Problem 1

Each of the derivations below is incorrect. Find the mistakes.

(a) Problem: Let \(f(x, y) = 2x^2 + y^3 \) and \(g(x, y) = f(x, y) + f(y, x) \). Compute \(g_x(1, 2) \).

Solution 1:

\[
\begin{align*}
 f(x, y) &= 2x^2 + y^3 \\
 f_x(x, y) &= 4x \\
 f_x(1, 2) &= 4 \\
 g(x, y) &= f(x, y) + f(y, x) \\
 g_x(x, y) &= f_x(x, y) + f_x(y, x) \\
 g_x(1, 2) &= f_x(1, 2) + f_x(2, 1) \\
 &= 4 + 8 = 12
\end{align*}
\]

Solution 2:

\[
\begin{align*}
 g(x, y) &= f(x, y) + f(y, x) \\
 &= (2x^2 + y^3) + (2y^2 + x^3) \\
 &= 2x^2 + x^3 + 2y^2 + y^3 \\
 g_x(x, y) &= 4x + 3y^2 \\
 g_x(1, 2) &= 4 + 3 = 7
\end{align*}
\]

(b) Let \(K = \frac{1}{2}mv^2 \) be the kinetic energy of a particle. Define the quantity \(A = \frac{\partial^2 K}{\partial m^2} \). In some contexts, velocity is an inconvenient variable, and momentum \(p = mv \) is preferred instead. In such cases, one would write \(K = \frac{p^2}{2m} \). Compute \(A \) if \(m = 2 \) and \(p = 4 \).

Solution 1: From the momentum form of \(K \), \(A = \frac{\partial^2 K}{\partial m^2} = \frac{p^2}{m^3} = \frac{16}{8} = 2 \).

Solution 2: From the velocity form of \(K \), it is clear that \(A = 0 \).

(c) Let \(K = \frac{1}{2}m\dot{x}^2 \) be the kinetic energy of a particle that is falling from rest under gravity (\(\ddot{x} = -g \)). Does \(K \) depend on time?

Solution 1: No; \(\frac{\partial K}{\partial t} = 0 \), so \(K \) does not depend on time.

Solution 2: Yes; \(\frac{dK}{dt} = m\dot{x}\ddot{x} \neq 0 \), so \(K \) does depend on time.

Problem 2

A disk spins about the origin, as shown in the diagram.

(a) Let \(P \) be a dot painted on the disk, initially at location \((x_0, y_0)\). Assuming the angular velocity \(\dot{\theta} \) is constant and that the disk makes one complete revolution after time \(T \), find the velocity and position of \(P \) at an arbitrary time \(t \).
(b) Under the assumptions of part (a), find the velocity field \(\vec{u}(\vec{x}, t) \).

(c) Does the velocity change with time?

(d) Assume instead that the angular velocity decays exponentially. That is, \(\ddot{\theta} = -r \dot{\theta} \). The disk completes its first rotation at time \(T \), by which time its angular velocity has halved. What is \(r \)? Find the velocity and position of \(P \) at an arbitrary time \(t \).

(e) Under the assumptions of part (c), find the velocity field \(\vec{u}(\vec{x}, t) \).