Problem 1: Evaluate \(\lim_{{t \to 0^+}} (\sin t)(\ln t) \).

Note that \(\ln t \to -\infty \) and \(\sin t \to 0 \), which suggests we may be able to get this into a form where L'Hôpital's rule can be applied. One way to do this is

\[
\lim_{{t \to 0^+}} (\sin t)(\ln t) = \lim_{{t \to 0^+}} \frac{\ln t}{\csc t} = \lim_{{t \to 0^+}} \frac{t^{-1}}{-\cot t \csc t} = -\lim_{{t \to 0^+}} \frac{\sin t \tan t}{t}.
\]

At this point L'Hôpital's rule can be applied directly, but breaking the limit into a product of limits makes this step simpler

\[
\lim_{{t \to 0^+}} (\sin t)(\ln t) = -\lim_{{t \to 0^+}} \frac{\sin t \tan t}{t} = -\left(\lim_{{t \to 0^+}} \frac{\sin t}{t} \right) \left(\lim_{{t \to 0^+}} \tan t \right) = -(1)(0) = 0.
\]

Problem 2: Evaluate \(\int e^{-5a} \sin a \, da \).

The key to this problem is to use integration by parts twice.

\[
\int e^{-5a} \sin a \, da = e^{-5a} (\cos a) - \int (-5e^{-5a}) (\cos a) \, da = e^{-5a} \cos a - \frac{5}{26} \int e^{-5a} \cos a \, da
\]

\[
= -e^{-5a} \cos a - \frac{5}{26} \left(e^{-5a} \sin a - \int (-5e^{-5a}) \sin a \, da \right)
\]

\[
= -e^{-5a} \cos a - \frac{5}{26} e^{-5a} \sin a - 25 \int e^{-5a} \sin a \, da
\]

\[
26 \int e^{-5a} \sin a \, da = -e^{-5a} \cos a - 5e^{-5a} \sin a + C
\]

\[
\int e^{-5a} \sin a \, da = -\frac{1}{26} e^{-5a} \cos a - \frac{5}{26} e^{-5a} \sin a + C_2
\]
Problem 3: Evaluate: \(\int_0^3 xe^{4x} \, dx \).

Integration by parts is the key here.

\[
\int xe^{4x} \, dx = x \left(\frac{1}{4} e^{4x} \right) - \int \left(\frac{1}{4} e^{4x} \right) \, dx = \frac{1}{4} xe^{4x} - \frac{1}{4} \int e^{4x} \, dx = \frac{1}{4} xe^{4x} - \frac{1}{16} e^{4x} + C
\]

Then, the definite integral can be computed

\[
\int_0^3 xe^{4x} \, dx = \left[\frac{1}{4} xe^{4x} - \frac{1}{16} e^{4x} \right]_0^3 = \frac{1}{4} (3) e^{4(3)} - \frac{1}{16} e^{4(3)} - \frac{1}{4} (0) e^{4(0)} + \frac{1}{16} e^{4(0)} = \frac{11}{16} e^{12} + \frac{1}{16}
\]

The two steps may also be done at the same time.

Problem 4: Find the minimum initial deposit \(P_0 \) necessary to fund an annuity for \(T \) years if withdrawals are made at a rate of \(w \) and interest is earned at a rate of \(r \). Assume that withdrawals are made continuously, and interest is compounded continuously.

Let \(P(t) \) be the value of the annuity at time \(t \) (years). With interest rate \(r \) alone, we would have \(P' = rP \). Adding in withdrawal rate \(w \), we have \(P' = rP - w \). This gives us a solution of the form \(P = ae^{rt} + b \). Differentiating and plugging back into the differential equation,

\[
P' = rae^{rt} = rP - w = r(ae^{rt} + b) - w = rae^{rt} + rb - w.
\]

From this we have \(b = \frac{w}{r} \). Thus, \(P = ae^{rt} + \frac{w}{r} \). From \(P(0) = a + \frac{w}{r} = P_0 \), \(a = P_0 - \frac{w}{r} \).

\(P = (P_0 - \frac{w}{r}) e^{rt} + \frac{w}{r} \). At worst, the money will run out after \(T \) years, so

\[
\left(P_0 - \frac{w}{r} \right) e^{rT} + \frac{w}{r} = 0
\]

\[
\left(P_0 - \frac{w}{r} \right) e^{rT} = -\frac{w}{r}
\]

\[
P_0 - \frac{w}{r} = -\frac{w}{r} e^{-rT}
\]

\[
P_0 = \frac{w}{r} (1 - e^{-rT})
\]