
Math 142-2, Midterm

Solutions

Problem 1

Consider a damped spring given by the equation mx′′ + cx′|x′|+ kx = 0.

(a) Show that total energy can never increase. Can it decrease?

(b) Why is c(x′)2 not used for the damping term?

(c) What are the units of c?

(a) The energy is

E =
m

2
(x′)2 +

k

2
x2

E′ = mx′x′′ + kxx′

= (mx′′ + kx)x′

= (−cx′|x′| − kx+ kx)x′

= −c|x′|3

≤ 0

The energy cannot increase. It decreases whenever velocity is nonzero.
(b) If c(x′)2 were used instead, we would get E′ = −c(x′)3, which leads to energy increase when velocity

is negative. Damping terms should not lead to energy gain.
(c) Because of the addition,

[m][x′′] = [c][x′]2

kgms−2 = [c]m2 s−2

kgm−1 = [c]
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Problem 1 (continued)

Consider a damped spring given by the equation mx′′ + cx′|x′|+ kx = 0.

(d) Determine using linearized stability analysis whether the system is stable, unstable, or neutrally
stable.

(e) Is the system stable, unstable, or neutrally stable? Why?

(d) The equilibrium occurs when x′′ = 0 and x′ = 0, which implies x = 0. Thus, the equilibrium is at
x = 0 and v = 0. Linearize about this a configuration.

mx′′ = −cv|v| − kx = f(x, v)

mx′′ ≈ fx(0, 0)x+ fv(0, 0)v

= −kx

When linearized, the damping term vanishes, and the system is approximated by mx′′ + kx = 0. Based on
a linearized stability analysis, this system is neutrally stable, since a deviation from equilibrium will never
grow with time, but it will also never decay back to equilibrium.

(e) The system is stable. If the system is not in equilibrium, it will be moving (at least most of the time),
and we showed above that this causes energy loss. The energy loss causes the system to return (very slowly)
to equilibrium, so the system is stable.
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Problem 2

Consider the ODE mx′′ = f(x) for a particle, where the force f(x) has the potential energy function
φ(x). Below is part of the phase plane diagram for the resulting ODE. The phase plane is symmetrical
left-right and up-down.

v

x

(a) The phase plane shows three energy levels: dotted, dashed, and solid. Which of these corresponds
to the highest energy level? Which corresponds to the lowest energy level?

(b) On the phase plane diagram above, mark the stable equilibria with “•” and the unstable equilibria
with “◦”.

(c) On the phase plane diagram above, sketch the curves whose energy matches the energy of the
unstable equilibria. These energy curves may contain more than one piece; be sure to sketch all of them.

(d) Put arrows on all of the curves (including the ones you drew in part (c)) to show the trajectories.

(a) The solid line has the lowest energy. The dotted line has the highest energy. Parts (b), (c), and (d)
are shown on the phase plane below.
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Problem 2 (continued)

(e) Sketch the potential energy function. Show on your plot the energy levels corresponding to the three
curves in the phase plane.

(e) The potential that created the phase plane above is plotted below, along with the three energy levels
(in gray). The energy levels for the equilibria are also plotted below, though the question does not request
them.
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Problem 3
A pulley of radius r1 has wrapped around it a long cable with an object
of mass m1 hanging from it. Another object of mass m2 is attached to
the pulley at a distance of r2 from the pulley’s center. Let θ be the polar
angle the attached mass. Assume the cable is arbitrarily long.

(a) What is the potential energy of the system (in terms of θ)?

(b) What is the total energy of the system (in terms of θ and θ̇)?

(c) Show that this system obeys the ODE

(m1r
2

1
+m2r

2

2
)θ̈ + r2m2g cos θ + r1m1g = 0.

m1

m2

θ

r2

r1

(a) The height of m2 is r2 sin θ, so its potential energy is r2m2g sin θ. The height of m1 is y0+ r1θ, where
y0 is its height when θ = 0. The total potential energy is then φ = r2m2g sin θ + (y0 + r1θ)m1g. Since a
constant shift in potential energy does not matter, we can write

φ = r2m2g sin θ + r1m1gθ.

(b) The speed of m1 is r1θ̇, so its kinetic energy is 1

2
m1r

2

1
θ̇2. The speed of m2 is r2θ̇, so its kinetic energy

is 1

2
m2r

2

2
θ̇2. The total energy is the sum of kinetic and potential energy, so

E =
1

2
(m1r

2

1
+m2r

2

2
)θ̇2 + r2m2g sin θ + r1m1gθ

(c) From Ė = 0,

0 = Ė

= (m1r
2

1
+m2r

2

2
)θ̇θ̈ + r2m2gθ̇ cos θ + r1m1gθ̇

= [(m1r
2

1
+m2r

2

2
)θ̈ + r2m2g cos θ + r1m1g]θ̇

0 = (m1r
2

1
+m2r

2

2
)θ̈ + r2m2g cos θ + r1m1g

(m1r
2

1
+m2r

2

2
)θ̈ = −r2m2g cos θ − r1m1g

θ̈ = −
r2m2g cos θ + r1m1g

m1r
2

1
+m2r

2

2
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Problem 3 (continued)

(d) If m2 < Me, for some critical mass Me, then this system has no
equilibria. Find Me.

(e) If m2 < Me, describe qualitatively the dynamical behavior of the
system.

m1

m2

θ

r2

r1

(d) To have equilibria, we need critical points in φ.

0 = φ′

= r2m2g cos θ + r1m1g

r2m2 ≥ r1m1

m2 ≥
r1m1

r2

= Me

(e) The rotation rate will increase over time without bound, though it will fluctuate as it does so.
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