation through the current
memory state.

to the observation, affects the action probabilities. This model has
been studied before in conjunction with POMDP learning (Meuleau,
Peshkin, Kim, and Kaelbling 1999) but not with importance sampling
which allows a greater information gain.

3.1.1 Finite State Machine Model

At each time step, the agent reads the value of the memory along with
the observation and makes a choice about which action to take and
the new value for the memory. The policy now expands to the form
π(x, m, a, m′) = p(a, m′|x, m), the probability of picking action a and
new memory state m′ given observation x and old memory state m.
The space of allowable memory states is fixed to a finite set, M. If
|M| = 1, there is only one memory state and the model reduces to
the reactive policy class of the previous chapter. The meanings of the
memory states are not defined. It is up to the RL algorithm to construct
a policy which makes use of the memory in an intelligent manner.

3.1.2 Memory Ratios

Let us factor the policy distribution, thereby limiting the class of poli-
cies realizable by a fixed memory size slightly but making the model
simpler. In particular we consider an agent model where the agent’s
policy has two parts: πa(x, m, a) and πm(x, m, m′). The former is the
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probability of choosing action a given that the observation is x and
the internal memory is m. The latter is the probability of changing
the internal memory to m′ given the observation is x and the internal
memory is m. Thus p(a, m′|x, m) = πa(x, m, a)πm(x, m, m′). By this
factoring of the probability distribution of action-memory choices, we
induce the dependency graph shown in figure 3.1.

If we let M be an arbitrary memory sequence m1, m2, . . . , mT ,
p(h|π) can be written as

∑

M

p(h, M |π)

=
∑

M

p(s0)p(m0)

T
∏

t=0

(p(xt|st)πa(xt, mt, at)

πm(xt, mt, mt+1)p(st+1|st, at))

=

[

p(s0)

T
∏

t=0

p(xt|st)p(st+1|st, at)

]

[

∑

M

p(m0)
T
∏

t=0

πa(xt, mt, at)πm(xt, mt, mt+1)

]

4
= W (h)A(h, π) ,

once again splitting the probability into two parts: one for the world
dynamics and one for the agent dynamics. The A(h, π) term now in-
volves a sum over all possible memory sequences.

The beauty of this formulation is that it makes it explicit that the
memory sequence does not affect the return except through the action
sequence. In particular, notice that the formula directly expresses that
the probability of a history involves marginalizing out the memory se-
quence. A memory sequence only indirectly affects the return through
its effect on the action sequence. This explicit modeling of the memory
dynamics allows a single trial’s experience to affect every policy that
could have produced the action sequence without considering the mem-
ory sequence that occurred. Note that the history does not include the
memory sequence and the memory is not part of the data remembered
from a trial. It is not needed to estimate A(h, π).
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3.1.3 Hidden Markov Models

Computing the sum in A(h, π) directly would take too long. However,
A(h, π) is exactly the probability of an input-output hidden Markov
model (IOHMM), a slight variation of the general HMM1. In particu-
lar, this new problem has the same structure as figure 3.1 except that
the state sequence and all connected edges are removed. A(h, π) is
the probability of an action sequence in this new problem where the
observation sequence is fixed. Linear time algorithms are well known
for computing the probability of an action sequence and its derivative
for IOHMMs using dynamic programming. A good discussion of such
algorithms for the HMM case can be found in Rabiner (1989). Bengio
(1999) discusses extensions of HMMs including IOHMMs. For com-
pleteness, we will give a quick overview of the results needed for the
importance sampling.

For a general sequence z1, z2, . . . , zn, let zi,j represent the subse-
quence from i to j (i.e., zi, zi+1, . . . , zj) for simplicity of notation.
We will define recurrence relations on two quantities. The first is
αi(m) = p(a1,i, mi = m|x1,T , πm, πa). Its recurrence is

αi+1(m) = πa(xi+1, m, ai+1)
∑

m′

πm(xi, m
′, m)αi(m

′)

which expresses that the probability of having memory m after i+1 time
steps is equal to probability of producing the generated action with that
memory bit multiplied by the sum the probability of all the different
ways the agent could have transitioned from the previous memory state
m′ to the current memory state multiplied by the probability the agent
was previous in memory state m′. We are counting up the number
of ways of getting to memory m at time i + 1 while still producing
the observed action sequence. To do this we rely on the same set of
probabilities for the previous time i.

The second recurrence relation covers the tail of the sequence. It is
βi(m) = p(ai+1,T , mi = m|x1,T , πm, πa):

βi(m) =
∑

m′

πm(xi, m, m′)πa(xi+1, m
′, ai+1)βi+1(m

′) .

This has a similar interpretation, but working backwards through the
data. The recurrence base cases are α1(m) = p(m)πa(x1, m, a1) and

1Note that the observations in RL become the states in the HMM model and

the actions in RL become the observations in the HMM model. We will continue

to use the same terminology and will not switch to the HMM naming convention.
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βT (m) = 1. Because of the Markov property,

p(a1,T , mi = m|x1,T , πa, πm) = αi(m)βi(m) .

The probability of the entire sequence can be found by computing
∑

m αi(m)βi(m) for any value i (i = T is nice because then we don’t
have to compute the β sequence).

To maximize the estimator for the greedy search, we require the
derivative of the probability with respect to the parameters as well.
Without repeating the derivation, the necessary equations are

∂A(h, π)

∂πa(x, m, a)
=

∑

i|ai=a,xi=x

αi(m)βi(m)

πa(x, m, a)

∂A(h, π)

∂πm(x, m, m′)
=
∑

i|xi=x

αi(m)βi+1(m
′)πa(xi+1, m

′, ai+1) .

3.1.4 Results

We can now use the same normalized importance sampling estimator
with finite-state controllers instead of reactive policies. The calculation
of the importance sample ratios has become more complex, but the
rest of the estimator remains the same. The estimator has explicit
knowledge of the working of the memory. For algorithms that can only
work with reactive policies, the memory cannot be explicitly modeled.
In such cases the memory is added as part of the environment. The
action space is augmented to include memory changing actions and
the observation space is enlarged to include the current status of the
memory (see Peshkin, Meuleau, and Kaelbling (1999) as an example
of this approach). The memory appears to the agent just like any
other portion of the environment. This means that the agent must
needlessly learn the dynamics of its own memory. With our explicit
memory model, the learning algorithm understands that the goal is to
produce the correct action sequence and uses the memory state to do
so by coordinating the actions in different time steps.

The load-unload problem of figure 3.2 is a traditional POMDP prob-
lem. A cart sits on a line with five discrete positions. When the cart
makes it to the left-most state, the cart is filled. When the cart arrives
in the right-most state with a full cart, the cart is emptied and the
agent receives one unit of reward. The agent can observe the position
of the cart, but not the contents (i.e. it does not know whether the
cart is full or empty). To achieve reasonable performance, the actions
must depend on the history. We give the agent two memory states
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Figure 3.2: Diagram of the load-unload world. This world has nine
states. The horizontal axis corresponds to the positioning of a cart.
The vertical axis indicates whether the cart is loaded. The agent only
observes the position of the cart (five observations denoted by boxes).
The cart is loaded when it reaches the left-most state and if it reaches
the right-most position while loaded, it is unloaded and the agent re-
ceives a single unit of reward. The agent has two actions at each point:
move left or move right. Attempting to move off the end leaves the cart
unmoved. Each trial begins in the left-most state and lasts 100 time
steps. Optimal performance is 13 deliveries.
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Figure 3.3: Diagram of the blind load-unload world. This world has
five states. The horizontal axis corresponds to the positioning of the
cart. The vertical axis indicates whether the cart is loaded. The agent
is completely blind: no matter what the state of the world, it observes
the same thing. The world is also only three lengths long, making for
the potential for shorter deliveries. Other than these differences, the
problem is the same as the one in figure 3.2. Each trial begins in the
left-most state and lasts 100 time steps. Optimal performance is 25
deliveries.
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Figure 3.4: Comparison of REINFORCE to normalized importance
sampling on the problem in figure 3.2. All graphs were generated from
10 runs of the algorithm. The plotted lines are the (from top to bot-
tom), maximum, third quartile, median, first quartile, and minimum
returns for each time step across the 10 runs. At the top are the results
from REINFORCE with external memory. On the left are the results
from normalized importance sampling with external memory. On the
right are the results for normalized importance sampling with internal
memory.
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Figure 3.5: Comparison of placing the memory bits externally as part
of the environment to modeling them explicitly as an internal part of
the agent for the problem in figure 3.3. Both graphs were generated
from 10 runs of the normalized importance sampling algorithm. The
plotted lines are the (from top to bottom), maximum, third quartile,
median, first quartile, and minimum returns for each time step across
the 10 runs.

(one memory bit); this results in twenty independent policy parame-
ters. Figure 3.4 compares using the importance sampling estimate in
two different ways to the REINFORCE algorithm (Williams 1992). We
consider both “external” memory where the memory is made to be part
of the environment (i.e. the action space is now all possible combina-
tions of moving and setting the memory bit and the observation space is
all possible combinations of position and memory state) and “internal”
memory where the memory model is explicit as described in this chap-
ter. REINFORCE can only use external memory. On the left is the
result of running the REINFORCE algorithm with an external memory
representation. In the middle is the result of using external memory
with the normalized importance sampling estimator. And, on the right
is the result of using internal memory with normalize importance sam-
pling. The REINFORCE results are for the best settings for the step
size schedule and the bias term. Yet, it still frequently gets stuck in
local minima and only 2 out of the 10 experiments manage to converge
to a near-optimal solution (in roughly 500 trials). By comparison, the
importance sampling algorithm usually converges in approximately 100
trials with external memory and almost always converges within 50 tri-
als with internal memory.

To consider a more drastic example, we constructed a blind load-
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unload problem, as shown in figure 3.3. In this case, we give the agent
four memory states (two memory bits). Figure 3.5 compares the result
of internal and external memory for the normalized importance sam-
pling estimate. Again, we see a clear gain by explicitly modeling the
memory dynamics. With an increase in the importance of memory, we
see an increase in the difference between external and internal memory
representations. Whereas figure 3.4 demonstrates a 2-fold speed-up,
figure 3.5 demonstrates a 10-fold speed-up due to internal memory.

3.2 Function Approximation

In all of the examples up to this point, the policies have been repre-
sented by a table of conditional probabilities. Each value in the table is
a separate parameter of the policy, modulo the condition that certain
sets sum to 1. Yet, for large observation-action spaces, this often proves
to be an untenable method. It results in too many parameters for the
quantity of training data available. Usually, the full space of policies is
not necessary anyway. By considering only a small parameterized set of
policies, we can limit the search space and, in turn, the data required.

Consider the left-right problem of the previous chapter. If the prob-
lem were completely observable (i.e. the agent knew its exact position
and not just whether it was in the left or right half) there would be
8 independent parameters for just this simple example. Yet, as with
most problems with a spatial layout, we can expect adjacent observa-
tions to have similar policy parameters. Therefore, instead of using
a table of probabilities, we will make the probabilities parameterized
functions of the observation and action. Our algorithm will now search
for the parameters which maximize the return. Note that this means
that we will not be searching for the function approximator that best
approximates the ideal policy, but rather that we will be searching for
the best policy within the space of policies allowed by the function
approximator. This is just as in the previous sections. We were not
searching for the reactive (or finite-state controller) policy that is most
similar to the ideal policy but rather the one that performs best within
the specified set of policies. Its relationship in policy space to the ideal
policy is unknown.

3.2.1 Policy Weights

These policy parameters are often called weights. For most policy
parameterizations the agent’s factor of the probability of a history,
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A(h, π), and its derivative with respect to the weights can be calculated
in closed form. This is all that is necessary to extend the importance
sampling estimator and the greedy search algorithm to the function ap-
proximation case. Instead of maximizing by calculating the derivative
with respect to the probabilities in the table, we calculate the derivative
with respect to the weights and update the weights. The probability
tables of the previous sections can be viewed as one type of function
approximator with each entry in the table as a separate weight.

To make this more concrete, we will instantiate this idea in terms
of a linear Boltzmann distribution approximator (returning to reactive
policies). We will assume that all observation-action pairs (x, a) have
an associated feature vector φx,a. We will discuss the construction of
these features later. The weight vector w is of the same dimensionality
as the feature vectors. The Boltzmann distribution takes the form

π(x, a) = p(a|x) =
ewT φx,a

∑

a′ ewT φx,a′
.

The agent’s factor of the probability of a history is simply the product
of the above formula over each of the observation-action pairs in the
history: A(h, w) =

∏

t π(xt, at). The derivative of a single observation-
action pair is

∂π(x, a)

∂w
= π(x, a)

(

φx,a −
∑

a′

φx,a′π(x, a′)

)

.

This makes the derivative of an entire history

∂A(h, w)

∂w
= A(h, w)

∑

t

[

φxt,at
−
∑

a′

φxt,a′π(xt, a
′)

]

.

For distributions like the Boltzmann that are normalized across ac-
tions, certain care must be taken in designing the features. In par-
ticular, for the Boltzmann distribution, any feature which is constant
across actions (even if it varies across observations) will make no differ-
ence in the final policy. It will result in a constant being added to the
exponents in both the numerator and the denominator of π(x, a), thus
resulting in multiplying both numerator and denominator by the same
amount. The net result is no change. There is no point in including
features which do not depend on the action.

Often the observation and action spaces each have their own obvious
set of features. However, simply concatenating those features together
will not produce a good feature space for Boltzmann distributions. The

48



observation features will provide no descriptive power as noted above.
The action features will allow differentiation among the actions, yet
such differences in probabilities will be constant across all observations.
The end results is a policy class that ignores the observations entirely.
Instead, we propose using the product space. If the observation feature
space has do dimensions and the action feature space has da dimensions,
the product space has doda features: one for each pair of observation
and action features. The value of a feature can be constructed in many
ways. We have found the product to be the most effective. Thus, if the
current observation has the features (1, 3, 0) and the current action has
the features (2, 5), φx,a = (2, 6, 0, 5, 15, 0).

3.2.2 Results

To illustrate this technique, we return to the left-right example of the
previous chapter, but with full observability. Thus the observation at
each time step is the true position of the agent along the line. We do not
wish to estimate 8 separate parameters, so we will restrict the class of
policies allowed. In particular, we will only allow reactive Boltzmann
distributions as described in the previous section. The observation
features will be the position and the constant 1. The action feature
will be a single value: 0 if the action is to the left and 1 if the action is
to the right. Using the product space feature construction, this results
in two features. The first is 0 if the action is to the left and is the
position of the agent if the action is to the right. The second feature is
0 is the action is to the left and 1 if the action is to the right. In order
to insure that the weights stay bounded and that there is always a non-
zero probability of taking any action at any time, we will constrain the
weights to lie within an axis-aligned box with sides from −2 to +2.

Figure 3.6 shows the true expected return as a function of the two
policy parameters. Figure 3.7 details the results of the estimator when
run with random policies and when used for greedy optimization. Be-
cause of the complete observability of the problem (and the fact that
our policy class is not too restricted), the agent can do better on this
problem than on the left-right problem of the previous chapter where
the agent had a reactive policy with partial observability.

3.3 Controlled Search

Especially in highly stochastic environments, the greedy search algo-
rithm employed so far to direct new policy choices can cause problems.
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Figure 3.6: The true return as a function of the parameters of the policy
for the fully-observable left-right. The optimal policy in this space is
at the point (−1.2, 2).

The normalized importance sampling estimator extrapolates to unseen
points and thereby can overestimate the advantages of particular poli-
cies. To be specific, let us assume that the policy space exists on a
single line. If the policies corresponding to the points 0.3 and 0.4 have
been tried and the first produced a return of 0 and the second pro-
duced a return of 1, the estimator might produce an estimate as shown
in figure 3.8. In this case, greedy maximization would select the next
policy as far to the right as possible.

If the algorithm is correct in this extrapolation, everything is fine.
If the algorithm is incorrect, the new sample will help to fix the esti-
mate as shown by the dashed line in figure 3.8. Provided the samples
are indicative of the true underlying expected return, this will produce
acceptable behavior as the algorithm performs a rough approximation
of a binary search. In fact, this bias towards the extremes of a pol-
icy space can use useful. Such extremes usually correspond to more
deterministic policies which often are the optimal policies in practice.

Yet, this bias can also be a source of problems. If the samples are
highly stochastic, the algorithm may be searching in the wrong half
of the space. Given only two samples, there is a high probability (al-
most 0.5 for very random environments) that the true expected return
function is greater on the opposite side than the samples indicate. To
solve this, the algorithm will need to take enough samples close to the
two points already sampled to determine the true expected returns (or
values near enough to the true values to be able to make an informed
decision). Notice that in figure 3.8, the sample on the right side did lit-
tle to affect the estimate in the middle. Were the samples in the middle
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Figure 3.7: Returns, policies, and implicit return surface for the nor-
malized importance sampling algorithm with parameterized policies for
the fully-observable left-right world. Top plot is the return as a function
of the trial number. The next plot shows the policies chosen (greedily
on the left and randomly on the right). The final three plots are of the
estimated return surface after 5, 10, and 50 trials.
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Figure 3.8: Hypothetical one-dimensional example. The solid curve
might have been produced by the two solid sampled points. Upon
sampling the lightly shaded point on the left, the curve might change
to the dashed one. See text for details.

far from the true expected value, it would take many new samples from
the far right side before the estimate in the middle became correct.

Therefore it might be wise to reduce the variance of the estimator
at sampled points before extrapolating to new regions of the policy
space. The new samples, selected to decrease the variance, should be
policies similar enough to the old policies so that the new histories have
reasonably high likelihood under the old policies. Otherwise, they will
have low importance sampling ratios and not affect the return much at
the old points.

This creates a dilemma. On the one hand, we would like to exploit
the information gained from the original two samples and jump to the
current maximum of the estimated return function. Yet, we might also
like to verify the information gained before taking such a large jump.
This is an example of the exploration-exploitation dilemma mentioned
in chapter 1. In higher-dimensional policy spaces the problem becomes
more pronounced. Search in the “wrong” half of the space is a bigger
penalty because of the greater size of that half.

The most obvious solution is to take multiple samples from each
policy chosen: instead of changing the policy by maximizing every trial,
we could modify the algorithm to only change the policy every k trials.
However this can be wasteful. If a new chosen policy is near other
samples, its variance may already be small. Forcing multiple samples
from this new point would be needless. In general, it would seem better
to simply limit the maximization routine to stay within the part of
policy space in which we are confident of our estimated return. This
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insures that any new chosen policy will already have low variance due
to its proximity to previous samples.

We have not yet developed an entirely principled way of achiev-
ing this. Techniques in experiment design like response surfaces (Box
and Draper 1987) have found ways to deal with the variance in the
environment. However, such methods, as mentioned in the introduc-
tion, are more general than reinforcement learning. We would like to
exploit our knowledge about the environment dynamics inherent to re-
inforcement learning problems. While we have a variance formula for
the estimator (shown in the previous chapter and detailed in the ap-
pendix), this formula requires specific knowledge of the environment
which the algorithm does not have. We have not found a good method
for estimating the needed probability distributions. Instead, we take a
more pragmatic view.

The source of variance in the estimate comes from misestimating
the probabilities of histories and a sparse sampling of the history space.
Thus, in the estimator

∑

i Ri p(hi|π)
∑

j p(hi|πj)
∑

i
p(hi|π)

∑

j p(hi|πj)

,

the returns, Ri, are deterministic whereas the weights associated with
them are the source of the error. In fact, there is an implied 0 weight
to all histories we have not yet sampled. As mentioned above, this
error is difficult to compute, so instead, we will assume the reverse: the
weights are correct and fixed, and the returns are random variables.
Thus, our estimator is the linear combination of random variables. If
we furthermore assume that all of the returns have the same variance σ2

and let wi
n(π) be the normalized weight for return Ri, then the variance

of our estimator is σ2
∑

i(w
i
n(π))2. So, while the absolute magnitude of

the variance cannot be determined (σ is unknown), we can determine
the relative variances among the estimates for difference policies.

To use this knowledge, we limit the range of the policy search to
areas where

∑

i(w
i
n(π)2) is less than a threshold θ. If no such regions

exist, we reuse the sampled policy with the best estimated value instead
thereby decreasing the variance near that sample. θ is application de-
pendent and must be set on a case-by-case basis. Although it is unfor-
tunate to add a tuning parameter to the algorithm, we have found it to
be invaluable (despite the lack of theoretical justification) for achieving
convergence in reasonable time. All of the results in chapter 5 use this
method.
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Chapter 4

Balancing Multiple

Goals

“I do perceive here a divided duty.”
Othello. act i. sc 3.

William Shakespeare

The importance sampling methods of the previous chapters estimate
the entire return surface. Therefore, they can be used not only to find
the policy with the maximum return, but they can also be used to find
other important or interesting policies. In this chapter, we develop two
methods for balancing multiple objectives simultaneously that utilize
the complete return surface characterization.

Others have previously considered the case of multiple objectives. In
particular, Gábor, Kalmár, and Szepesvári (1998) describe the notion
of partial orderings over solutions and develop a framework based on
MDPs. Geibel (2001) applies this idea to balancing expected return
and risk. In section 4.2, we use these ideas but work with POMDP
models and extend the estimators of the previous chapters.

For section 4.3 we take a different approach. Instead of attempting
to optimize all objectives simultaneously, we fix a minimum necessary
performance with regard to one or more of the objectives and then
optimize the rest of the objectives as before. This makes different
guarantees on the performance of the resulting policy. Each technique
is applicable to a different type of objective.
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This chapter differs from our previous work (Shelton 2001) in that
it does not take a game theoretic approach to balancing. We achieve
the same results but can guarantee qualities of performance that were
not possible with the our prior method.

4.1 Rewards as Goals

Many agents have multiple objectives. The pedagogical example from
robotics is an office service robot. The robot needs to deliver mail to
employees’ offices, stock the printer with paper, and keep its battery
charged. Designing a return function for each of these tasks indepen-
dently is simple. However, designing a return function that balances
each of these tasks can be more difficult.

Consider the case of mail delivery and paper restocking. We might
give the agent one unit of reward each time mail is delivered or paper
is restocked. If we only consider the mail delivery, the agent does the
right thing: it delivers mail as often as possible. The same is true of
the paper restocking. However, put together, the agent will only fulfill
one of its duties: whichever is easier or quicker. There is no sense in
restocking the paper at all if mail delivery is faster and results in the
same reward.

We can try to solve this by reweighting or discounting the rewards.
Yet, this does not solve the real problem. These rewards are difficult to
combine because they were not designed to be combined. Each speci-
fies the successfulness of completing a particular goal. However, their
sum (or any other fixed combination) has no guarantee to represent a
desirable objective on its own.

Note that in some cases separate goals can be combined. For in-
stance, a store may wish to both sell as many products as possible and
charge the highest price. However, there is a clear way of combining
the two objectives. The overall goal is to maximize profits for which the
proper objective is the multiplication of the price and the number sold
(ignoring fixed costs). In this chapter, we are interested in situations
for which such a combination is unknown or impossible.

Such an example naturally arises when there are multiple users of
a system. Each user might express his or her content with the system
through rewards. Optimizing the total content of the users is not as
simple as optimizing the sum of their rewards. One user might decide to
reward twice as often or with twice the force as another. That should
not necessarily result in this user gaining twice the control over the
behavior of the agent. Limiting the amount of reward possible from
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a given user does not solve the problem; it merely deafens the agent’s
ability to correctly distinguish the preferences of its users.

Whether each reward represents an objective or a user’s desire, we
will call each separate reward signal a source. We are considering prob-
lem for which rewards are comparable within the same source, but are
not comparable across sources.

4.1.1 Related Work

The same problem also arises in the context of social choice theory. We
recommend Resnik (1987) as a good introduction to the subject. In a
social choice problem, each objective corresponds to a citizen and the
goal is to pick a single global policy based on all of the citizens’ individ-
ual preferences. Most of the work does not promote direct calculation
or single unique solutions. The necessary computations to achieve the
answer are, for our domain, intractable and for most situations do not
yield a single solution, but a set of possible solutions with no principled
way of selecting among them.

The most promising areas of social choice theory deal with utility
functions. Utility functions directly correspond to the expected re-
turns in our application. However, these methods assume utilities can
be compared across individuals (or reward sources). We are unwilling
to make this assumption. For our problem, we would like to be able to
design each reward function for each objective independently without
consideration as to how it will dovetail with the other reward func-
tions. Furthermore, each reward source might be associated with an
individual user in which case it certainly undesirable to assume that the
rewards provided by one user can be directly compared against those
of another user. Personal style may cause two people with the same
preferences to manifest them in different reward techniques.

Even in social choice theory, the notion of comparable utilities is
questionable. It is uncertain how to elicit true comparable utilities
from people. The area of mechanism design or implementation theory
(Mas-Collel, Whinston, and Green 1995; Green and Laffont 1979) deals
directly with this problem, but in the context of an extensible univer-
sally desired good, money. Without the ability to pay or charge the
citizens (or objectives), we cannot employ the algorithms and methods
from that area of research.

56



4.1.2 Notation

We modify the standard POMDP framework slightly to include mul-
tiple sources. We keep the state space, action space, and observation
spaces as well as the starting state, state transition, and observation
probabilities the same as in the regular definition. However, we mod-
ify the reward function. Although still a deterministic function of the
state, the reward function is now a vector quantity with each dimension
representing the reward from a different source.

The goal of the agent is no longer to optimize a scalar quantity but
rather to simultaneously optimize all of the expected returns (each re-
turn is the sum of one dimension of the reward vector). In some special
cases it may be possible to maximize all of the returns simultaneously.
However, in general, a trade-off must be made among the sources. For
this problem, there is no single correct or optimal solution. We propose
two solution methods that each have different solution guarantees.

For notation, we will let R(π) be the estimate expected return for
following policy π. R(π) is therefore a vector of length m, the number of
reward sources. Ri(π) will denote the ith element of that vector. Each
element is estimated individually with its own importance sampling
estimator.

4.2 Policy Equilibria

A reward function implies an ordering over policies. In particular, we
can infer that πA is preferred to πB if and only if R(πA) > R(πB). Many
reward functions are consistent with a single policy preference ordering.
We define reward restructuring as any change to the reward function
that does not change the policy preference ordering. We would like to
develop an algorithm that is insensitive to reward restructuring for all
reward sources. This rules out direct maximization of a fixed function
of the sources’ rewards or returns. For example, if a source multiplies
all of its rewards by 3, it has not changed its preferences. However, it
has changed the preferences implied by the fixed combination. Unless
there are no other sources, those sources have no preference, or the
fixed combination ignores the other sources, the change in the rewards
of one source will change the fixed combination of the sources differ-
entially depending on the rewards from the other sources. This results
in different fixed combination rewards and therefore a different optimal
policy.

Combining policies seems like a more promising route. Whereas we
are unable to compare the returns, policies for the same agent in the
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same environment are necessarily comparable. It is in the policy space
that the algorithm must make the trade-off among reward sources; it
must produce a single policy. The most obvious method is to find the
optimal policy for each return source and then take their average. This
can have disastrous results. Imagine a robot moving down a corridor
faced with an obstacle. If one source prefers navigating to the left
of the obstacle and the other prefers navigating to the right of the
obstacle, the average policy might keep the robot moving straight, thus
plowing directly into the obstacle. Mostly likely, both sources would
have preferred anything over moving into the obstacle.

4.2.1 Policy Climbing

Certainly any policy π for which there exists a policy π′ such that
Ri(π) < Ri(π

′) for all sources i is not a good policy. We know that all
sources would be better off if the agent executed policy π′ instead of
π. At a global scale, it may be difficult to insure that solutions satisfy
this notion of a good policy. However, at a local scale, it is simple.
We want to find a policy for which no source’s return gradients have
a positive dot product with all of the other sources’ return gradients.
More specifically, we are at a local optimum π if

∀v, ∃i | 〈v,
∂Ri(π)

∂π
〉 ≤ 0 .

This implies that at such an optimum no instantaneous change, v, in
the policy will produce a new policy that is not worse for at least one
of the return sources.

The obvious search algorithm is therefore to begin with a policy
and continue to climb all return surfaces at the same time by picking
changes to the policy that have a positive dot product with all return
derivatives. There are two main specifications left in such an algorithm.
First, which direction, of the many with non-negative dot product with
all gradients, should be selected for each step. And second, how should
the initial policy should be selected.

To pick a step direction, let ∆i be the gradient of the return of
source i with respect to the policy parameters evaluated at the current
policy. We can then calculate ∆i, the normalized direction with a non-
negative dot product with all of the gradients which has the highest
dot product with ∆i. ∆i is the vector on the unit sphere which has
the largest dot product with ∆i while still satisfying the constraint
of non-negative gain for all of the returns. Any vector ∆ that is a
convex combination of ∆1, ∆2, . . . , ∆m satisfies all of the non-negative
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dot product constraints. We fix a set of convex combination coefficients
based on the relative importance of the various return sources. Note
that because ∆i is normalized, the magnitude of change in the returns
does not matter; only the local relative preferences matter.

Picking the initial policy at which to begin the climb is important.
In particular, this choice specifies the performance guarantee of the
final policy: the final policy will have returns no worse than the initial
policy. For this reason, we pick the initial policy to be a mixture of
the best policies for each of the return sources individually. A mixture
policy is a policy that, at t = 0, randomly picks one of its component
subpolicies and then executes that single subpolicy for the entire trial.
Thus, the expected return of a mixture policy is a weighted average
of the expected returns of its components where the weights are the
same as the weights on the mixture’s subpolicy. The weights of the
mixture can be selected to be the same as the weights of the direction
combination or different depending on the type of solution desired.

The joint maximization algorithm is shown in figure 4.1. Step 1 is
accomplished by the maximization detailed in the previous chapters.
The gradient in step 3 is with respect to all parameters (all subpolicy
parameters and the mixture parameters). The constraint satisfaction
program of step 4 in general can be difficult. However, with a small
number of constraints, it can be solved quickly by searching all possi-
ble combinations of active constraints. The α-values are the starting
policy combination coefficients. They specify the relative importance
of the sources in selecting the starting policy; the starting policy dic-
tates the performance guarantees for the algorithm. The β-values are
the gradient combination coefficients. While hill-climbing, they spec-
ify the relative importance of increasing each source’s return. η is the
maximum step size.

A number of interesting parameter combinations are possible. If
αi = βi for all sources i, then these values represent the global relative
importance of maximizing each source. If βi = 0 for some i, then the
algorithm does not maximize Ri but rather just enforces the constraint
Ri(π) ≥

∑

j αj maxπ′ Rj(π
′), that the return from this source be no

worse than the return from the mixture of individually optimal policies.

4.2.2 Algorithm

Just as we previously took a maximization procedure and turned it
into a greedy RL algorithm, we can do the same with the procedure
of figure 4.1. Before each trial, the agent runs the joint maximization
algorithm to find a new policy. The joint maximization procedure is
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Input: R1(π), R2(π), . . . , Rm(π)
Output: π
Parameters: (α1, α2, . . . , αm), (β1, β2, . . . , βm), η
Constraints:

∑

i αi = 1,
∑

i βi = 1

1. Using the single source maximization procedure, for all sources
i, let θi be the parameters of the maximization of Ri over all
policies in the input policy class.

2. Let Φ be the parameters of a mixture policy with mixture weights
α1, α2, . . . , αm and subpolicies with parameters θ1, θ2, . . . , θm.

3. For all sources i, let ∆i be the gradient of Ri evaluated at the
mixture policy with parameters Φ.

4. For all sources i, let ∆i be the vector in gradient space with the
largest dot product with ∆i subject to the constraints that the
magnitude of ∆i be 1 and ∆i ·∆j ≥ 0 for all sources j.

5. If ∆i does not exist for any source i, quit and return the mixture
policy Φ. Otherwise, let ∆ =

∑

i αi∆i

6. If |∆| = 0 quit and return the mixture policy Φ.

7. Normalize ∆ to be unit length.

8. Let Φ′ = Φ + η∆.

9. If Ri(Φ
′) ≥ Ri(Φ) for all sources i, let Φ = Φ′ and jump back to

step 3.

10. Let η = η/2.
If η is too small, return the mixture policy Φ
Otherwise, jump back to step 8.

Figure 4.1: Joint maximization search algorithm
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Figure 4.2: Diagram of the cooperate world. The world state is fully
observable. The center state has three choices (each a different “arm”).
Each middle state of an arm has three choices: go back, stay in the
center, move to the end. From the end states the agent has no choice
but to return to the center. The top number in a state is the reward
from source 1 upon entering the state. The bottom number is the
reward from source 2. Trials last for 20 time steps.

given the current estimated return functions based on the data collected
so far. These functions may incorporate the controlled search method
from the previous chapter and limit the valid area of search to those
policies with small estimated variance. The agent executes the policy
returned by the joint maximization procedure and then adds it and the
observed history to its data. Using the new data set, it reiterates for
the next trial.

4.2.3 Results

Figure 4.2 shows a test world for comparing the joint maximization
method of the previous section to other techniques. Note that while
source 1 would prefer the left arm of the POMDP and source 2 would
prefer the right arm, the lower arm is an acceptable compromise which
is better than randomly picking between the left and right.

Figure 4.3 shows the results of running the joint maximization pro-
cedure of this chapter against two other possible methods. The “mix-
ture” procedure is to find the optimal policies for each source inde-
pendently (using the importance sampling from the previous chapters)
and then compose a final policy that is a weighted mixture policy of
the found optimal policies. The “sum maximization” procedure is to
maximize the weighted sum of returns using the importance sampling
from the previous chapters. For the joint maximization, we let αi = βi.

61



0.2 0.4 0.6 0.8
0

5

jo
in

t m
ax

0.2 0.4 0.6 0.8
0

5
ex

pe
ct

ed
 r

et
ur

n

m
ix

tu
re

0.2 0.4 0.6 0.8
0

5

source 1 weight

su
m

 m
ax

0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

source 1 weight

so
ur

ce
 1

 e
xp

ec
te

d 
re

tu
rn

joint max
mixture
sum max

Figure 4.3: Comparison of three methods of weighted cooperation: joint
maximization, mixture (picking a policy as a weighted mixture of the
individually optimal policies for each source), and sum maximization
(maximizing the weighted sum of rewards). Each method was run on
the world of figure 4.2 for a range of source weights. Plotted are the
expected returns for the resulting policies as a function of the weight
for source 1 (the weights for both sources sum to 1). At the top are the
plots for both sources (the solid line is source 1 and the dashed line is
source 2) for each of the methods. At the bottom, the plots for source
1 are combined in a single plot for comparison.
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The first important thing to notice is that the sum maximization
method has a very strange plot. In fact, the two transitions are much
steeper than shown. Because the graph was created by sampling the
weights at 0.1 intervals, the steps appear to be gradual. In fact, they are
vertical rises owing to qualitatively different solutions. The transition
points are at 0.25 and 0.75 because of the nature of the environment.
Furthermore, the sum maximization method is highly sensitive to re-
ward restructuring. Changing one of the source’s rewards while still
keeping its objectives the same (for instance, multiplying all of the re-
wards by a positive constant) results in a drastically different solution.

The second observation is that the mixture method does not exploit
the cooperation possible between the two sources. Both sources would
be better off if they each traded a trip down their respective arms of
the POMDP for two trips down the lower arm. However, the mixture
method does not exploit this. Although the mixture method is invariant
to reward restructuring, it fails to find any method to satisfy both
objectives simultaneously.

Finally, the joint maximization method seems to perform fairly well.
Due to randomness of the environment and the maximization method,
this curve from a single run is a little noisy. However, it is invariant to
reward restructuring, it finds cooperative solutions, and it provides for
weights that allow a large range of balances between the two sources.

4.3 Bounded Maximization

The previous section allowed for joint maximization of all objectives.
We could guarantee that the found policy was better than a mixture
of individually optimal policies. However, sometimes we would like
a different guarantee. Instead of insuring that the policy surpasses
the unknown mixture policy, we might instead wish to insure that for
some objectives, the resulting policy is better than an absolute set
constant. This is a slight relaxation of the condition that that algorithm
be insensitive to reward restructuring: the minimum return specified by
the algorithm designer must be changed with any reward restructuring.
However, in many circumstances (like the market-marking application
of the next chapter), absolute performance measures can be set without
complete knowledge of the solution. Especially in situations where
the return function is known to the designer, or where it has a well-
understood interpretation, this is a viable approach.

For the case of robot navigation towards a goal, we may wish to
insure that the robot hits obstacles with probability less than some
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constant. However, within the space of policies that achieve this first
objective, we want to minimize the time-to-goal. Thus, we have two
reward functions. The first penalizes for collisions and the second re-
wards the robot for making it to the goal (reduced by some function of
the time the robot took). We want to find an algorithm for maximizing
the second subject to a constraint on the first.

4.3.1 Algorithm

We will designate some of the reward sources as constraint sources. For
these sources, we will associate a fixed minimum return. The optimiza-
tion algorithms from previous chapters can be modified to search only
within areas of the policy space for which the estimators’ values for the
constraint sources is greater than the minimum returns.

Once again we can use a greedy search algorithm. If there is only
one unconstrained reward source, we maximize the single source using
the conjugate gradient ascent algorithm from chapter 2. If there are
multiple unconstrained reward sources, we maximize them using the
joint maximization algorithm in figure 4.1. To insure that the con-
straints are satisfied, a few changes to the algorithms must be made.

Both algorithms use the maximization algorithm from chapter 2.
This algorithm requires a valid starting point selected from among the
sampled policies. If no sampled policy exists whose estimated returns
satisfy the constraints, we discard the goal of maximization with re-
spect to the constraints and instead try to maximize the constrained
sources. In particular, we order the constrained sources and select the
first constrained source i for which no sampled policy conforms to all
of the constraints on sources j ≤ i. We then maximize the source i
subject to the constraints on the sources j < i. Thus, if we are concen-
trating on maximizing constrained source i, we know that one of the
sampled policies obeys all source constraints from 1 to i−1. Continuing
in this manner will insure we eventually find a policy that satisfies all
of the constraints if such a policy exists. At that point we can return
to optimizing the unconstrained sources.

Additionally both algorithms search the policy space by evaluating
the returns and gradients of each source’s estimators. To insure that
the algorithms stay within the space of valid policies, we augment the
return evaluation routine to return a very small value (i.e., −∞) if
any constrained source’s estimator has a value less than the source’s
constraint at the evaluation policy.
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Figure 4.4: Diagram of the simulated robot collision world. The goal
is for the robot to move from the start position (S) to the end position
(E) without hitting the left-hand wall. At each time step, the robot
has the option of moving left, right, or down. There is a 25% chance
that the robot will move in a direction 45o to the left from the desired
direction and a 25% chance it will move 45o to the right from the
desired direction on any given time step. Each time step moves the
robot 1 unit of length. The robot automatically stops when it is within
1 unit of the end position. For every time step it spends within 1 unit
of the end position, it is rewarded one unit of reward. Additionally, a
separate reward source rewards −1 unit of reward each time the robot
hits the left-hand wall. Each trial lasts for 20 time steps.

4.3.2 Results

Figure 4.4 shows a very simple abstracted robot control problem. The
mobile robot begins at point S. Its goal is to arrive in the shaded region
as quickly as possible avoiding the left wall. At each time step, it moves
1 unit of distance. It can choose to move left, right, or down. There
is a 50% chance the robot will actually move 45o either to the left or
right of the intended direction. The robot has two sources of reward.
The first rewards it for every time step during which it is in the shaded
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Figure 4.5: Plot of expected time to reach the end position against the
expected number of collisions for the environment of figure 4.4. The
maximization algorithm was designed to achieve the minimal time for
a given expected collision constraint as described in the text.

area. The second penalizes it for every time step it runs into the left
wall.

It is impossible to achieve perfect performance in this domain. No
matter how careful the robot is, if it wants to arrive at the goal position,
there is some chance it will collide with the wall. We ran the minimum
reward constraint algorithm with this world for a range of maximum
allowable collisions (a maximum number of collisions translates to a
minimum reward for the collision reward source). In particular we
required the expected number of collisions to be less than values from
0.25 to 1.5 at increments of 0.25. After each run of the algorithm had
converged, we measured the true expected number of collisions and the
true expected time-to-goal by running 10000 separate trails with the
resulting policy. The results are shown in figure 4.5 for a Boltzmann
distribution policy class with six observation features: the cross product
of the state features (the constant 1, the x-position, and the y-position)
and two binary action features (the first is 1 only if the action is to the
left and the second is 1 only if the action is to the right).

While the data points do not quite line up with the required minima,
they are very close. Although the resulting graph is close to a line, it is
slightly concave demonstrating that there is some gain to being care-
ful. Furthermore, nothing about the structure of the trade-off between
collisions and time-to-goal was assumed. We could go back and find
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a formula relating the number of collisions to the time-to-goal. Using
this formula, we could make the desired trade-off between the two ob-
jectives with standard reinforcement learning. However, this presumes
we already know the graph of figure 4.5. The technique of this section
does not assume any prior knowledge about the relationships between
the reward sources.
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Chapter 5

Electronic

Market-Making

“Grace is given of God but knowledge is bought in the market.”
Bothie of Tober-na-Vuolich

Arthur Hugh Clough

In this chapter, we apply the algorithms developed to the problem
of running a market-making system automatically. We begin with an
overview of market-making and some of the literature to motivate the
problem and our approach. We then apply importance sampling to
solve the reinforcement learning problem for two market models. The
first has theoretical bounds to which to compare our results. The sec-
ond is more complex and allows us to balance competing objectives of
the market-maker.

5.1 Market-Making

Many economic markets, including most major stock exchanges, employ
market-makers to aid in the transactions and provide a better quality
market. Each commodity has one or more market-makers assigned to
it. All transactions in the market go through a market-maker. The
market-maker is responsible for setting prices and volumes for buying
and selling. If a market-maker quotes a buy price and volume (an ask
quote), this requires the market-maker to honor that price for all buy
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orders up to the quantity indicated by the volume. The symmetric
obligation holds for sell orders (bid quotes).

Market-makers supply an advantage to the market. By consolidat-
ing the trading in a few agents, the market becomes more efficient.
Traders wishing to buy and sell do not need to find each other or wait
for each other’s arrival. Additionally, by quoting a single price which is
guaranteed for all traders, market-makers remove the price fluctuations
that occur in markets where buyers and sellers must come to their own
agreement for a price individually for each transaction. Markets with
market-makers have greater volumes and better price stability.

Market-makers themselves benefit from their position as well. They
have an informational advantage over regular traders because they get
to see all (or many in some cases) of the orders. The average trader
does not have such information and can only see transactions which
actually take place and not all of the bids and asks that led to the final
selling price. This advantage allows market-makers to make better
predictions about the true value of a good and thereby better profits.
This is regulated by rules applied to market-makers and by competition
in the case of multiple market-makers. However, such an advantage is
not without some risk. The market-maker trades using his or her own
personal inventory. Negative inventory puts the market-maker at risk
should the value rise and positive inventory has a similar risk should
the value drop.

5.1.1 Automating Market-Making

Many major markets are now electronic. The NASDAQ is a distributed
trading system completely run through networked computers. It uses
competing market-makers (usually one per major trading company)
to maintain a high quality market. However, the demands on human
market-makers are high. A typical market-maker will be responsible
for 10 to 20 securities. At any given moment, it is only feasible for
the market-maker to be actively attentive to 2 to 3 of them. The
market-maker is generally losing potential profit or volume on the other
securities.

The last few years have also seen the growth of on-line trading sys-
tems. These systems are also entirely electronic and usually employ no
market making. Orders are crossed against the other orders that hap-
pen to be present at that time of the trade and otherwise are dropped.

The goal of this chapter is to demonstrate the ability of reinforce-
ment learning to fill the need for automated market-making. For the
case of the NASDAQ, a learning system could fill the role of an “au-
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topilot” by taking care of stocks in a more intelligent manner while
being supervised by a human market-maker. This would allow a hu-
man market-maker to more successfully manage a large set of securities.
In the case of small on-line trading systems, the system could replace
the existing naive order crossing mechanism to provide a better market
to its traders.

5.1.2 Previous Work

The understanding of the price formation process in security markets
has been one of the focal points of the market microstructure litera-
ture. There are two main approaches to the market-making problem.
One focuses on the uncertainties of an order flow (the time series of
orders placed) and the inventory holding risk of a market-maker. In
a typical inventory-based model, the market-maker sets the price to
balance demand and supply in the market while actively controlling its
inventory holdings. The second approach attempts to explain the price
setting dynamics employing the role of information. In information-
based models, the market-maker faces traders with superior informa-
tion. The market-maker makes inferences from the orders and sets
the quotes. This informational disadvantage is reflected in the bid-ask
spread (the difference between the buy and sell prices quoted by the
market-maker).

Garman (1976) describes a model in which there is a single, mo-
nopolistic, and risk neutral market-maker who sets prices, receives all
orders, and clears trades. The dealer’s objective is to maximize ex-
pected profit per unit time. Failure of the market-maker arises when
it runs out of either inventory or cash. Arrivals of buy and sell orders
are characterized by two independent Poisson processes whose arrival
rates depend on the market-maker’s quotes. Essentially the collective
activity of the traders is modeled as a stochastic flow of orders. The
solution to the problem resembles that of the Gambler’s ruin problem.
Garman studied several inventory-independent strategies that lead to
either a sure failure or a possible failure. The conditions to avoid a
sure failure imply a positive bid-ask spread. Garman concluded that a
market-maker must relate its inventory to the price-setting strategy in
order to avoid failure. Amihud and Mendelson (1980) extend Garman’s
model by studying the role of inventory. The problem is solved in a
dynamic programming framework with inventory as the state variable.
The optimal policy is a pair of bid and ask prices, both decreasing func-
tions of the inventory position. The model also implies that the spread
is positive, and the market-maker has a preferred level of inventory. Ho
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and Stoll (1981) study the optimal behavior of a single dealer who is
faced with a stochastic demand and return risk of his own portfolio. As
in Garman (1976), orders are represented by price-dependent stochastic
processes. However, instead of maximizing expected profit, the dealer
maximizes the expected utility of terminal wealth which depends on
trading profit and returns to other components in its portfolio. Con-
sequently the dealer’s risks play a significant role in its price-setting
strategy. One important implication of this model is that the spread
can be decomposed into two components: a risk neutral spread that
maximizes the expected profits for a set of given demand functions
and a risk premium that depends on the transaction size and return
variance of the stock. Ho and Stoll (1983) extend this to a multiple-
dealer scenario. The price-dependent stochastic order flow mechanism
is common in the above studies. All preceding studies only allow mar-
ket orders traded in the market. O’Hara and Oldfield (1986) attempt
to incorporate more realistic features of real markets into their analysis.
Their paper studies a dynamic pricing policy of a risk-averse market-
maker who receives both limit and market orders and faces uncertainty
in the inventory valuation. The optimal pricing strategy takes into ac-
count the nature of the limit and market orders as well as inventory
risk.

Inventory-based models focus on the role of order flow uncertainty
and inventory risk in the determination of the bid-ask spread. The
information-based approach suggests that the bid-ask spread could
be a purely informational phenomenon irrespective of inventory risk.
Glosten and Milgrom (1985) study the market-making problem in a
market with asymmetric information. In the Glosten-Milgrom model
some traders have superior (insider) information and others do not.
Traders consider their information and submit orders to the market
sequentially. The market-maker, which does not have any information
advantage, sets its prices, conditioning on all the available informa-
tion such that the expected profit on any trade is zero. Specifically,
the specialist sets its prices equaled the conditional expectation of the
stock value given past transactions. Its main finding is that in the
presence of insiders, a positive bid-ask spread would exist even when
the market-maker is risk-neutral and make zero expected profit.

Most of these studies have developed conditions for optimality but
provided no explicit price adjustment policies. For example, in Ami-
hud and Mendelson (1980), bid and ask prices are shown to relate to
inventory but the exact dependence is unavailable. Some analyses do
provide functional forms of the bid/ask prices (such as O’Hara and Old-
field (1986)) but the practical applications of the results are limited due
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to stringent assumptions made in the models.
The reinforcement learning models developed in this chapter make

few assumptions about the market environment and yield explicit price
setting strategies. We will start with a simple model where theoreti-
cal analysis is possible and then move to a more complex model with
multiple objectives.

5.2 Simple Model

Our goal for this section is to develop a simple model that adequately
simulates the strategy of a trading crowd given the quotes of a market-
maker. Information-based models focusing on information asymmetry
provide the basis for our basic model. In a typical information-based
model, there is a group of informed traders or insiders who have su-
perior information about the true value of the stock and a group of
uninformed traders who possess only public information. The insiders
buy whenever the market-maker’s prices are too low and sell whenever
they are too high based on their private information; the uninformed
simply trade randomly for liquidity needs. A single market-maker is at
the center of trading in the market. It posts the bid and ask prices at
which all trades transact. Due to the informational disadvantage, the
market-maker always loses to the insiders while breaking even with the
uninformed.

5.2.1 Model Description

To further illustrate this idea of asymmetric information among dif-
ferent traders, consider the following case. A single security is traded
in the market. There are three types of participants: a monopolistic
market-maker, insiders, and uninformed traders. The market-maker
sets one price at which the next arriving trader has the option to either
buy or sell one share. In other words, it is assumed that the bid price
equals the ask price. Traders trade only with market orders. All orders
are executed by the market-maker and there are no crossings of orders
among traders. After the execution of an order, the market-maker can
adjust its quotes given its knowledge of past transactions.

To further simplify the problem, we allow the market-maker to have
negative inventory and cash. We assume the resources of the company
running the market-making are vast enough to allow this. Furthermore,
the position is liquidated at the end of the day, limiting the risk of such
a method. For real markets, the details of the market’s closing are
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complex and individual to the particular market. However, because
the securities can shift and change overnight, it is common practice
for market-makers to return their inventory to zero at the close of
the market. The closing mechanism for many markets also serves to
converge on a single price for each security. This means that calculating
the profit at the end of the day is reasonable and in many cases part of
the normal closing function of the market. For simplicity, events in the
market occur at discrete time steps. In particular, events are modeled
as independent Poisson processes. These events include the change of
the security’s true price and the arrival of informed and uninformed
orders.

There exists a true price p∗ for the security. The idea is that there
is an exogenous process that completely determines the value of the
stock. The true price is to be distinguished from the market price
which is determined by the interaction between the market-maker and
the traders. The price p∗ follows a Poisson jump process. In particular,
it makes discrete jumps, upward or downward with a probability λp at
each time step. The size of the discrete jump is a constant 1. The
true price, p∗, is given to the insiders but not known to the uninformed
traders or the market-maker.

The insider and uninformed traders arrive at the market with a
probability of λi and 2λu respectively.1 Insiders are the only ones
who observe the true price of the security. They can be considered
as investors who acquire superior information through research and
analysis. They compare the true price with market-maker’s price and
will buy (sell) one share if the true price is lower (higher) than the
market-maker’s price, and will submit no orders otherwise. Uninformed
traders will place orders to buy and sell a security randomly. The
uninformed merely re-adjust their portfolios to meet liquidity needs,
which is not modeled in the market. Hence they simply submit buy or
sell orders of one share randomly with equal probabilities λu.

All independent Poisson processes are combined together to form
a new Poisson process. Furthermore, it is assumed that there is one
arrival of an event at each time step. Hence, at any particular time step,
the probability of a change in the true price is 2λp, that of an arrival of
an insider is λi, and that of an arrival of an uninformed trader is 2λu.
Since there is a guaranteed arrival of an event, all probabilities sum up
to one: 2λp + 2λu + λi = 1.

Each trial of the market represents one trading day. The market
begins with the true price and the market-maker’s price both set to the

1Buy and sell orders from the uninformed traders each arrive at a probability of

λu.
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arbitrary value of 100. At every time step the market-maker observes
whether a buy, a sell, or neither took place and has the chance to
increase or decrease its price by 1 unit. At the end of the trading day
(100 time steps), the inventory is liquidated at the current true price
resulting in the profit (or loss) of the market-maker.

The uninformed traders represent noise in the market. By ran-
domly trading, they obscure the information available from the in-
formed traders’ trades. The market-maker cannot differentiate between
orders placed by informed traders and those placed by uninformed
traders. For the results in this chapter, we use the term noise to rep-
resent the level of uninformed traders in the market. We set λi = 5λp

and λu = noise× λi.
This market model resembles the information-based model, such as

Glosten and Milgrom (1985), in which information asymmetry plays a
major role in the interaction between the market-maker and the traders.
The Glosten and Milgrom model studies a market-maker that sets bid
and ask prices to earn zero expected profit given available information,
while this model examines the quote-adjusting strategies of a market-
maker that maximize sample average profit over multiple episodes,
given order imbalance information. This model also shares similarities
with the work of Garman (1976) and Amihud and Mendelson (1980)
where traders submit price-dependent orders and the market-making
problem is modeled as discrete Markov processes. But instead of in-
ventory, here the order imbalance is used to characterize the state.

5.2.2 Theoretical Analysis

The observation provided to the market-maker for a given time step in
this model is one of “buy,” “no order,” or “sell.” For algorithms with-
out memory, this often is not enough to produce a good policy. Many
values can be calculated from the sequence of observations including
cash and inventory. For our reactive policies we have chosen to use a
measure of imbalance on which to base the agent’s actions. We de-
fine the imbalance to be the number of sell orders received subtracted
from the number of buy orders received since the last change in the
market-maker’s price. Therefore if the market-maker changes price,
the imbalance is set to zero. Otherwise the imbalance is increased for
each buy order and decreased for each sell order.

We previously studied this model in Chan and Shelton (2001). Of
the set of policies based on imbalance, the symmetry of the problem
clearly indicates that the optimal policy will also be symmetric. In
particular, if a certain imbalance causes the market-maker to lower
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Figure 5.1: Plot of theoretically derived expected profits as a function
of the noise in basic model for three deterministic policies. imb = 1 is
the policy of changing the price as soon as the imbalance gets to ±1.
imb = 2 is the policy of changing the price as soon as the imbalance
gets to ±2. imb = 3 is the same for ±3.

its price, the negative of the same imbalance should cause the market-
maker to raise its price. For deterministic policies, this leaves only a few
sensible options. In particular, the agent should select an imbalance
threshold. If the imbalance is greater than this threshold, it should
lower its price because there are too many buys indicating its current
price is too high. Similarly, if the imbalance is less than the negative
threshold, it should raise its price. Figure 5.1 shows the true expected
return as a function of the noise in the environment for executing one
of three basic policies. Each policy corresponds to deterministically
changing the price when the imbalance reaches a different level. The
figure is exact and calculated by converting the environment-agent pair
into a Markov chain and then finding the exact expectation of the chain.
This calculation is not available to the agent because it depends on
knowledge of the environment; we present it here to illustrate features
of the domain.

Figure 5.2 compares the expected return from the best of this pol-
icy class to the expected return from executing a hold policy of never
adjusting the price. We chose to compare to the hold policy for two
reasons. The first is that there is no randomness in the hold policy, so
all of the variability is inherent in the environment model. The second
is that the hold policy is not an unreasonable policy. It is the best
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Figure 5.2: Plot of the expected profit of the hold policy against the
optimal policies (see figure 5.1). The solid lines are the best reactive
policies based on the imbalance. The dashed line is the performance of
a policy that never changes prices. The dotted lines are one standard
deviation above and below the performance of the hold policy. Note
that the variance in the market is much larger than the differences
among the optimal imbalance policies.

the agent can do without taking the observations into consideration.
Certainly there are many worse algorithms in the policy space to be
explored by the agent. Not only are all of these imbalance thresholding
policies performing much better than the hold policy, but it is easy to
see the tremendous randomness in the data. The dotted line shows the
standard deviation of returns from the hold policy. This large variance
plays a major role in the difficulty of the problem. Single samples have
little information alone. Compared to the noise, all of these determin-
istic imbalance-threshold policies appear approximately the same. To
discern among them is difficult because of the noise. The variance of
the samples swamps the differences in returns. Although reinforcement
learning algorithms will have many more policies to consider than just
these three, figure 5.1 can be used to gauge the success of a particular
learning method by placing a reasonable target performance.

5.2.3 Results

We previously used temporal difference methods to approach exactly
the same environment (Chan and Shelton 2001). We got good results
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Figure 5.3: Examples of typical runs for the importance sampling esti-
mator with different policy classes as compared to SARSA.

using SARSA although not with Q-learning which agrees with others’
experiences comparing SARSA and Q-learning on POMDP problems
(Lock and Singh 1998). However, our results with SARSA were not
satisfactory. In order to produce consistent convergence, we had to
provide a reward at each time step. For profit, this meant setting the
reward at a particular time to be the change in the true net worth of
the market-maker (cash plus the inventory liquidated at the current
true price). Such a reward requires knowledge of the true price of the
stock. As noted in the market description, such knowledge should only
be available at the closing of the market. Although it was not supplied
in the observations, it still entered into the algorithm’s calculations. In
this thesis, we tackle the more difficult and realistic problem where no
reward is given until the final time step.

As noted in the previous section, the market-market observes at
each time step whether a buy, sell, or no order took place. This is
insufficient information to perform well in noisy markets. We therefore
tied four different policy classes:

1. Reactive table policy based on imbalance: For this policy, we used
the standard original estimator from chapter 2. The observation
was the current imbalance (calculated as in the previous section).
The observation was bounded at 3 and -3. If the true imbalance
was greater than 3, the observation was set to be 3 (similarly
with imbalances less than -3). Otherwise, the integer observation
value was directly used as the observation.
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Figure 5.4: Sample episodes from running the importance sampling es-
timator with the reactive policy in the market with noise 0.2. Shown
are the true and market-maker’s prices during an episode for trail num-
bers 1, 500, 750, 1500. The run was stopped after trial 1500 when the
algorithm converged. It had actually settled to the correct solution by
trial 1000. However, small fluctuations in the policy caused the auto-
mated stopping criteria to wait for another 500 trials before declaring
convergence.
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Figure 5.5: The expected return of the found policy as a function of
the noise in the model. Three different policy classes were tried. They
are detailed in the text. Compare to the theoretical results shown in
figure 5.1.

2. Policy weights based on Boltzmann distribution using imbalance:
For this policy, we used the Boltzmann distribution for a policy
class with weights as in section 3.2. The observation feature vec-
tor had four features. The first two were 1 and the imbalance if
the action was to lower the price. Otherwise, they were both 0.
The second two were 1 and the imbalance if the action was to
raise the price (and otherwise 0).

3. Memory policy with 2 memory states based on the raw observa-
tions: For this policy, the imbalance was not computed automat-
ically for the agent. Instead, it was given two memory states (as
in section 3.1) and the raw observations of buy, sell, or no action.

4. Memory policy with 3 memory states based on the raw observa-
tions: as above, but with three memory states.

We let θ (from section 3.3) be 0.03 for all experiments in this chapter
to combat the noise inherent in the problem. The experiments were run
until on twenty consecutive trials, no policy parameter changed by more
than 0.01 and the estimated return for the policy changed by no more
than 0.1. We ran each of these four policy classes on the market model,
varying the noise from 0.0 to 1.5 at increments of 0.1.

Figure 5.3 compares a sample run of each algorithm and SARSA
(using the reactive table policy class based on imbalance) for a market
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Figure 5.6: Plots of the expected profit as a function of the noise for
the solutions found at market noise of 0.1 and 1.2. The top row is
for the reactive table policy class and for the Boltzmann distribution
reactive policy class (from left to right). The bottom row is for memory
policies observing the raw buy-sell order flow with either 2 or 3 memory
states. The boxed points are the points the graphs were optimized for.
The differentiation in the plots demonstrates that the solutions found
are sensitive to the market dynamics and change with the noise in the
market.
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with noise of 0.2. We can see that the SARSA method takes longer to
converge and can become unstable later. It often will jump to strange
policies after seeming convergence. Faster annealing of the SARSA
learning rate causes the algorithm to fail to converge. Although not as
apparent due to the smoothing, the SARSA algorithm produced some
very negative returns for a couple of trials in a row and then returned to
its previous performance (this can be seen by the dips in the graph at
about 500 and 1500 trials). By comparison, the importance sampling
estimators behave more nicely in this partially observable environment.

To show the adaptation of the learning algorithm, figure 5.4 shows
the price dynamics for three episodes during one run of the algorithm.
We can see that as the agent gathers more experience, it is better able
to track the true price of the stock.

Figure 5.5 shows the expected returns (measured by 10000 separate
trials taken after learning had converged) for each algorithm as a func-
tion of the noise. We notice that the two policies based on imbalance
come close to meeting the theoretical bounds of the solid line. The
two policies based on memory fair more poorly. However, it should be
noted that, as shown in figure 5.2, all of these policies perform very
well compared to holding even and the noise inherent in the model.

To demonstrate that the learned policies are sensitive to the par-
ticulars of the market environment (in this case, the noise), figure 5.6
compares the policies found at noise 0.1 to those found at 1.2. We
took the policies found for both noise settings and plotted how those
policies would perform across all noise levels. We can see that for each
policy class, the algorithm finds a different type of solution and that
the solutions found for noise 0.1 are different than those at 1.2.

5.3 Spread Model

The previous section demonstrates how reinforcement learning algo-
rithms can be applied to market-making problems and successfully con-
verge to competitive strategies under different circumstances. Although
the basic model is useful because the experimental and theoretical re-
sults can be compared, one of its major limitations is the equality of
the bid and ask prices. Without the bid-ask spread the market-maker
suffers a loss from the market due to the information disadvantage. A
natural extension of the basic model is to let the market-maker quote
bid and ask prices. The rest of the market remains the same. Informed
traders sell if the bid price is too high and buy if the ask is too low.
Uninformed traders still trade randomly. Each transaction is for the
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fixed volume of 1 share.
The market-maker now has two objectives. It wants to maximize

profits to insure a stable business platform. It also wants to minimize
the average spread. By minimizing spread, the market-maker insures
better volume (more trades through the market-making system) be-
cause it provides more competitive prices. Because of the increased
volume, the company running the market-maker can provide better
deals to its private investors.

5.3.1 Model Description

To incorporate bid and ask prices to the model, the set of actions is
augmented to include the change of the bid price and the change of the
ask price. Thus the agent has 9 action choices corresponding to each
possible pair of actions with respect to the bid and ask prices (each
can be raised, kept the same, or lowered). The spread also enters the
reward function to regulate the of market quality maintained by the
agent. The profit and spread rewards are separate sources. The profit
source is as in the previous model. The spread source’s reward at a
time step is the negative spread. Thus the return from this source is the
negative sum of the spread over all time steps. In the basic model, the
market-maker only aims at maximizing profit. By adding spread to the
model, the market-maker also needs to consider the quality of market
it provides. If it only seeks to maximize profits, it can create a huge
spread and gain profit from the uninformed traders. Unfortunately,
this results in low market quality and a loss in volume (as mentioned
above). These objectives are not entirely competitive: some policies
result in poor profits and large spreads. However, for the most part,
increases in profit come at the expense of reduced spreads. The exact
trade-off is a function of the market and unknown.

5.3.2 Results

The most natural method to balance the rewards is to fix a desired min-
imum expected profit find the minimal average spread policy subject
to the profit constraint. Such a constraint may be set by the operators
of the market-maker to insure reasonable profitability. For these exper-
iments, we used the bounded maximization method from section 4.3 to
achieve this goal. The average profit per day was fixed between −15
and 15 and the negative average spread (the second reward source) was
maximized. The results from the previous section were assumed. The
default policy therefore lowers the price if the imbalance is negative and
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spread + -/0 -/+ 0/+

Figure 5.7: How the imbalance-correcting reflex interacts with the
agent’s action to change the bid and ask prices. The table shows the
resulting bid and ask changes for each combination of imbalance and
action. Across the top are the imbalance values (negative, zero, or
positive) which result in the midquote (the average of the bid and ask
prices) decreasing, staying the same, or increasing respectively. This is
a build-in reflex of the agent as found by the previous section’s experi-
ments. Down the side are the actions possible for the agent (decrease,
maintain, or increase the spread). The combination of these two deter-
mine the changes to the bid and ask prices. The table lists the change
as bid/ask. A “+” means that the corresponding value is increased by
one unit. A “-” correspondingly means a decrease of one unit. A “0”
implies the value is left unchanged.
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Figure 5.8: Plot of spread against profit with noise = 0.2. The algo-
rithm was run with differing constraints on the maximum profit. Profit
constraints ranged from −15 to 15 at intervals of 5. After the algorithm
converged, the expected profit and spread were computed for the result-
ing policy by 10000 separate empirical trials. Plotted is the resulting
empirical curve.
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raises the price if the imbalance is positive. This is considered a reflex
of the agent built in from the learned policy for the market environment
without a bid-ask spread. The learning task then was to decide, based
on the current spread, whether to increase, decrease, or maintain the
current spread. Figure 5.7 details the resulting bid and ask changes as
a function of the imbalance and the RL action. Note that an action to
change the spread might result in the spread changing by 1 or 2 units
depending on the imbalance. To keep the number of observation states
reasonable, any spread greater than 4 is considered to be 4 for purposes
of observations (the true spread is not bounded, only the observation
of the spread).

Figure 5.8 shows the results for a reactive policy using probability
tables. We notice that the profits do not line up exactly at even multi-
ples of 5 as the constraints would require. At the point the algorithms
were stopped, and the resulting policies evaluated (by 10000 separate
empirical trials), the policies had not shifted and the return estimation
had not changed for 20 consecutive learning trials. For every run, the
algorithm’s estimate of the expected profit was fixed exactly at the con-
straint value. The difference between the estimate and the true value
is due to the noise in the environment. The 10000 separate evaluation
trials were much better at determining the true estimated returns for
the final policy than the learning trials which numbered only about
2000 and were spread over many different policies. However, consider-
ing the noise, the plot is good, with the possible exception of the “0
profit” point that seems to have found a local minimum a ways from
the desired solution. The results here are an improvement on the cor-
responding results from our previous actor-critic algorithm (Chan and
Shelton 2001). Figure 5.8 demonstrates better spreads for the same
profits, although in our previous work the policy class was slightly dif-
ferent so a direct comparison may not be justified.

5.4 Discussion

We feel these results demonstrate the power of our importance sampling
algorithm. The models of this chapter are highly stochastic and provide
difficult challenges for RL algorithms. We were able to show that our
algorithm is can find good solutions in the presence of noise while at
the same time remaining sensitive to small differences in the market.
Furthermore, we were able to successfully balance two major objectives
of real market-makers in a simple framework that allows for a natural
specification of the trade-off between the objectives.
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Chapter 6

Conclusions

“Error has no end.”
Paracelsus. Part iii.

Robert Browning

We feel this thesis represents the first major exploration of im-
portance sampling for reinforcement learning. There have been only
two previous uses of importance sample in RL. The first (Precup, Sut-
ton, and Singh 2000; Precup, Sutton, and Dasgupta 2001) used impor-
tance sampling as a slight modification to temporal difference learning.
The second (Peshkin and Mukherjee 2001) developed some theoretical
bounds for importance sampling, but did not develop any algorithms
or experimental results.

We have extended importance sampling to multiple sampling poli-
cies, demonstrated it can be calculated for not only reactive table-based
policies, but also parameterized policies and finite-state controllers. We
have given exact variance formulae for the estimates. Furthermore, we
have demonstrated the power of the full return surface estimate pro-
vided by our importance sampling method in solving problems with
multiple objectives. Finally, we have demonstrated its success on nu-
merous small problems and ultimately on the practical and highly noisy
domain of electronic market-making.

Electronic market-making is a real problem with few robust auto-
matic techniques. Reinforcement learning shows promise of making
useful progress on this practical and important domain. However, as
this is the first serious use of importance sampling and only the second
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attempt to apply reinforcement learning to market-making, there are a
number of immediate and future problems to be tackled. We feel that
all of them are possible given the foundations laid in this thesis.

6.1 Algorithm Components

The algorithm of this thesis is composed of a number of components.
Each could individually benefit from some additional research.

6.1.1 Estimator Performance

We think the normalized estimator works very well given the minimal
assumptions made. These assumptions allow the algorithm to work
in almost any reinforcement learning scenario, yet we still take into
consideration the temporal control problem inherent to reinforcement
learning. The time series of observations, action, and rewards are ex-
plicit in calculating the importance sampling ratios. When combined
with a greedy algorithm, the estimator produces quick learning.

Yet, we feel that two immediate extensions might help. The first is
to provide error estimates or bounds on the return estimate. We have
a formula for the variance of the estimator, but we still need a good
estimate of this variance from the samples (direct application of the
formula requires full knowledge of the POMDP). Although we provide
a simple variance estimate of sorts in section 3.3, it is not theoretically
rigorous.

Second, the estimate needs to be “sparsified.” After n trials, com-
puting the estimate (or its derivative) for a given policy takes O(n)
work. This makes the entire algorithm quadratic in the number of
trials. However, a similar estimate could probably be achieved with
fewer points. Remembering only the important trials would produce a
simpler estimate.

More generally, improved insight and theory may come from more
study of the basic research in importance sampling. Yet, it is difficult
to bring the results from importance sampling to this problem. Impor-
tance sampling usually assumes that the designer has control over the
sampling distribution. In our problem, we’d like to allow the agent to
use experience that was sampled in any fashion. Whereas importance
sampling often asks, “given an expectation to estimate, how should
I sample to reduce the variance of the estimate?” we would like to
ask “given a sampling method, how best should I estimate the expec-
tation to reduce variance?” Hesterberg (1995) does list a number of
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other importance sampling methods. Unfortunately none of them are
computable in this case (recall that the full probability function is not
available, only one factor of it).

Finally, it may seem disturbing that we must remember which poli-
cies were used on each trial. The return doesn’t really depend on the
policy that the agent wants to execute; it only depends on how the
agent actually does act. In theory we should be able to forget which
policies were tried; doing so would allow us to use data which was not
gathered with a specified policy. The policies are necessary in this pa-
per as proxies for the unobserved state sequences. We hope future work
might be able to remove this dependence.

6.1.2 Greedy Search

The greedy search algorithms used are simple and can be effective for
environments with little noise and where the optimal policies are near
the boundaries of the policy space. However, not all problems exhibit
these properties. Although the variance-controlled search algorithm of
section 3.3 does help, it is not a complete solution. The greedy search
is prone to getting stuck in local minimum and in general, the variance-
control does not help in this respect. The most obvious example of local
minima is in the simple problem of maximizing the estimated return
function. This problem is unsurmountable in general and will only be
improved with better general function maximization algorithms.

However, the more addressable and less fundamental difficulty is
in picking exploration policies. Although, given enough samples, the
estimate will eventually converge to the true return, if those samples
are drawn from policies far from the optimal distribution, it may take
a long time before convergence. In fact, it may take long enough that
the algorithm appears to have converged to a suboptimal procedure
even though the function maximization algorithm is not stuck in local
minima. The problem is not that the maximization procedure could
not find the global maximum of the return surface, but rather that
the global maximum of the estimated return is actually only a local
maximum of the true return.

The algorithm needs to select sampling policies for the potential in-
formation they will supply to the estimator in addition to the potential
immediate return. Whether such a choice requires more assumptions
about the environment is unclear. However, a more clever sampling
procedure would certainly lead to faster convergence with fewer local
minima problems.
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6.1.3 Multiple Objectives

We do not feel that multiple objectives have been given enough atten-
tion in the RL literature. They are crucial to the application of RL
to many real-world applications. It is often nearly impossible for a de-
signer of a system to sit down and write out an exact expression for
a single reward function that will lead to the desired behavior. More
often it is only practical for the designer to create separate reward
functions for each sub-behavior or sub-goal of the agent.

These sub-goals usually interact in one of a number of different ways
first presented by Kaelbling (2001):

1. Conjunctive: The agent must achieve all goals.

2. Consecutive: The agent must perform each task in serial.

3. Simultaneous: The agent must maintain all goals at the same
time.

4. Conditional: The agent must perform one goal while maintaining
a minimum level of performance on another goal.

The first interaction form is difficult to define more carefully without
specifying a single reward function that captures the way in which
trade-offs among the goals should be balanced should they not all be
maximally obtainable simultaneously. Without additional knowledge,
it may not be practical to address this interaction style. The second
form is well covered by standard reinforcement learning methods. Each
policy is learned individually and executed in series. It makes the
implicit assumption that achieving one goal does not undo the gains
from achieving other goals.

The last two forms are addressed by this thesis. The simultaneous
objectives are covered by the joint maximization algorithm of chapter 4
and the conditional objectives are covered by the conditional maximiza-
tion algorithm of the same chapter. These two forms are particularly
crucial for designing systems by multiple reward source specifications.
The entire purpose for specifying multiple reward sources is that the
exact method of combination is unknown. Both of the algorithms in
this thesis have tunable parameters that have natural interpretations
which regards to balancing the rewards, and yet do not require a priori

knowledge about the optimal policy. In this way, the reward designer
can create sub-goals and reason about the correct parameter settings
to balance the objectives. Furthermore, the parameters can be ad-
justed easily if the resulting behavior does not match the designer’s
expectations.

88



We think that there is more to be done however. In particular, for
the simultaneous objectives, a better overall objective needs to formu-
lated so that different algorithms can be compared. Additionally, it
would be nice if complex single reward sources could be automatically
broken down into multiple sources. The additional complexity of the
multiple sources may be overcome by the ease of learning with simpler
reward function.

6.2 Market-Making

Not only are we excited about the possibilities of importance sampling
for reinforcement learning, we are excited about the possibilities of
reinforcement learning for market-marking. This domain is growing
with the increasing number of markets moving to electronic domains.
Not only is this a practical and useful problem to solve with many
of the complications of real-world domains, it is an environment well-
suited to electronic and algorithmic control. The market structure is
mathematical, events occur at distinct points in time, and the entire
environment is electronic making the interface simple. Market-making
differs from general portfolio management in that market-makers have
a legitimate information advantage allowing them to make a profit even
in a rational market. The potential for useful algorithms is very high.

We also see great potential from the scalability of market-making.
Additional information and model complexity can be added gradually
much as we did in this thesis by first solving the basic market model
and then using the results from that as reflexes for the policies of the
spread model. We hope that this technique can continue, allowing
the addition of more complex environment models involving additional
information sources including financial news and related markets.

It would seem that any system employed in a real market will re-
quire adaptive features to allow it to adjust to market changes. Re-
inforcement learning and importance sampling in particular shows the
promise of providing such adaptive systems.
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Appendix A

Bias and Variance

Derivations

We will assume that the policy we are evaluating is πA and thus we are
interested in estimating E[R|πA]. Later, we will look at the difference
between the estimate at point πA and at point πB . All sums are over
the data points (1 through n) unless otherwise noted. Integrals will be
over the space of histories. If the space of histories is discrete (as is the
case for POMDPs), these should actually be sums. However, by using
integrals for histories and sums for experience, the notation becomes
clearer.

To aid in the derivation of the bias and variance of the estimators, we
will define a few symbols to represent common quantities and simplify
the notation.

p(h)
4
=

1

n

∑

i

p(h|πi)

p̃(h, g)
4
=

1

n

∑

i

p(h|πi)p(g|πi) .

These are mixture distributions that represent the average sampling
distribution.

wi
A

4
=

p(hi|πA)

p(hi)

wi
B

4
=

p(hi|πB)

p(hi)
.
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These are the unnormalized sample weights for the estimates at πA and
πB respectively.

Ri 4
= R(hi)

ri
A

4
= Riwi

A

ri
B

4
= Riwi

B

RA
4
= E[R|πA]

RB
4
= E[R|πB ] .

Finally, these are the sampled returns, the weighted returns, and the
true expectation values.

A.1 Unnormalized Estimator

First we consider the unnormalized estimator

U(πA) =
1

n

∑

i

ri
A .

Its mean can easily be derived as

E[U(πA)] = E[
1

n

∑

i

ri
A]

=
1

n

∑

i

E[ri
A]

=
1

n

∑

i

∫

R(hi)
p(hi|πA)

p(hi)
p(hi|πi) dhi

=
1

n

∑

i

∫

R(h)
p(h|πA)

p(h)
p(h|πi) dh

=

∫

R(h)
p(h|πA)

p(h)

1

n

∑

i

p(h|πi) dh

=

∫

R(h)
p(h|πA)

p(h)
p(h) dh

=

∫

R(h)p(h|πA) dh

= E[R|πA]

= RA
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and thus U(πA) is an unbiased estimate of RA. Similarly, we can derive
that

1

n

∑

i

E[ri
B ] = RB

1

n

∑

i

E[wi
A] = 1

1

n

∑

i

E[wi
B ] = 1

which will be useful later.
We can also find the variance of this estimator:

E [(U(πA) − E[U(πA)])2
]

= E[(
1

n

∑

i

ri
A)2]−R2

A

=
1

n2

∑

i

E[(ri
A)2] +

1

n2
(
∑

i

E[ri
A])2 −

1

n2

∑

i

E[ri
A]2 −R2

A

=
1

n

(

1

n

∑

i

E[(ri
A)2]−

1

n

∑

i

E[ri
A]2

)

=
1

n

(∫

R2(h)
p(h|πA)

p(h)
p(h|πA) dh−

∫∫

R(h)R(g)
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

)

.

Although this might look a bit messy, there is sense in it. The quantity
inside the parentheses is constant if, as n increases, the chosen policies
(πi) remain the same. This would happen if we kept the same set of
trial policies and just kept cycling through them. In fact, if all of the
πi’s are equal, then the second integral works out to just be R2

A as
p̃(h, g) = p(h)p(g) for this case. The first integral can be rewritten as

E[R2 p(h|πA)
p(h) |πA] which looks more like a term normally associated with

variances.
To make this (and future) derivations simpler, we add the following
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definitions

s2
A,A

4
=

1

n

∑

i

E[(ri
A)2] =

∫

R2(h)
p(h|πA)

p(h)
p(h|πA) dh

s2
A,B = s2

B,A

4
=

1

n

∑

i

E[ri
Ari

B ] =

∫

R2(h)
p(h|πA)

p(h)
p(h|πB) dh

s2
B,B

4
=

1

n

∑

i

E[(ri
B)2] =

∫

R2(h)
p(h|πB)

p(h)
p(h|πB) dh

η2
A,A

4
=

1

n

∑

i

E[ri
A]2

=

∫∫

R(h)R(g)
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

η2
A,B = η2

B,A

4
=

1

n

∑

i

E[ri
A]E[ri

B ]

=

∫∫

R(h)R(g)
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg

η2
B,B

4
=

1

n

∑

i

E[ri
B ]2

=

∫∫

R(h)R(g)
p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πB) dh dg .

Thus, var(U(πA)) = 1
n
(s2

A,A − η2
A,A).

A.2 Unnormalized Differences

Instead of computing the mean and variance of the normalized esti-
mator (these quantities are too convoluted to be useful), we will now
look at the difference of the estimator at two different policies, πA and
πB . If we are using the estimator to guide a greedy search, then this
is closer to a quantity we care about. In fact, we really care how the
maximum of the estimator compares to the true maximum. That is too
difficult to calculate. However, looking at the difference gives a better
sense of how the estimator works when used for comparisons.

For the unnormalized estimator, U(πA) − U(πB) is clearly an un-
biased estimate of RA − RB . The variance of the difference can be
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derived, similarly to the previous derivation, to be

E
[

(U(πA)− E[U(πA)]− U(πB) + E[U(πB)])
2
]

=
1

n

(

s2
A,A − 2s2

A,B + s2
B,B − η2

A,A + 2η2
A,B − η2

B,B

)

.

If we define q as

qA,B(h) = p(h|πA)− p(h|πB)

then we can also write

var(U(πA)− U(πB))

=
1

n

(

∫

R2(h)
q2
A,B(h)

p2(h)
p(h) dh−

∫∫

R(h)R(g)
qA,B(h)qA,B(g)

p(h)p(g)
p̃(h, g) dh dg

)

.

A.3 Normalized Differences

For the normalized estimator we are interested in

∑

i ri
A

∑

i wi
A

−

∑

i ri
B

∑

i wi
B

=

∑

i ri
A

∑

j wj
B −

∑

i ri
B

∑

j wj
A

∑

i wi
A

∑

j wi
B

.

However, since the denominator is always positive and we only care
about the sign of this quantity (because we are using the estimator to
compare potential policies), we can concentrate on the numerator only.
Furthermore, we can scale this quantity by any positive value. We
will scale it by 1

n2 so that it is roughly the same as the unnormalized
estimator and the variances can be compared.

Thus, we are interested in the bias and variance of the difference

D =
1

n2

∑

i,j

(ri
Awj

B − ri
Bwj

A) .

It is important to note that ri
Awi

B = ri
Bwi

A and thus when i = j the
two terms in the sum cancel. This leaves us with

D =
1

n2

∑

i6=j

(ri
Awj

B − ri
Bwj

A) .
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The bias derivation is similar to the variance derivations of the unnor-
malized estimator.

E[D] =
1

n2





∑

i6=j

E[ri
Awj

B ]−
∑

i6=j

E[ri
Bwj

A]





=
1

n2





∑

i,j

E[ri
A]E[wj

B ]−
∑

i

E[ri
A]E[wi

B ]

−
∑

i,j

E[ri
B ]E[wj

A]−
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E[ri
B ]E[wi

A]





=
1

n

∑

i

E[ri
A]

1

n

∑

j

E[wj
B ]−

1

n

∑

i

E[ri
B ]

1

n

∑

j

E[wj
A]

−
1

n

(

1

n

∑

i

(E[ri
A]E[wi

B ]−E[ri
B ]E[wi

A])

)

= RA −RB −
1

n
bA,B

where we define bA,B as

bA,B =

∫∫

[R(h)−R(g)]
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg .

Again, if we fix the relative frequencies of the selected policies, bA,B is
a constant as n increases. Thus, the bias of D decreases at a rate of
1
n
. In fact, if all of the πi’s are the same, bA,B = RA − RB and the

expectation of the difference is

n− 1

n
(RA −RB)

which, except for n = 1, is just a scaled version of the true difference.
The derivation of the variance of D is slightly more involved but

involves the same basic technique. First, however, we must make a
brief detour. Consider, in general, calculating E[

∑

i6=j,k 6=l aibjckdl].
We wish to break this sum up into independent components so that
the expectations can be calculated. It involves a lot of algebra but the
notion is fairly simple.
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First we count up the different ways that the indices could coincide.

∑

i6=j,k 6=l

aibjckdl =
∑

i6=j 6=k 6=l

aibjckdl

+
∑

i6=j 6=k

(aicibjdk + aidibjck + aibjcjdk + aibjdjck)

+
∑

i6=j

(aicibjdk + aidibjcj)

where the notation i 6= j 6= k 6= l implies none of the indices equal each
other. While the expectation can now be pushed through these three
sums easily (because we know the indices to be different), we have the
complication that the sums are difficult to compute. We therefore break
each sum into a sum over all indices minus a set of sums accounting
for when the indices are the same (and therefore should not have been
included). As is usual with inclusion-exclusion calculations, we also
have to add back in some sums which were subtracted out twice. The
net result is

E[
∑

i6=j,k 6=l

aibjckdl]

=
∑

i6=j 6=k 6=l

E[ai]E[bj ]E[ck]E[dl]

+
∑

i6=j 6=k

(E[aici]E[bj ]E[dk] + E[aidi]E[bj ]E[ck]+

E[ai]E[bjcj ]E[dk] + E[ai]E[bjdj ]E[ck])

+
∑

i6=j

(E[aici]E[bjdj ] + E[aidi]E[bjcj ])

96



= (
∑

i,j,k,l

E[ai]E[bj ]E[ck]E[dl]

−
∑

i,j,k

E[ai]E[bi]E[cj ]E[dk] + E[ai]E[bj ]E[ci]E[dk] + E[ai]E[bj ]E[ck]E[di]

+ E[ai]E[bj ]E[cj ]E[dk] + E[ai]E[bj ]E[ck]E[dj ] + E[ai]E[bj ]E[ck]E[dk]

+ 2
∑

i,j

E[ai]E[bi]E[ci]E[dj ] + E[ai]E[bi]E[cj ]E[di]

+ E[ai]E[bj ]E[ci]E[di] + E[ai]E[bj ]E[cj ]E[dj ]

+
∑

i,j

E[ai]E[bi]E[cj ]E[dj ] + E[ai]E[bj ]E[ci]E[dj ] + E[ai]E[bj ]E[cj ]E[di]

− 6
∑

i

E[ai]E[bi]E[ci]E[di])

+ (
∑

i,j,k

E[aici]E[bj ]E[dk] −
∑

i,j

E[aici]E[bi]E[dj ]

−
∑

i,j

E[aici]E[bj ]E[di] −
∑

i,j

E[aici]E[bj ]E[dj ] + 2
∑

i

E[aici]E[bi]E[di])

+ (
∑

i,j,k

E[aidi]E[bj ]E[ck] −
∑

i,j

E[aidi]E[bi]E[cj ]

−
∑

i,j

E[aidi]E[bj ]E[ci] −
∑

i,j

E[aidi]E[bj ]E[cj ] + 2
∑

i

E[aidi]E[bi]E[ci])

+ (
∑

i,j,k

E[ai]E[bjcj ]E[dk] −
∑

i,j

E[ai]E[bici]E[dj ]

−
∑

i,j

E[ai]E[bjcj ]E[dj ] −
∑

i,j

E[ai]E[bjcj ]E[di] + 2
∑

i

E[ai]E[bici]E[di])

+ (
∑

i,j,k

E[ai]E[bjdj ]E[ck] −
∑

i,j

E[ai]E[bidi]E[cj ]

−
∑

i,j

E[ai]E[bjdj ]E[cj ] −
∑

i,j

E[ai]E[bjdj ]E[ci] + 2
∑

i

E[ai]E[bidi]E[ci])

+ (
∑

i,j

E[aici]E[bjdj ] −
∑

i

E[aici]E[bidi])

+ (
∑

i,j

E[aidi]E[bjcj ] −
∑

i

E[aidi]E[bici])

(A.1)

and although this looks complex, most of the terms are irrelevant. For
instance, consider the term

∑

i,j E[aidi]E[bjcj ] (the very last sum). In

the derivation of variance, this sum would be instantiated with ai = ri
A,
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bj = wj
B , cj = rj

B , and di = wi
A. We can then rewrite it as

∑

i,j

E[aidi]E[bjcj ] =
∑

i,j

E[ri
Awi

A]E[rj
Bwj

B ]

=
∑

i

∫

R(h)
p(h|πA)p(h|πA)

p(h)p(h)
p(h|πi) dh

×
∑

j

∫

R(h)
p(h|πB)p(h|πB)

p(h)p(h)
p(h|πj) dh

= n2

∫

R(h)
p(h|πA)p(h|πA)

p(h)p(h)

1

n

∑

i

p(h|πi) dh

×

∫

R(h)
p(h|πB)p(h|πB)

p(h)p(h)

1

n

∑

j

p(h|πj) dh

= n2

∫

R(h)
p2(h|πA)

p2(h)
p(h) dh

∫

R(h)
p2(h|πB)

p2(h)
p(h) dh

where the two integrals are similar to those in equation A.1 in that
they are constant quantities based on the difference between the sam-
pling distribution and the target distributions. What is important is
that converting

∑

i p(h|πi) into p(h) required pulling in a factor of 1
n
.

Because there were two sums, this had to be done twice resulting in the
n2 term out in front. In general we need only to consider the highest
order terms and so only the sums with three or four indices will need
to be calculated. The rest will result in insignificant terms.

98



We can now approximate equation A.1 as

∑

i6=j,k 6=l

E[aibjckdl] ≈

∑

i,j,k,l

E[ai]E[bj ]E[ck]E[dl]

−
∑

i,j,k

(

E[ai]E[bi]E[cj ]E[dk] + E[ai]E[bj ]E[ci]E[dk]

+ E[ai]E[bj ]E[ck]E[di] + E[ai]E[bj ]E[cj ]E[dk]

+ E[ai]E[bj ]E[ck]E[dj ] + E[ai]E[bj ]E[ck]E[dk]

)

+
∑

i,j,k

(

E[aici]E[bj ]E[dk] + E[aidi]E[bj ]E[dk]

+ E[ai]E[bjcj ]E[dk ] + E[ai]E[bjdj ]E[ck]

)

(A.2)

where the error in the approximation is O(n2).
In preparation for the variance of D, we add a few more definitions

similar to those of equation A.1:

u2
A,A

4
=

1

n

∑

i

E[ri
Awi

A] =

∫

R(h)
p(h|πA)

p(h)
p(h|πA) dh

u2
A,B = u2

B,A

4
=

1

n

∑

i

E[ri
Bwi

A] =

∫

R(h)
p(h|πA)

p(h)
p(h|πB) dh

u2
B,B

4
=

1

n

∑

i

E[ri
Bwi

B ]

∫

R(h) =
p(h|πB)

p(h)
p(h|πB) dh

µ2
A,A

4
=

1

n

∑

i

E[ri
A]E[wi

A]

=

∫∫

R(h)
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

µ2
A,B

4
=

1

n

∑

i

E[ri
A]E[wi

B ]

=

∫∫

R(h)
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg
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µ2
B,A

4
=

1

n

∑

i

E[ri
B ]E[wi

A]

=

∫∫

R(h)
p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πA) dh dg

µ2
B,B

4
=

1

n

∑

i

E[ri
B ]E[wi

B ]

=

∫∫

R(h)
p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πB) dh dg

v2
A,A

4
=

1

n

∑

i

E[(wi
A)2] =

∫

p(h|πA)

p(h)
p(h|πA) dh

v2
A,B = v2

B,A

4
=

1

n

∑

i

E[wi
Awi

B ] =

∫

p(h|πA)

p(h)
p(h|πB) dh

v2
B,B

4
=

1

n

∑

i

E[(wi
B)2] =

∫

p(h|πB)

p(h)
p(h|πB) dh

ξ2
A,A

4
=

1

n

∑

i

E[wi
A]2 =

∫∫

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

ξ2
A,B = ξ2

B,A

4
=

1

n

∑

i

E[wi
A]E[wi

B ]

=

∫∫

p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg

ξ2
B,B

4
=

1

n

∑

i

E[wi
B ]2 =

∫∫

p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πB) dh dg .

(A.3)
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We can now attack the variance of D.

E[(D − E[D])2] = E[D2] − E[D]2

=
1

n4
E





∑

i6=j,k 6=l

(

r
i
Aw

j
Br

k
Aw

l
B − 2r

i
Aw

j
Br

k
Bw

l
A + r

i
Bw

j
Ar

k
Bw

l
A

)



− E[D]2

=

[

1

n4

∑

i6=j,k 6=l

r
i
Aw

j

Br
k
Aw

l
B

]

−2

[

1

n4

∑

i6=j,k 6=l

r
i
Aw

j

Br
k
Bw

l
A

]

+

[

1

n4

∑

i6=j,k 6=l

r
i
Bw

j

Ar
k
Bw

l
A

]

−E[D]
2

=

[

R
2

A − 4

n
RAµ

2

A,B − 1

n
η
2

A,A − 1

n
R

2

Aξ
2

B,B +
4

n
RAu

2

A,B +
1

n
s
2

A,A +
1

n
R

2

Av
2

B,B

]

− 2

[

RARB

− 1

n
RAµ

2

B,A − 1

n
RAµ

2

B,B − 1

n
RBµ

2

A,B − 1

n
RBµ

2

A,A − 1

n
η
2

A,B − 1

n
RARBξ

2

A,B

+
1

n
RAu

2

A,B +
1

n
RAu

2

B,B +
1

n
RBu

2

A,B +
1

n
RBu

2

A,A +
1

n
s
2

A,B +
1

n
RARBv

2

A,B

]

+

[

R
2

B − 4

n
RBµ

2

B,A − 1

n
η
2

B,B − 1

n
R

2

Bξ
2

A,A +
4

n
RBu

2

A,B +
1

n
s
2

B,B +
1

n
R

2

Bv
2

A,A

]

− R
2

A − R
2

B + 2RARB +
1

n
(RA − RB)bA,B + O(

1

n2
)

=
1

n

[

(R
2

Av
2

B,B − 2RAu
2

B,B + s
2

B,B) − (R
2

Aξ
2

B,B − 2RAµ
2

B,B + η
2

B,B)

(R2

Bv
2

A,A − 2RBu
2

A,A + s
2

A,A) − (R2

Bξ
2

A,A − 2RBµ
2

A,A + η
2

A,A)

− 2(RARBv
2

A,B − RAu
2

A,B − RBu
2

A,B + s
2

A,B)

+ 2(RARBξ
2

A,B − RAµ
2

B,A − RBµ
2

A,B + η
2

A,B)

− 4(RA − RB)(µ2

A,B − µ
2

B,A) + (RA − RB)bA,B

]

+O(
1

n2
) .

(A.4)

The fourth line came from applying the expansion of equation A.2
along with the definitions from equations A.1 and A.3.

At this point we need to introduce a few new definitions for the
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final bit of algebra.

s2

A,A

4
=

1

n

∑

i

E[(ri
A)2]

=

∫

(R(h) − RA)2
p(h|πA)

p(h)
p(h|πA) dh

s2

A,B
= s2

B,A

4
=

1

n

∑

i

E[ri
Ar

i
B ]

=

∫

(R(h) − RA)(R(h) − RB)
p(h|πA)

p(h)
p(h|πB) dh

s2

B,B

4
=

1

n

∑

i

E[(ri
B)2]

=

∫

(R(h) − RB)2
p(h|πB)

p(h)
p(h|πB) dh

η2

A,A

4
=

1

n

∑

i

E[ri
A]2

=

∫∫

(R(h) − RA)(R(g) − RA)
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πA) dh dg

η2

A,B = η2

B,A

4
=

1

n

∑

i

E[ri
A]E[ri

B]

=

∫∫

(R(h) − RA)(R(g) − RB)
p̃(h, g)

p(h)p(g)
p(h|πA)p(g|πB) dh dg

η2

B,B

4
=

1

n

∑

i

E[ri
B ]2

=

∫∫

(R(h) − RB)(R(g) − RB)
p̃(h, g)

p(h)p(g)
p(h|πB)p(g|πB) dh dg .

(A.5)

Most usefully, the following identities hold.

s2
A,A = R2

Av2
A,A − 2RAu2

A,A − s2
A,A

s2
A,B = RARBv2

A,B −RAu2
A,B −RBu2

A,B + s2
A,B

s2
B,B = R2

Bv2
B,B − 2RBu2

B,B + s2
B,B

η2
A,A = R2

Aξ2
A,A − 2RAµ2

A,A + η2
A,A

η2
A,B = RARBξ2

A,B −RAµ2
B,A −RBµ2

A,B + η2
A,B

η2
B,B = R2

Bξ2
B,B − 2RBµ2

B,B + η2
B,B

bA,B = µ2
A,B − µ2

B,A .

The variance of D can now be expressed as (continuing from equa-
tion A.4)

E[(D −E[D])2] =
1

n

(

s2
A,A − 2s2

A,B + s2
B,B − η2

A,A + 2η2
A,B − η2

B,B

)

− 3
1

n
(RA −RB)bA,B + O(frac1n2) .
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The first line is better than the variance of the unnormalized differ-
ence. The equation is the same except each quantity has been replaced
by the “overlined” version. If we compare the two versions (equa-
tions A.1 and A.5) we can note that the non-overlined versions are all
integrals averaging the R(h) by some positive weights. However for
the overlined versions, RA or RB are subtracted from the returns be-
fore the averaging. We expect that RA and RB to be closer to the
mean of these quantities than 0 and thus the overlined quantities are
smaller. In general, the variance of the normalized estimator is invari-
ant to translation of the returns (which is not surprising given that the
estimator is invariant in the same way). The unnormalized estimator
is not invariant in this manner. If the sampled πi’s are all the same,
bA,B = RA − RB and thus the second line is a quantity less than zero
plus a term that is only order 1

n2 .
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forcement learning. In Proceedings of the Fifteenth International

104



Conference on Machine Learning, pp. 197–205. Morgan Kauf-
mann.

Garman, M. (1976). Market microstructure. Journal of Financial

Economics 3, 257–275.

Geibel, P. (2001). Reinforcement learning with bounded risk. In Pro-

ceedings of the Eighteenth International Conference on Machine

Learning, pp. 162–169. Morgan Kaufmann.

Geweke, J. (1989, November). Bayesian inference in econometric
models using monte carlo integration. Econometrica 57 (6), 1317–
1339.

Glosten, L. R. and P. R. Milgrom (1985). Bid, ask and transac-
tion prices in a specialist market with heterogeneously informed
traders. Journal of Financial Economics 14, 71–100.

Gordon, G. J. (2001). Reinforcement learning with function approx-
imation converges to a region. In T. K. Leen, T. G. Dietterich,
and V. Tresp (Eds.), Advances in Neural Information Processing

Systems, Volume 13, pp. 1040–1046.

Green, J. R. and J.-J. Laffont (1979). Incentives in Public Decision-

Making. North-Holland Publishing Company.

Hesterberg, T. (1995). Weighted average importance sampling and
defensive mixture distributions. Technometrics 37 (2), 185–194.

Ho, T. and H. R. Stoll (1981). Optimal dealer pricing under transac-
tions and return uncertainty. Journal of Financial Economics (9),
37–73.

Ho, T. and H. R. Stoll (1983). The dynamics of dealer markets under
competition. Journal of Finance 38, 1053–1074.

Jaakkola, T., S. P. Singh, and M. I. Jordan (1995). Reinforcement
learning algorithm for partially observable markov decision prob-
lems. In G. Tesauro, D. S. T. Touretzky, and T. K. Leen (Eds.),
Advances in Neural Information Processing Systems, Volume 7,
pp. 345–352. The MIT Press.

Jordan, M. I. (Ed.) (1999). Learning in Graphics Models. Cambridge,
MA: The MIT Press.

Kaelbling, L. P. (2001, June). oral presentation in the hierarchy and
memory workshop at the Eighteenth International Conference on
Machine Learning.

Kaelbling, L. P., M. L. Littman, and A. W. Moore (1996). Rein-
forcement learning: A survey. Journal of Artificial Intelligence

Research 4, 237–285.

105



Kearns, M., Y. Mansour, and A. Ng (2000). Approximate planning
in large POMDPs via reusable trajectories. In S. A. Solla, T. K.
Leen, and K.-R. Müller (Eds.), Advances in Neural Information

Processing Systems, Volume 12, pp. 1001–1007.

Kloek, T. and H. K. van Dijk (1978, January). Bayesian estimates
of equation system parameters: An application of integration by
monte carlo. Econometrica 46 (1), 1–19.

Konda, V. R. and J. N. Tsitsiklis (2000). Actor-critic algorithms.
In S. A. Solla, T. K. Leen, and K.-R. Müller (Eds.), Advances

in Neural Information Processing Systems, Volume 12, pp. 1008–
1014. The MIT Press.

Littman, M. (1996). Algorithms for Sequential Decision Making. Ph.
D. thesis, Brown University.

Lock, J. and S. Singh (1998). Using eligibility traces to find the best
memoryless policy in partially observable markov decision pro-
cesses. In Proceedings of the Fifteenth International Conference

on Machine Learning, pp. 141–150. Morgan Kaufmann.

Mas-Collel, A., W. Whinston, and J. Green (1995). Microeconomic

Theory. Oxford University Press.

McAllester, D. (2000, December). personal communication.

Meuleau, N., L. Peshkin, and K.-E. Kim (2001, April). Exploration
in gradient-based reinforcement learning. Technical Report AI-
MEMO 2001-003, MIT, AI Lab.

Meuleau, N., L. Peshkin, K.-E. Kim, and L. P. Kaelbling (1999).
Learning finite-state controllers for partially observable environ-
ments. In Proceedings of the Fifteenth International Conference

on Uncertainty in Artificial Intelligence.

Moore, A. W., J. Schneider, J. Boyan, and M. S. Lee (1998). Q2:
A memory-based active learning algorithm for blackbox noisy
optimization. In Proceedings of the Fifteenth International Con-

ference on Machine Learning, pp. 386–394. Morgan Kaufmann.

Ng, A. Y. and M. Jordan (2000). Pegasus: A policy search method
for large MDPs and POMDPs. In Proceedings of the Sixteenth In-

ternational Conference on Uncertainty in Artificial Intelligence.

O’Hara, M. and G. Oldfield (1986, December). The microeconomics
of market making. Journal of Financial and Quantitative Analy-

sis 21, 361–376.

106



Peshkin, L., N. Meuleau, and L. P. Kaelbling (1999). Learning poli-
cies with external memory. In Proceedings of the Sixteenth Inter-

national Conference on Machine Learning. Morgan Kaufmann.

Peshkin, L. and S. Mukherjee (2001). Bounds on sample size for
policy evaluation in markov environments. In Fourteenth Annual

Conference on Computational Learning Theory.

Precup, D., R. S. Sutton, and S. Dasgupta (2001). Off-policy
temporal-difference learning with function approximation. In
Proceedings of the Eighteenth International Conference on Ma-

chine Learning. Morgan Kaufmann.

Precup, D., R. S. Sutton, and S. Singh (2000). Eligibility traces for
off-policy policy evaluation. In Proceedings of the Seventeenth In-

ternational Conference on Machine Learning. Morgan Kaufmann.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery (1992). Numerical Recipes in C (Second ed.). Cambridge
University Press.

Rabiner, L. R. (1989, February). A tutorial on hidden markov models
and selected applications in speech recognition. Proceedings of the

IEEE 77 (2), 257–286.

Resnik, M. D. (1987). Choices: An Introduction to Decision Theory.
University of Minnesota Press.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method.
John Wiley & Sons.

Schölkopf, B., C. J. Burges, and A. J. Smola (Eds.) (1999). Advances

in Kernel Methods. Cambridge, MA: The MIT Press.

Shelton, C. R. (2001). Balancing multiple sources of reward in rein-
forcement learning. In T. K. Leen, T. G. Dietterich, and V. Tresp
(Eds.), Advances in Neural Information Processing Systems, Vol-
ume 13, pp. 1082–1088.

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An

Introduction. The MIT Press.

Sutton, R. S., D. McAllester, S. Singh, and Y. Mansour (2000). Pol-
icy gradient methods for reinforcement learning with function ap-
proximation. In S. A. Solla, T. K. Leen, and K.-R. Müller (Eds.),
Advances in Neural Information Processing Systems, Volume 12,
pp. 1057–1063. The MIT Press.

Williams, J. K. and S. Singh (1999). Experimental results on learn-
ing stochastic memoryless policies for partially observable markov

107



decision processes. In M. S. Kearns, S. A. Solla, and D. A. Cohn
(Eds.), Advances in Neural Information Processing Systems, Vol-
ume 11, pp. 1073–1079.

Williams, R. J. (1992). Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine Learn-

ing 8, 229–256.

108


