Math 135-2, Homework 3

Solutions

Problem 53.4
Use the methods of both Examples 1 and 2 to solve each of the following differential equations:

(a) \(y'' + 5y' + 6y = 5e^{3t}, \ y(0) = y'(0) = 0. \)

(a) First, let’s use (13).

\[
L[A(t)] = \frac{1}{p(p^2 + 5p + 6)}
\]

\[
= \frac{1}{p(p + 3)(p + 2)}
\]

\[
= \frac{B}{p} + \frac{C}{p + 2} + \frac{D}{p + 3}
\]

\[
1 = B(p + 2)(p + 3) + C(p + 3) + D(p + 2)
\]

\[
1 = 6B \quad p = 0
\]

\[
1 = -2C \quad p = -2
\]

\[
1 = 3D \quad p = -3
\]

\[
L[A(t)] = \frac{1}{6p} - \frac{1}{2(p + 2)} + \frac{1}{3(p + 3)}
\]

\[
A(t) = \frac{1}{6} - \frac{1}{2}e^{-2t} + \frac{1}{3}e^{-3t}
\]

\[
f(t) = 5e^{3t}
\]

\[
f'(t) = 15e^{3t}
\]

\[
y(t) = \int_0^t A(t - \tau)f'(\tau)\,d\tau + f(0)A(t)
\]

\[
= \int_0^t \left(\frac{1}{6} - \frac{1}{2}e^{-2(t-\tau)} + \frac{1}{3}e^{-3(t-\tau)} \right) (15e^{3\tau})\,d\tau + 5\left(\frac{1}{6} - \frac{1}{2}e^{-2t} + \frac{1}{3}e^{-3t} \right)
\]

\[
= \int_0^t \frac{5}{2}e^{3\tau} - \frac{15}{2}e^{-2t+5\tau} + 5e^{-3t+6\tau}\,d\tau + \frac{5}{6} - \frac{5}{2}e^{-2t} + \frac{5}{3}e^{-3t}
\]

\[
= \left[\frac{5}{6}e^{3\tau} - \frac{3}{2}e^{-2t+5\tau} + \frac{5}{6}e^{-3t+6\tau} \right]_0^t + \frac{5}{6} - \frac{5}{2}e^{-2t} + \frac{5}{3}e^{-3t}
\]

\[
= \frac{5}{6}(e^{3t} - e^{-2t}) + \frac{5}{6}(e^{3t} - e^{-3t}) + \frac{5}{6} - \frac{5}{2}e^{-2t} + \frac{5}{3}e^{-3t}
\]

\[
= \frac{1}{6}e^{3t} - e^{-2t} + \frac{5}{6}e^{-3t}
\]
Next, let’s repeat with (12).

\[L[h(t)] = \frac{1}{p^2 + 5p + 6} = \frac{1}{(p + 3)(p + 2)} = \frac{C}{p + 2} + \frac{D}{p + 3} \]

1. \(C(p + 3) + D(p + 2) = 1 \)
2. \(C = p = -2 \)
3. \(D = p = -3 \)

\[L[h(t)] = \frac{1}{p + 2} - \frac{1}{p + 3} \]

\(h(t) = e^{-2t} - e^{-3t} \)

\(f(t) = 5e^{3t} \)

\(y(t) = \int_0^t h(t - \tau)f(\tau) \, d\tau \)

\[= \int_0^t \left(e^{-2(t-\tau)} - e^{-3(t-\tau)} \right)(5e^{3\tau}) \, d\tau \]

\[= \int_0^t 5e^{-2t+5\tau} - 5e^{-3t+6\tau} \, d\tau \]

\[= \left[e^{-2t+5\tau} - \frac{5}{6} e^{-3t+6\tau} \right]_0^t \]

\[= e^{3t} - e^{-2t} - \frac{5}{6} e^{3t} + \frac{5}{6} e^{-3t} \]

\[= \frac{1}{6} e^{3t} - e^{-2t} + \frac{5}{6} e^{-3t} \]

Problem 53.8

The current \(I(t) \) in an electric circuit with inductance \(L \) and resistance \(R \) is given by the equation (4) in Section 13:

\[L \frac{dI}{dt} + RI = E(t), \]

where \(E(t) \) is the impressed electromotive force. If \(I(0) = 0 \), use the methods of this section to find \(I(t) \) in each of the following cases:

(a) \(E(t) = E_0 u(t) \)
(b) \(E(t) = E_0 \delta(t) \)
(c) \(E(t) = E_0 \sin \omega t \)
\[
L[h(t)] = \frac{1}{Lp + R} = \frac{1}{Lp + R/L} \\
h(t) = \frac{1}{L} e^{-Rt/L} \\
I(t) = \int_0^t h(t - \tau)E(\tau) \, d\tau \\
= \int_0^t \frac{1}{L} e^{-R(t - \tau)/L} E(\tau) \, d\tau \\
= \frac{1}{L} e^{-Rt/L} \int_0^t e^{R\tau/L} E(\tau) \, d\tau \\
I(t) = \frac{1}{L} e^{-Rt/L} \int_0^t e^{R\tau/L} E_0 u(\tau) \, d\tau \quad \text{part (a)} \\
= \frac{E_0}{L} e^{-Rt/L} \int_0^t e^{R\tau/L} \, d\tau \\
= \frac{E_0}{L} e^{-Rt/L} \left[\frac{1}{R} e^{R\tau/L} \right]_0^t \\
= \frac{E_0}{L} e^{-Rt/L} \left(\frac{1}{R} e^{R\tau/L} - \frac{L}{R} \right) \\
= \frac{E_0}{R} \left(1 - e^{-Rt/L} \right) \\
I(t) = \frac{1}{L} e^{-Rt/L} \int_0^t e^{R\tau/L} E_0 \delta(\tau) \, d\tau \quad \text{part (b)} \\
= \frac{E_0}{L} e^{-Rt/L} \\
I(t) = \frac{1}{L} e^{-Rt/L} \int_0^t e^{R\tau/L} E_0 \sin \omega \tau \, d\tau \quad \text{part (c)} \\
= \frac{E_0}{L} e^{-Rt/L} \int_0^t e^{R\tau/L} \sin \omega \tau \, d\tau \\
= \frac{E_0}{L} e^{-Rt/L} \left(\int_0^t e^{(R/L + i\omega)\tau} \, d\tau \right) \\
= \frac{E_0}{L} e^{-Rt/L} \left(\left[\frac{1}{R/L + i\omega} e^{(R/L + i\omega)\tau} \right]_0^t \right) \\
= \frac{E_0}{L} e^{-Rt/L} \left(\left(\frac{R/L - i\omega}{(R/L)^2 + \omega^2} e^{(R/L + i\omega)t} - 1 \right) \right) \\
= \frac{E_0}{L((R/L)^2 + \omega^2)} e^{-Rt/L} \left((R/L - i\omega) \left(e^{Rt/L} \cos \omega t + i e^{Rt/L} \sin \omega t - 1 \right) \right) \\
= \frac{E_0}{L((R/L)^2 + \omega^2)} e^{-Rt/L} \left(R e^{Rt/L} \sin \omega t - \omega \left(e^{Rt/L} \cos \omega t - 1 \right) \right) \\
= \frac{E_0}{R^2 + L^2 \omega^2} \left(R \sin \omega t - L \omega \cos \omega t + L \omega e^{-Rt/L} \right)
Problem 69.2
Show that \(f(x, y) = y^{1/2} \)
(a) does not satisfy a Lipschitz condition on the rectangle \(|x| \leq 1\) and \(0 \leq y \leq 1\).
(b) does satisfy a Lipschitz condition on the rectangle \(|x| \leq 1\) and \(c \leq y \leq d\) where \(0 < c < d\).

(a) Let \(y_1 = 0 \) and \(y_2 = \varepsilon \).
\[
\frac{f(x, y_1) - f(x, y_2)}{y_1 - y_2} = \frac{\sqrt{y_1} - \sqrt{y_2}}{y_1 - y_2}
= \frac{1}{\sqrt{y_1} + \sqrt{y_2}}
= \frac{1}{\sqrt{\varepsilon}}
\]
which is unbounded.
(b) Noting \(y_1, y_2 \geq c > 0 \),
\[
\left| \frac{f(x, y_1) - f(x, y_2)}{y_1 - y_2} \right| = \left| \frac{\sqrt{y_1} - \sqrt{y_2}}{y_1 - y_2} \right|
= \frac{1}{\sqrt{y_1} + \sqrt{y_2}}
\leq \frac{1}{2\sqrt{c}}
= R
\]
provides a bound.

Problem 69.4
Show that \(f(x, y) = xy^2 \)
(a) satisfies a Lipschitz condition on the rectangle \(a \leq x \leq b\) and \(c \leq y \leq d\).
(b) does not satisfy a Lipschitz condition on any strip \(a \leq x \leq b\) and \(-\infty \leq y \leq \infty\).

(a) Note that \(|x| \leq \max(|a|, |b|) = A\) and \(|y| \leq \max(|c|, |d|) = C\).
\[
\left| \frac{f(x, y_1) - f(x, y_2)}{y_1 - y_2} \right| = \left| \frac{xy_1^2 - xy_2^2}{y_1 - y_2} \right|
= |x(y_1 + y_2)|
\leq |x|(|y_1| + |y_2|)
\leq 2AC
\]
is a bound.
(b) Choose any \(x \neq 0 \) (possible unless \(a = b \)), \(y_1 = 0 \), and \(y_2 \to \infty \).
\[
\left| \frac{f(x, y_1) - f(x, y_2)}{y_1 - y_2} \right| = \left| \frac{xy_1^2 - xy_2^2}{y_1 - y_2} \right|
= |x(y_1 + y_2)|
= |x|y_2
\to \infty
is unbounded.

Problem A

The problem $yy' = 1$, $y(0) = 0$ seems like it should have no solution. Show that it actually has two solutions. How is this possible? This demonstrates that plugging the initial conditions into an ODE and producing a contradiction does not suffice to show that there is no solution.

\[
\begin{align*}
yy' &= 1 \\
\frac{1}{2}y^2 &= x + c \\
y &= \pm \sqrt{2(x + c)} \\
0 &= y(0) = \pm \sqrt{2c} \\
y &= \pm \sqrt{2x}
\end{align*}
\]

The two solutions are $y = \sqrt{2x}$ and $y = -\sqrt{2x}$. Plugging $y = 0$ into $yy' = 1$ and deriving a contradiction implicitly assumes that y' is finite, which it is not. In actuality, plugging in $y = 0$ produces $0 \cdot \infty$, which is indeterminate.

Problem B

Consider the ODE $x^3 y' = 2y$.

(a) Find all solutions if $y(0) = 0$.

(b) Find all solutions if $y(0) = 1$.

(a) First, lets find the general solution. The equation is separable.

\[
\begin{align*}
x^3y' &= 2y \\
y^{-1}y' &= 2x^{-3} \\
\ln |y| &= -x^{-2} + c_0 \\
y &= c_1 e^{-x^{-2}}
\end{align*}
\]

This satisfies is a solution for any c_1. We have not lost any solutions by dividing by zero, since $y = 0$ is captured by $c_1 = 0$.

(b) We also know that $y(0) = 1$ is not possible since we have already worked out the general solution. Note that it is not sufficient to plug $x = 0$ and $y = 1$ into the ODE to derive a contradiction, as demonstrated by Problem A.

Problem C

Find the Lipschitz constant (or show that it does not have one) for each of the following functions on the indicated interval. (The Lipschitz constant is a tight bound for the Lipschitz condition.)

(a) $\cos x \sin x$, $(-\infty, \infty)$

(b) $|\sin x|$, $(-\infty, \infty)$

Note that if $f(x)$ is differentiable on some interval $[a, b]$, then the Lipschitz constant L for that interval
is obtained by looking at its derivative.

\[
\frac{f(a) - f(b)}{a-b} = f'(c) \quad \text{for some } c \in [a, b]
\]

Thus, any value of this fraction that can be obtained is also obtained by the derivative somewhere in the interval. What is more, the derivative is obtained in the limit \(a \to c \) and \(b \to c \), so

\[
L = \sup_{a \leq z \leq b} |f'(z)|
\]

(a) This one is differentiable. \(L = \max_x |f'(x)| = \max_x |\cos 2x| = 1. \)

(b) From \(|x| = |y + (x - y)| \leq |y| + |x - y| \) and \(|y| = |x + (y - x)| \leq |x| + |y - x| \) we deduce \(|x| - |y| \leq |x - y| \).

Then,

\[
\left| \frac{f(x) - f(y)}{x - y} \right| = \left| \frac{\sin x - \sin y}{x - y} \right|
\leq \sup_z |\cos z|
= 1
\]

Now, I need to show that \(L = 1 \) is tight. This follows from

\[
\lim_{\epsilon \to 0^+} \left| \frac{f(\epsilon) - f(0)}{\epsilon - 0} \right| = \lim_{\epsilon \to 0^+} \left| \frac{\sin \epsilon - \sin 0}{\epsilon - 0} \right|
= \lim_{\epsilon \to 0^+} \frac{\sin \epsilon}{\epsilon}
= 1
\]

Problem D

Derive the time delay rule

\[
L[u(x-a)f(x-a)] = e^{-ap}F(p).
\]

For which choices \(a \) is this rule valid?
\[L[u(x-a)f(x-a)] = \int_0^\infty e^{-px}u(x-a)f(x-a)\,dx \]
\[= \int_{-a}^\infty e^{-pz}u(z)f(z)\,dz \quad x = z + a \]
\[= \int_0^\infty e^{-pz}u(z)f(z)\,dz + \int_{-a}^0 e^{-pz}u(z)f(z)\,dz \]
\[= \int_0^\infty e^{-pz}f(z)\,dz + \int_{-a}^0 e^{-pz}u(z)f(z)\,dz \]
\[= e^{-ap}\int_0^\infty e^{-pz}f(z)\,dz + \int_{-a}^0 e^{-pz}u(z)f(z)\,dz \]
\[= e^{-ap}F(p) + \int_{-a}^0 e^{-pz}u(z)f(z)\,dz \]

If \(a \geq 0 \), then the remaining integral is over negative values of \(z \), for which \(u(z) = 0 \). Thus, we will have the desired identity. If \(a < 0 \), then the remaining integral will in general be nonzero, since all three factors will generally be nonzero. Thus, the identity is true only for \(a \geq 0 \).