
Stability analysis of explicit MPM

Contents

1 Schemes of interest 1

2 Von Neumann analysis of MPM 2
2.1 Definitions . 3
2.2 Particle to grid transfers . 4
2.3 Grid forces . 4
2.4 Velocities . 4
2.5 Affine state . 5
2.6 Deformation gradient . 6
2.7 Solving for the vectors and matrices . 6
2.8 Eliminating the scalars . 7
2.9 Real, complex, and bounds . 8
2.10 Stability . 8
2.11 Isotropic . 9

3 Single particle instability 9
3.1 Stability formulation . 10
3.2 Transfers to grid and grid update . 10
3.3 Grid to particle transfers . 11
3.4 Simplifying the system . 12
3.5 Solving the eigenvalue problem . 13
3.6 Case S(λ; s, ri, rj) = 0 . 13
3.7 Case Q(λ; s, p, ri) = 0, λ = ±1 . 13
3.8 Case Q(λ; s, p, ri) = 0, |λ| = 1, λ complex . 14
3.9 Analysis for 2D simulation . 14
3.10 Analysis for PIC 3D . 15
3.11 Analysis for PIC 2D . 16
3.12 Summary and time step restriction . 17
3.13 Effects of variable time step sizes . 17
3.14 Conclusions about varying time step sizes . 19

1 Schemes of interest

We begin by fixing a typical explicit MPM integration scheme based on APIC transfers. From the APIC
version it is relatively straightforward to obtain the PIC and CPIC versions. All of the analysis that we
perform assume this scheme (or its PIC and CPIC analogues). Portions that should be omitted for PIC are

1

colored.

mn
i =

∑
p

wnipmp (1)

mn
i u

n
i =

∑
p

wnipmp(u
n
p+Cn

p (xni − xnp)) (2)

fni = −
∑
p

V 0
p (P(Fnp))(Fnp)T∇wnip (3)

ũn+1
i = uni + ∆t(mn

i)−1fni (4)

un+1
p =

∑
i

wnipũ
n+1
i (5)

xn+1
p = xnp + ∆tun+1

p (6)

∇un+1
p =

∑
i

ũn+1
i (∇wnip)T (7)

Fn+1
p = (I + ∆t∇un+1

p)Fnp (8)

Cn+1
p = ξ

∑
i

wnipũ
n+1
i (xni − xnp)T (9)

Here, we have assumed that quadratic or cubic splines are used for the transfer weights. We note the
following properties of the weights: ∑

i

wnip = 1 (10)∑
i

wnip(x
n
i − xnp) = 0 (11)∑
i

∇wnip = 0 (12)∑
i

(xni − xnp)(∇wnip)T = I (13)

∑
i

wnip(x
n
i − xnp)(xni − xnp)T =

1

ξ
I (14)

ξ =

{
4

∆x2 quadratic splines
3

∆x2 cubic splines
(15)

Here, (12) and (13) are obtained by taking the gradient of the first two equations.

2 Von Neumann analysis of MPM

In this section, we perform Von Neumann analysis on the material point method. In order to apply Von
Neumann analysis, we must assume a (quite restrictive) setup. (1) All cells contain the same number of
particles in the same arrangement. (2) Periodic boundary conditions are used. (3) All particles are identical;
in particular, they have the same mass (mp = m) and volume (V 0

p = V 0). (4) The configuration is near the
rest equilibrium state, so that Fnp ≈ I, unp ≈ 0, and positions can be considered to be stationary. (5) The
particle distribution is symmetrical in the sense that for each grid node i and particles p there is a particle
p such that (xnp − xni) = −(xnp − xni). Stated another way, if the grid is mirrored along the x, y, and z
directions, there will be particles in the same locations. This assumption will simplify parts of the analysis
by making certain quantities real-valued.

2

We will use index p to refer to a particle. Since each cell has the same particle layout, it makes sense
to use the index q to refer to a particle within some canonical cell. This is useful for quantities that are
not constant across particles but are the same for corresponding particles in different grid cells. Each p has
a unique q associated with it, and each q corresponds with a p for each grid cell. Note that NG =

∑
i 1,

Np =
∑
p 1, and Nq =

∑
q 1 are the number of cells, number of particles, and number of particles per cell

respectively, so that Np = NGNq.
Following the usual process of Von Neumann analysis, we fix a wave number z and look for solutions

that look like waves.

unp = εgnuqe
ixn

p ·z Cn
p= εgnCqe

ixn
p ·z Fnp = I + εgnFqe

ixn
p ·z (16)

Here g is the growth factor, with gn being a power. ε is a very small number, so small that higher powers
of it may be neglected. In this way, the analysis is perturbative. Note that these state variables are not
assumed constant across all particles; they are the same from cell to cell but vary for the particles within a
cell, thus the index on uq. Due to the very small velocities, we also assume that the particles do not move
appreciably.

2.1 Definitions

Before we start propagating the approximations above through the time integration scheme, we introduce
all of the intermediate quantities that we will use during this derivation.

hq =
∑
i

wnipe
i(xn

p−x
n
i)·z kq =

∑
i

∇wnipei(x
n
p−x

n
i)·z eq = ξ

∑
i

wnip(x
n
i − xnp)ei(x

n
p−x

n
i)·z

c =
∑
p

Kq∇wnipei(x
n
p−x

n
i)·z =

∑
p

Kqkq B =
∑
p

∇wnipkq
T
ei(x

n
p−x

n
i)·z =

∑
q

kqkq
T

b =
∑
q

(hqhq + ξ−1eq
Teq) b =

∑
p

wnip(uq + Cq(x
n
i − xnp))ei(x

n
p−x

n
i)·z =

∑
q

(hquq + ξ−1Cqeq)

w =
∑
p

wnip = Ng M =
∂P

∂F
(I) Kq = M : Fq Aik = MijklBjl τ =

∆tg

g − 1

u =
bm−∆tV 0c

wmg
s =

b

w
β =

∆tV 0

m(b− wg)
c =

∆t2V 0

mw
r =

cσ − s− 1

2

Lowercase non-bold quantities (hq, b, w, τ , s, β, c, and r) are scalars. Lowercase bold quantities (kq, eq,
c, b, and u) are vectors. Uppercase bold quantities are matrices (B, Kq, A) or higher order tensors (M).
Note that we drop the bold when using indexing notation, so that Mijkl refers to a component of the tensor
M. Quantities with a q index (hq, kq, eq, and Kq) are associated with canonical particles. They live on
particles and vary from particle to particle within a cell, but they are the same from cell to cell.

3

2.2 Particle to grid transfers

We begin with the particle to grid transfers.

mn
i =

∑
p

wnipmp (17)

mn
i = wm (18)

mn
i u

n
i =

∑
p

wnipmp(u
n
p+Cn

p (xni − xnp)) (19)

wmuni =
∑
p

wnipm(εgnuqe
ixn

p ·z+εgnCqe
ixn

p ·z(xni − xnp)) (20)

wuni = εgneix
n
i ·z
∑
p

wnip(uq+Cq(x
n
i − xnp))ei(x

n
p−x

n
i)·z (21)

uni =
εgnb

w
eix

n
i ·z (22)

Note that b effectively encodes the direction of the grid velocity separately from changes in time and space
and that the form of the grid velocity follows the same wave form as the state variables.

2.3 Grid forces

We next consider forces. We compute forces through the first Piola-Kirchhoff stress tensor P. Neglecting
higher order terms in ε, the stress takes the form

Fnp = I + εgnFqe
ixn

p ·z (23)

P(Fnp) = P(I) + M : (Fnp − I) (24)

= εgneix
n
p ·z(M : Fq) (25)

= εgneix
n
p ·zKq. (26)

Next, we can evaluate forces, discarding ε2 terms.

fni = −
∑
p

V 0
p (P(Fnp))(Fnp)T∇wnip (27)

= −
∑
p

V 0
p εg

neix
n
p ·zKq(I + εgnFqe

ixn
p ·z)T∇wnip (28)

= −εV 0gn
∑
p

eix
n
p ·zKq∇wnip = −εV 0gneix

n
i ·zc. (29)

2.4 Velocities

Next, we apply forces to the grid velocities.

ũn+1
i = uni + ∆t(mn

i)−1fni (30)

=
εb

w
gneix

n
i ·z −∆t(wm)−1εV 0gneix

n
i ·zc (31)

=
εgn

wm
eix

n
i ·z(bm−∆tV 0c) (32)

= εgn+1eix
n
i ·zu (33)

4

We can then transfer these velocities to particles.

un+1
p =

∑
i

wnipũ
n+1
i (34)

=
∑
i

wnipεg
n+1eix

n
i ·zu (35)

= εgn+1eix
n
p ·zu

∑
i

wnipe
i(xn

i −x
n
p)·z (36)

= εgn+1hqe
ixn

p ·zu (37)

From our original assumption we have un+1
p = εgn+1uqe

ixn
p ·z, so that

εgn+1uqe
ixn

p ·z = εgn+1hqe
ixn

p ·zu (38)

uq = hqu (39)

This tells us that uq must all be aligned; we did not originally assume that. They may however vary in scale.

2.5 Affine state

Next, we transfer velocity derivatives to particles to compute Cn+1
p .

Cn+1
p = ξ

∑
i

wnipũ
n+1
i (xni − xnp)T (40)

= ξ
∑
i

wnipεg
n+1eix

n
i ·zu(xni − xnp)T (41)

= εgn+1eix
n
p ·zuξ

∑
i

wnipe
i(xn

i −x
n
p)·z(xni − xnp)T (42)

= εgn+1eix
n
p ·zueq

T (43)

As with velocities, this must match our definition for Cn
p .

εgn+1Cqe
ixn

p ·z = εgn+1eix
n
p ·zueq

T (44)

Cq = ueq
T . (45)

With this, we have learned about the form of uq and Cq, making it possible to identify the direction for b
as well.

b =
∑
p

wnip(uq+Cq(x
n
i − xnp))ei(x

n
p−x

n
i)·z (46)

b =
1

Ng

∑
i

b =
1

Ng

∑
p

∑
i

wnip(uq+Cq(x
n
i − xnp))ei(x

n
p−x

n
i)·z (47)

=
1

Ng

∑
p

(hquq+ξ
−1Cqeq) (48)

=
∑
q

(hqhqu+ξ−1ueq
Teq) (49)

= bu. (50)

5

2.6 Deformation gradient

The final remaining step in the transfers from grid to particles is the deformation gradient.

∇un+1
p =

∑
i

ũn+1
i (∇wnip)T (51)

=
∑
i

εgn+1eix
n
i ·zu(∇wnip)T (52)

= εgn+1ueix
n
p ·z

(∑
i

ei(x
n
i −x

n
p)·z∇wnip

)T
(53)

= εgn+1eix
n
p ·zukq

T
(54)

Fn+1
p = (I + ∆t∇un+1

p)Fnp (55)

= (I + ∆tεgn+1eix
n
p ·zukq

T
)Fnp (56)

Substituting in the definition for Fnp and neglecting higher order terms we have

I + εgn+1Fqe
ixn

p ·z =
(
I + ∆tεgn+1ukq

T
eix

n
p ·z
)

(I + εgnFqe
ixn

p ·z) (57)

εgn+1Fqe
ixn

p ·z = ∆tεgn+1eix
n
p ·zukq

T
+ εgnFqe

ixn
p ·z (58)

gFq = ∆tgukq
T

+ Fq (59)

(g − 1)Fq = ∆tgukq
T

(60)

Fq = τukq
T
. (61)

Since positions are assumed not to move appreciably, we have completed the time step. In the process of
keeping the equations relatively short, we have defined many intermediate quantities. We must next unravel
these.

2.7 Solving for the vectors and matrices

We can eliminate b from u

u =
bum−∆tV 0c

wmg
(62)

u =
∆tV 0

m(b− wg)
c = βc. (63)

6

Next, we eliminate Fq and Kq from c, dropping into indexing notation to deal with tensors and defining a
new matrix A.

Kq = M : (τukq
T

) (64)

c =
∑
p

Kq∇wnipei(x
n
p−x

n
i)·z (65)

=
∑
p

(M : (τukq
T

))∇wnipei(x
n
p−x

n
i)·z (66)

ci = τ
∑
p

Mijklukkql(∇wnip)jei(x
n
p−x

n
i)·z (67)

= τMijkluk
∑
p

kql(∇wnip)jei(x
n
p−x

n
i)·z (68)

= τMijklukBjl (69)

= τAikuk (70)

c = τAu (71)

We can now eliminate c from the formula for u giving

u = βc = βτAu. (72)

We are left with the eigenvalue problem Au = σu, where u is an eigenvector with eigenvalue σ and σβτ = 1.

2.8 Eliminating the scalars

We have now computed all of the vector and matrix quantities. We are however left with some scalars, which
we must eliminate to get g, which is ultimately what tells us whether we are stable.

τ =
∆tg

g − 1
(73)

β =
∆tV 0

m(b− wg)
(74)

σβτ = 1 (75)

∆t2gV 0σ

m(g − 1)(b− wg)
= 1 (76)

m(g − 1)(b− wg) = ∆t2V 0gσ (77)

g2 +

(
∆t2V 0σ

mw
− b

w
− 1

)
g +

b

w
= 0 (78)

g2 + 2rg + s = 0 (79)

What remains is to examine the roots g. To do this, we will need to determine which quantities are real and
also some bounds.

Before we do that, it is helpful to step back and take a look at the bigger picture, which is easy to lose
in the details. By assumption, V 0, m, ∆t, and M are known. The grid and particle locations (xnp and xni)
were fixed in a regular arrangement, and the weights are known. We also fixed a wave-number z, which for
now we assume is known. This allows us (in principle at least) to directly calculate hq, kq, eq, B, b, w, s, c,
and A. We can then solve an eigenvalue problem to get u and σ. This allows us to compute r and b and
solve the quadratic for g. The simulation is stable if |g| ≤ 1.

7

2.9 Real, complex, and bounds

It is clear from the definitions that w, m, V 0, ∆t, ξ, and b are all real and positive (except that b = 0 is
possible), so c and s must be as well. In fact, b ≤ w. In the PIC case, where the eq term would be missing,
this can be shown easily.

w =
∑
p

wnip =
1

Ng

∑
i

∑
p

wnip =
1

Ng

∑
p

∑
i

wnip =
1

Ng

∑
p

1 =
Np
Ng

= Nq (80)

|hq| ≤
∑
i

wnip|ei(x
n
i −x

n
p)·z| =

∑
i

wnip = 1 (81)

Ngb =
∑
p

hqhq =
∑
p

|hq|2 ≤
∑
p

1 = Np (82)

b ≤ Nq = w (83)

We have also verified numerically that b ≤ w in the APIC/CPIC case for quadratic and cubic splines in 2D
and 3D. From this we conclude 0 ≤ s ≤ 1.

When we defined the matrix B, we provided two expressions, which we now show are equal.

B =
∑
p

∇wnipkq
T
ei(x

n
p−x

n
i)·z (84)

=
1

Ng

∑
i

∑
p

∇wnipkq
T
ei(x

n
p−x

n
i)·z (85)

=
1

Ng

∑
p

(∑
i

∇wnipei(x
n
p−x

n
i)·z

)
kq
T

(86)

=
1

Ng

∑
p

kqkq
T

(87)

=
∑
q

kqkq
T

(88)

From this form we see that B is Hermitian.
Using the symmetry assumption, we let i and p be the nodes and particles such that xi = −xi and

xp = −xp. Then, noting that weight gradients are odd functions,

kq =
∑
i

∇wn
ip
ei(x

n
p−x

n
i

)·z (89)

= −
∑
i

∇wnipe−i(x
n
p−x

n
i)·z (90)

= −kq. (91)

Thus, kq is pure imaginary, and B is a real, symmetric positive definite matrix. Noting that Mijkl = Mklij ,
we conclude that A is also real and symmetric, so that its eigenvalues σ are real (and thus r is real as well).

2.10 Stability

We return to our quadratic equation g2 + 2rg + s = 0. If r2 < s then g is complex and the roots are a
complex conjugate pair whose product is gg = |g|2 = s ≤ 1, which is always stable. We conclude that the
limit of stability (where |g| = 1) is reached when g = ±1. When g = 1,

0 = (1)2 + 2r(1) + s = 1 + 2r + s = cσ.

8

σ does not depend on ∆t, and c > 0. Thus, the time step restriction must be reached when g = −1.

0 = (−1)2 + 2r(−1) + s = 1− 2r + s = 2− cσ + 2s

c =
2(s+ 1)

σ

This leads to the bound on the time step size.

∆t ≤
√
mwc

V 0
=

√
mw

V 0

√
2(s+ 1)

σ
,

which must be true for all z. The dependence on z is entirely within the second factor, where both s and σ
depend on z.

At this point it is difficult to make further progress, since the constitutive model, particle position, and
wavenumber are all baked into σ. To make progress, we must assume an isotropic constitutive model.

2.11 Isotropic

If we assume that our constitutive model is isotropic, Mijkl = λδijδkl + µδikδjl + µδilδjk.

Aik = MijklBlj (92)

A = µ tr(B)I + (λ+ µ)B (93)

The eigenvectors of A are the same as the eigenvalues of B. Let Byi = κiyj . Since B is SPSD, κi ≥ 0.
Note that κi ≤

∑
j κj = tr(B).

Ayi = (λ tr(B) + 2µκi)yi (94)

max
i
σi = λ tr(B) + 2µmax

i
κi ≤ (λ+ 2µ) tr(B) (95)

with equality when B is rank one. This happens, for example, when there is only one particle per cell,
located in the center of the cell. This leads to the condition

∆t =

√
2mw(s+ 1)

V 0(λ+ 2µ) tr(B)
=

√
m/V 0

λ+ 2µ

√
2(s+ 1)

tr(B)/w
(96)

Note that the bound for ∆t is split into two factors. The first is the sound speed (where ρ = m/V 0 is the
density). The second factor depends on the integration scheme (PIC/APIC/CPIC, spline order, dimension),
configuration (particle placement), and wavenumber z, but it does not depend on the constitutive model.
Define f as the fraction

f2 =
2(s+ 1)

∆x2 tr(B)/w
=

2
∑
q(|hq|2+ξ−1‖eq‖2 + 1)

∆x2
∑
p ‖kq‖2

≤ max
q

2(|hq|2+ξ−1‖eq‖2 + 1)

∆x2‖kq‖2
, (97)

where we have used the fact that if a, b, c, d > 0 then a
c ≤

a+b
c+d ≤

b
d or b

d ≤
a+b
c+d ≤

a
c . We conclude that the

smallest possible value of f , and thus the tightest time step restriction, is obtained with a single particle.
The problem of bounding f can be done by brute force. This leads to a constrained optimization problem in
the particle position xnp and wavenumber z (six degrees of freedom total). The solutions to these problems
are shown in Figure 1.

3 Single particle instability

It is possible for a simulation that satisfies its CFL restriction to be unstable. One particularly simple case
where this is observed is for a single particle. This case occurs in practice when a particle becomes isolated,

9

scheme spline Analytic f Sim 2D f Sim 3D f Analytic f exact form
APIC quad 1.0000 1.0007 1.0017 1
CPIC quad 1.0000 1.0011 1.0029 1
PIC quad 0.7071 0.7133 0.7182 1√

2

APIC cubic 1.7042 1.7055 1.7072

√
9594+1365

√
35

78

CPIC cubic 1.3952 1.3993 1.4028
√

146
75

PIC cubic 1.4033 1.4055 1.4130 12960f6 − 25902f4 + 780f2 − 59

Figure 1: The Von Neumann time step restriction is ∆t ≤ f∆x/c, where c is the time step restriction. This
table shows the constants f for each version of the scheme.

such as when water splashes or sand spreads out. In [1], an effective time step restriction for the single
particle instability was proposed in the case of fluids. In that paper, no solution was proposed in the more
difficult case of solids. In this section, we derive a time step restriction for solids in the vicinity of the rest
configuration (Fnp ≈ I). This assumption is not as limiting as it might seem. Particles that are at risk of
becoming isolated tend to be near the surface, where they would not be expected to experience significant
strain.

Our strategy for deriving a time step restriction is to consider the stability of perturbations from the rest
configuration. The momentum of an isolated particle is constant in the absence of outside forces, so that
its velocity does not change. Ignoring grid-related effects, the velocity of the particle is decoupled from the
rest of the dynamics. In practice, the location of a particle relative to the grid can affect its stability, with
some placements within a cell requiring a smaller time step for stability. A particle traveling through the
grid would experience a sort of average of the local stability along its trajectory. To handle this, we evaluate
the stability of a stationary particle at an arbitrary location within a cell and then select a time step size
that is stable for all such locations.

3.1 Stability formulation

At the beginning of each time step, the isolated particle has state mp, x
n
p , vnp , Cn

p , and Fnp . The mass mp

does not change. Since we are assuming that the particle is stationary, vnp = 0 and xnp is constant. We
assume a small perturbation from the rest configuration, so that Cn

p = εAn and Fnp = I+εEn. After the time
step, we will have a new state Cn+1

p = εAn+1 and Fn+1
p = I+ εEn+1. The new state variables (En+1,Fn+1

p)
are related to the originals (En,Fnp) by a matrix N. Since the changing portion of the state consists of two
3 × 3 matrices, N will be a 18 × 18 matrix. A stable time step size is one such that the spectral radius
(largest eigenvalue magnitude) of N is no larger than 1.

3.2 Transfers to grid and grid update

We begin by transferring the particle’s state to the grid.

mn
i = mpw

n
ip (98)

mn
i u

n
i = wnipmp(u

n
p + Cn

p (xni − xnp)) (99)

uni = Cn
p (xni − xnp) (100)

10

Next, we compute particle forces. Let M = ∂P
∂F (Fnp) and K = M : En so that the forces are

P(Fnp) = εM : En = εK (101)

fni = −
∑
p

V 0
p (P(Fnp))(Fnp)T∇wnip (102)

= −V 0
p εK(I + εEn)T∇wnip (103)

= −εV 0
p K∇wnip (104)

Finally, we update the grid velocities.

ũn+1
i = uni + ∆t(mn

i)−1fni (105)

ũn+1
i = ε(An(xni − xnp)−∆t(wnipmp)

−1V 0
p K∇wnip) (106)

3.3 Grid to particle transfers

We must now transfer the updated grid state back to particles. As expected, the new velocities will be zero
since

un+1
p =

∑
i

wnipũ
n+1
i (107)

=
∑
i

wnipε(A
n(xni − xnp)−∆t(wnipmp)

−1(V 0
p K∇wnip)) (108)

= εAn
∑
i

wnip(x
n
i − xnp)−

ε∆tV 0
p

mp
K
∑
i

∇wnip = 0 (109)

Before moving on, we introduce the definition

R =
1

ξ

∑
i

∇wnip(∇wnip)T

wnip
. (110)

Using equation (13) we have

∇un+1
p =

∑
i

ũn+1
i (∇wnip)T (111)

=
∑
i

ε(An(xni − xnp)−∆t(wnipmp)
−1(V 0

p K∇wnip))(∇wnip)T (112)

= εAn
∑
i

(xni − xnp)(∇wnip)T −
ε∆tV 0

p

mp
K
∑
i

(wnip)
−1∇wnip(∇wnip)T (113)

= εAn −
εξ∆tV 0

p

mp
KR (114)

Fn+1
p = (I + ∆t∇un+1

p)Fnp (115)

=

(
I + ε∆tAn −

εξ∆t2V 0
p

mp
KR

)
(I + εEn) (116)

= I + ε∆tAn −
εξ∆t2V 0

p

mp
KR + εEn (117)

En+1 = ∆tAn −
ξ∆t2V 0

p

mp
(M : En)R + En (118)

11

What remains is to update the affine state.

Cn+1
p = ξ

∑
i

wnipũ
n+1
i (xni − xnp)T (119)

= ξ
∑
i

wnip(ε(A
n(xni − xnp)−∆t(wnipmp)

−1V 0
p K∇wnip))(xni − xnp)T (120)

= ξεAn
∑
i

wnip(x
n
i − xnp)(xni − xnp)T −

εξ∆tV 0
p

mp
K
∑
i

∇wnip(xni − xnp)T (121)

= εAn −
εξ∆tV 0

p

mp
M : En (122)

An+1 = An −
ξ∆tV 0

p

mp
M : En (123)

Let M̂ =
ξ∆t2V 0

p

mp
M. Then, we can express these as a sort of matrix equation using indexing notation(

∆tAn+1
ij

En+1
ij

)
=

(
δikδjl −M̂ijkl

δikδjl δikδjl − M̂imklRmj

)(
∆tAnkl
Enkl

)
(124)

N =

(
δikδjl −M̂ijkl

δikδjl δikδjl − M̂imklRmj

)
(125)

Note that we drop the boldface in index notation, since the components are scalars. We define N to be the
resulting 18× 18 matrix.

3.4 Simplifying the system

Assuming an isotropic constitutive model, we can write Mijkl = λδijδkl + µδikδjl + µδilδjk. We define new

unitless scalars p and s so that s =
ξ∆t2V 0

p µ

mp
and λ = pµ. The scalar p is a function of the Poisson’s ratio

given by p = 2ν
1−2ν . We assume that µ, λ > 0 so that s > 0 and p > 0.

Before continuing, it is helpful to note the special form of R. In the case of CPIC transfers, we conveniently
have R = I. In the case of PIC and APIC, R is diagonal. Let a = x

∆x . The first entry of R is then

R11 =
3

3− 4a2
Quadratic splines −1

2
≤ a ≤ 1

2
(126)

R11 =
−2(9a4 − 18a3 + 2a2 + 7a+ 2)

(3a3 − 6a2 + 4)(3a3 − 3a2 − 3a− 1)
Cubic splines 0 ≤ a ≤ 1 (127)

The other nonzero entries R22 and R33 are similar. Note that the entries are decoupled. That is, R11

depends on x but not y or z. Let ri = Rii be the diagonal entries and b = r1 +r2 +r3, c = r1r2 +r2r3 +r3r1,
and d = r1r2r3 be the invariants. For CPIC, ri = 1. For APIC with quadratic splines, 1 ≤ ri ≤ 3

2 . For
APIC with cubic splines1, 1 ≤ ri ≤ 1.045606358. The APIC/CPIC distinction and the particle placement
are entirely encapsulated in ri, which conveniently allows all of these cases to be treated together. we address
the PIC case separately. We proceed under the assumption of 3D.

1The upper bound is a root of 27x4 − 108x3 + 378x2 − 506x+ 207.

12

3.5 Solving the eigenvalue problem

The characteristic polynomial P (λ) of N is

P (λ; s, p, ri) = (1− λ)6Q(λ; s, p, ri) (128)

S(λ; s, r1, r2)S(λ; s, r2, r3)S(λ; s, r1, r3) (129)

S(λ; s, ri, rj) = λ2 + (ris+ rjs− 2)λ− sri − srj + 2s+ 1 (130)

Q(λ; s, p, ri) = λ6 + (−6 + b(p+ 2)s)λ5 + (15 + 4c(p+ 1)s2 − (p+ 2)(5b− 3)s)λ4 (131)

+ (−20 + 4d(3p+ 2)s3 + 8(p+ 1)(b− 2c)s2 + 2(p+ 2)(5b− 6)s)λ3 (132)

+ (15 + 4(3p+ 2)(c− 3d)s3 − 12(p+ 1)(2b− 2c− 1)s2 − 2(p+ 2)(5b− 9)s)λ2 (133)

+ (−6 + 4(3p+ 2)(b− 2c+ 3d)s3 + 8(p+ 1)(3b− 2c− 3)s2 + (p+ 2)(5b− 12)s)λ (134)

+ 1− 4(3p+ 2)(b− c+ d− 1)s3 − 4(p+ 1)(2b− c− 3)s2 − (p+ 2)(b− 3)s (135)

The goal is to find

s∗ = min
1≤ri≤r

s such that P (λ; s, p, ri) = 0, |λ| = 1, s > 0.

The time step restriction is then readily deduced from s∗. Note that the factors of P (λ; s, p, ri) can be
treated separately. The (1−λ)6 factor does not impose a time step restriction and can be discarded.2 There
are now two high level cases to consider: S(λ; s, ri, rj) = 0 or Q(λ; s, p, ri) = 0.

3.6 Case S(λ; s, ri, rj) = 0

This is a quadratic equation in s. Let’s first consider the case of complex conjugate solutions. Note that
(λ − κ)(λ − κ) = λ2 − (κ + κ)λ + κκ, so that the square of the magnitude of the eigenvalues are just
the constant term of the quadratic. That is, we need 1 = |λ|2 = −sri − srj + 2s + 1 which leads to
s(2 − ri − rj) = 0. This case does not lead to a useful time step restriction (s = 0 implies ∆t = 0).
Next, consider the case of real eigenvalues. 0 = S(1; s, r1, r2) = 2s does not lead to a useful solution, but
0 = S(−1; s, r1, r2) = 2(s+ 2− r1s− r2s) leads to

s ≤ 2

r1 + r2 − 1
≤ 2

2r − 1
= α, (136)

where r is the appropriate upper bound on ri (listed above). We will use α to refer to this bound.

3.7 Case Q(λ; s, p, ri) = 0, λ = ±1
The positive case Q(1; s, p, ri) = 4s3(3p+2) does not lead to a time step restriction. The case Q(−1; s, p, ri) =
0 leads to a cubic polynomial in s, which could in theory be solved for s(p, r1, r2, r3). This would then need
to be minimized over all feasible 1 ≤ r1, r2, r3 ≤ r to produce the bound s ≤ s∗(p). At first, this task appears

2This factor implies that N always has 1 as an eigenvalue with multiplicity (at least) six. This raises two interesting questions.
(1) Is the matrix diagonalizable? (No.) (2) What are the corresponding (generalized) eigenvalues? The three eigenvectors are
of the form An = −(An)T with En = 0. These correspond to conservation of angular momentum. The three generalized
eigenvectors are of the form En = −(En)T with An = 0. These correspond to Fn

p being a (linearized) rotation. In particular,
this implies that there will always be linear growth in a single particle simulation, at least near the rest configuration. This
is not unlike the evolution of a particle moving with constant velocity, where velocity is an eigenvector with eigenvalue 1, and
position is a corresponding generalized eigenvalue. We do not consider such linear growth to be unstable. In 2D, there are only
two trivial eigenvalues, since there is only one degree of freedom for rotation. For PIC, the number of trivial eigenvalues is
halved, with skew-symmetric En as eigenvalues. In practice, the defectiveness of N also makes numerical eigenvalue procedures
less accurate, which complicates numerical tests. Since the eigenvectors and generalized eigenvectors are known, we can use
Householder reflections to transform these eigenvectors into e1, . . . , e6, which moves the defective part to the top left 6 × 6
block. Then, we then simply discard this part, reducing N to a 12 × 12 matrix with the same nontrivial eigenvalues. This
matrix is smaller and generally diagonalizable, which makes numerical eigenvalues more accurate and cheaper to compute.

13

to be infeasible. However, we note that p is constant for out purposes (the Poisson’s ratio is not changing).
Further, the partial derivatives ∂s

∂ri
can be computed implicitly by differentiating the polynomial equation

Q(−1; s, p, ri) = 0. Indeed, 0 = ∂
∂rk

Q(−1; s, p, ri) = ∂Q
∂s (−1; s, p, ri)

∂s
∂rk

+ ∂Q
∂rk

(−1; s, p, ri). Since ∂s
∂rk

= 0,

we have ∂Q
∂rk

(−1; s, p, ri) = 0. Since this is a constrained minimization with box constraints each ri may

independently be at its lower (ri = 1) or upper (ri = r) bound or unconstrained (∂Q∂rk (−1; s, p, ri) = 0). We
consider the cases in turn. The rk are equivalent, so permutations need not be considered.

Partially unconstrained. Consider that at least one ri is unconstrained (say, r1). Then, Q(−1; s, p, ri) =
∂Q
∂r1

(−1; s, p, ri) = 0. Eliminating r1, p from this system of equations leads to the equation (2r3s − s −
2)2(2r2s− s− 2)2 = 0, which implies 2r3s− s− 2 = 0 or 2r2s− s− 2 = 0. Both of these lead back to (136).
We are left with the case that all ri are at their bounds 1 or r.

Boundary cases. There are four boundary cases (depending on how many of the ri are 1 and r). 0 =
Q(−1; s, p, r1, r1, r1) = −4(2r1s− s−2)2(6pr1s−3ps+ 4r1s−2s−4). The middle factor leads to (136). The
last factor produces the restriction s∗ ≤ β where

s∗ ≤ 4

(2r1 − 1)(3p+ 2)
≤ 4

(2r − 1)(3p+ 2)
= β, (137)

which is more strict than (136) since 0 < β < α. 0 = Q(−1; s, p, r1, r2, r2) = −4(2r2s − s − 2)u(s, p, r1, r2)
where u(s, p, r1, r2) = (2r2 − 1)(2r1 − 1)(3p + 2)s2 + (−4pr1 − 8pr2 + 6p − 8r1 − 8r2 + 8)s + 8. The factor
(2r2s − s − 2) leads to (136). The last factor u(s, p, r1, r2) is a quadratic in s. Further, one can show that
u(β, p, r1, r2) > 0, us(β, p, r1, r2) < 0, and uss(β, p, r1, r2) > 0 for all 1 ≤ r1, r2 ≤ r and p > 0. We conclude
that any roots s of u(s, p, r1, r2), if they are real, must satisfy s > β. s∗ ≤ β from (137) will be the time step
restriction for the single particle instability in 3D.

3.8 Case Q(λ; s, p, ri) = 0, |λ| = 1, λ complex

We are now left with just one case, where the solution to Q(λ; s, p, ri) = 0 with the largest magnitude is
complex. Since Q(λ; s, p, ri) has real coefficients, we will also have Q(λ) = 0. From the system of equations
{Q(λ; s, p, ri) = 0, Q(λ) = 0, λλ = 1} we eliminate λ and λ. This yields a polynomial R(s, p, r1, r2, r3) that
is degree 5 in s and has total degree 21. The optimization strategy we used earlier is intractable on this
polynomial. Instead, we randomly sampled a billion configurations with p > 0, 1 ≤ r1 ≤ r2 ≤ r3 ≤ 3

2 , and
0 < s < β. We then evaluated R(s, p, r1, r2, r3) at each configuration and established that, within the limits
of quad floating point precision, all have the same sign. This strongly suggests that no smaller time bounds
exist within this case.3

3.9 Analysis for 2D simulation

The analysis above was for 3D. In 2D, things are slightly different. The characteristic polynomial P (λ) of
N is

P (λ; s, p, ri) = (1− λ)2U(λ; s, p, ri)S(λ; s, p, r1, r2) (138)

U(λ; s, p, ri) = λ4 + (bps+ 2bs− 4)λ3 + (4cps2 − 3bps+ 4cs2 − 6bs+ 2ps+ 4s+ 6)λ2 (139)

+ (4bps2 − 8cps2 + 3bps+ 4bs2 − 8cs2 + 6bs− 4ps− 8s− 4)λ (140)

− 4bps2 + 4cps2 − bps− 4bs2 + 4cs2 + 4ps2 − 2bs+ 2sp+ 4s2 + 4s+ 1 (141)

3It is of course possible that there is a multiple root. For example, x2 = 0 has a solution, even though the polynomial is
never negative. Numerical tests show that the largest stable time step size occurs when λ = −1 for some eigenvalue, though
when this occurs there may also be complex eigenvalues with |λ| = 1 as well. This suggests that we are not missing a tighter
time step restriction from this case.

14

where b = r1 + r2 and c = r1r2 are the invariants and S(λ; s, p, r1, r2) is the same as in the 3D analysis.
As in the 3D case, the first factor produces no restrictions and the last factor leads to (136). This leaves
U(λ; s, p, ri).

Real cases U(1; s, p, ri) = 4s2(p + 1) leads to no time step restrictions. The system of polynomials
U(−1; s, p, ri) = 0 and ∂

∂r1
U(−1; s, p, ri) = 0 implies p = 0, which is not allowed. Thus, the variables r1 and

r2 must both be at their bounds. Letting r1 = r2 leads to 4(2r1s − s − 2)(2pr1s − ps + 2r1s − s − 2) = 0.
The second factor leads to (136), and the third leads to

s ≤ 4

(2r1 − 1)(3p+ 2)
≤ 2

(2r − 1)(p+ 1)
= γ. (142)

This is directly analogous to (137). Otherwise, we are in the case r1 = r, r2 = 1, which leads to V (s, p, r) =
4(2r−1)(p+1)s2−8r(p+2)s+16 = 0. From V (γ, p, r) > 0, Vs(γ, p, r) < 0, and Vss(γ, p, r) > 0 we conclude
that any solutions to V (s, p, r) = 0 satisfy s > γ.

Complex case Unlike the 3D case, the case of U(λ; s, p, ri) with λ complex is quite manageable analytically.
Eliminating λ and λ from the system [U(λ; s, p, ri), U(λ; s, p, ri), λλ− 1] yields V (s, p, ri) = 0 where

V (s, p, ri) = 16(r2 − 1)2(r1 − 1)2(r1 + r2 − 1)(p+ 1)2s2 − (4(r2 − 1)(r1 − 1)(p+ 2)(p+ 1)s+ p2)(r1 + r2 − 2)2.

The system [V (s, p, ri),
∂V
∂r1

(s, p, ri)] with r1, r2 > 1 and p > 0 has no feasible solutions. r1 = 1 implies r2 = 1
but produces no time step restriction. This leaves r1 = r2 = r > 1, which leads to

W (s, p, r) = 4(r − 1)2(2r − 1)(p+ 1)2s2 − 4(r − 1)2(p+ 2)(p+ 1)s− p2 = 0

Noting that W (0, r) < 0, W (γ, r) < 0, and Wss(s, r) > 0 we conclude that there are no roots with 0 < s < γ.

3.10 Analysis for PIC 3D

In the PIC case, there are no A dofs, so that N becomes just the lower right 9×9 block of (124): N(ik)(jl) =

δikδjl − M̂imklRmj , where (ik) and (jl) are interpreted as a single flat index 1, . . . , 9. The characteristic
polynomial P (λ) of N is

P (λ; s, p, ri) = (1− λ)3(r2s+ r3s+ λ− 1)(r1s+ r3s+ λ− 1)(r1s+ r2s+ λ− 1)Q(λ; s, p, ri) (143)

Q(λ; s, p, ri) = λ3 + (bps+ 2bs− 3)λ2 + (4cps2 − 2bps+ 4cs2 − 4bs+ 3)λ (144)

+ 12dps3 − 4cps2 + 8ds3 + psb− 4cs2 + 2sb− 1 (145)

where b = r1 + r2 + r3, c = r1r2 + r2r3 + r3r1, and d = r1r2r3. The first factor does not depend on s. The
second, third, and fourth factors lead to

s ≤ 2

ri + rj
≤ 1

r
= κ. (146)

This leaves Q(λ; s, p, ri). 0 = Q(1; s, p, ri) = 4ds3(3p+ 2) does not lead to a time step restriction.

Real eigenvalues. Next, let’s consider 0 = Q(−1; s, p, ri), which is a cubic equation in s. If we assume
that r1 is unconstrained, then we have a system of two equations 0 = Q(−1; s, p, ri), 0 = ∂Q

∂r1
(−1; s, p, ri).

Eliminating p, r1 yields the equation (r3s − 1)2(r2s − 1)2 = 0, which leads back to (146). This leaves the
case where all ri are constrained to 1 or r. 0 = Q(−1; s, p, r1, r1, r1) = 4(r1s− 1)2(3pr1s+ 2r1s− 2) leads to
(146) and

s ≤ 1

r1(1 + 3
2p)
≤ 1

r(1 + 3
2p)

= ζ. (147)

15

This leaves the case with only two equal, 0 = Q(−1; s, p, r1, r2, r2) = 4(r2s−1)U(s, p, r1, r2) with U(s, p, r1, r2) =
r1r2(3p + 2)s2 − (pr1 + 2pr2 + 2r1 + 2r2)s + 2. The second factor leads to (146). From U(ζ, p, r1, r2) > 0,
Us(ζ, p, r1, r2) < 0, and Uss(s, p, r1, r2) > 0 we conclude that there are no solutions 0 < s < ζ. Note that
ζ < κ.

Complex eigenvalues. The last case that remains is when 0 = Q(λ; s, p, ri) with |λ| = 1 and λ complex.
Eliminating λ and λ from the system [Q(λ; s, p, ri) = 0, Q(λ; s, p, ri) = 0, λλ = 1] yields

0 = U(s, p, ri) = −4d2(3p+ 2)2s3 + 8dc(p+ 1)(3p+ 2)s2 (148)

+ (−3bdp2 − 4c2p2 − 8bdp− 8c2p− 4bd− 4c2)s+ bcp2 + 3bcp+ 2bc− 3dp− 2d (149)

Complex eigenvalues: equality. We begin this case by considering addressing r3 = r2.

0 = U(s, p, r1, r2, r2) = r2(6pr1r2s+ 4r1r2s− pr1 − 2pr2 − 2r1 − 2r2)V (s, p, r1, r2) (150)

V (s, p, r1, r2) = 6pr1r
2
2s

2 + 4r1r
2
2s

2 − 7pr1r2s− 2pr2
2s− 6r1r2s− 2r2

2s+ 2pr1 + pr2 + 2r1 + 2r2 (151)

The second factor leads to s =
1+ 3

4p

r(1+ 3
2p)

> ζ. Noting that V (ζ, p, r1, r2) > 0, Vs(ζ, p, r1, r2) < 0, and

Vss(ζ, p, r1, r2) > 0, we conclude that there are no solutions s to V (s, p, r1, r2) = 0 with 0 < s < ζ. Thus,
r3 = r2. does not lead to a tighter time step bound.

Complex eigenvalues: two unconstrained. We may now assume that ri are all distinct. Note that this
implies that at least one ri is unconstrained. If two of ri are unconstrained, then we have [U(s, p, r1, r2, r3) =
0, ∂U∂r1 (s, p, r1, r2, r3) = 0, ∂U∂r2 (s, p, r1, r2, r3) = 0] along with the assumptions r1 6= r2, r2 6= r3, r1 6= r3, p > 0,
s > 0, which has no solutions.

Complex eigenvalues: 1 = r2 < r1 < r3 = r. This leaves the case [U(s, p, r1, r2, r2) = 0, ∂U∂r1 (s, p, r1, r2, r2) =
0, r2 = 1, r3 = r]. Eliminating r1 gives us 0 = W (s, p, r) where

W (s, p, r) = r2(3p+ 2)2(p2r2 + 2p2r + 4pr2 + p2 − 8pr + 4r2 + 4p− 8r + 4)s2 (152)

− 2r(r + 1)(3p+ 2)(p3r2 + p3r + 5p2r2 + p3 − 6p2r + 8pr2 + 5p2 − 16pr + 4r2 + 8p− 8r + 4)s

+ p4r4 + 2p4r3 + 6p3r4 + 3p4r2 + 6p3r3 + 13p2r4 + 2p4r + 4p2r3 + 12pr4 + p4 + 6p3r

− 18p2r2 + 4r4 + 6p3 + 4p2r − 24pr2 + 13p2 − 8r2 + 12p+ 4.

Then, we can use W (ζ, p, r) > 0, Ws(ζ, p, r) < 0, and Wss(ζ, p, r) > 0 to conclude that any solutions s to
0 = W (s, p, r) must satisfy s > ζ. This completes the PIC 3D case. The tightest bound is s ≤ ζ.

3.11 Analysis for PIC 2D

In the PIC 2D case, the characteristic polynomial of N is

P (λ; s, p, r1, r2) = (λ− 1)(r1s+ r2s+ λ− 1)U(s, p, r1, r2) (153)

U(λ; s, p, r1, r2) = 4r2r1(p+ 1)s2 + (r1 + r2)(p+ 2)(λ− 1)s+ (λ− 1)2 (154)

The first factor λ−1 does not lead to a time step restriction. The second leads to (146). 0 = U(1; s, p, r1, r2) =
4r2r1(p+ 1)s2 produces no time step restriction. Next we handle the case λ = −1.

0 = U(−1; s, p, r1, r2) = 4r2r1(p+ 1)s2 − 2(r1 + r2)(p+ 2)s+ 4 (155)

We note that

0 = U(−1; s, p, r, r) = 4(rs− 1)(prs+ rs− 1) (156)

16

which leads to (146) and also

s ≤ 1

r(1 + p)
= ν. (157)

With this, U(−1; ν, p, r1, r2) > 0, Us(−1; ν, p, r1, r2) < 0, and Uss(−1; ν, p, r1, r2) > 0, from which we conclude
there are no solutions 0 < s < ν.

Complex eigenvalues. Noting that U(λ; s, p, r1, r2) is quadratic in λ, if the roots are complex they must
be a complex conjugate pair. Setting the product of the eigenvalues λλ = |λ|2 = 1 gives

s(4pr1r2s+ 4r1r2s− pr1 − pr2 − 2r1 − 2r2) = 0 (158)

Solving for s > 0 we get

s =
(r1 + r2)(p+ 2)

4r2r1(p+ 1)
≤

1 + 1
2p

r(1 + p)
= χ. (159)

Since χ > ν, the bound is s ≤ ν.

3.12 Summary and time step restriction

The tightest restriction on s was obtained by (137) (3D) or (142) (2D). s is related to ∆t by

s =
ξ∆t2V 0

p µ

mp
. (160)

Solving for ∆t in dimension d we have

∆t =

√
smp

ξV 0
p µ

(161)

≤
√

4mp

ξV 0
p µ(2r − 1)(3p+ 2)

(162)

=

√
mp/V 0

p

ξ(r − k
2)(µ+ d

2λ)
. (163)

Here, ρ = mp/V
0
p is the density and λ+ 2

dµ is the bulk modulus. ξ = 4
∆x2 for quadratic splines and ξ = 3

∆x2

for cubic splines. For CPIC, r = 1. For APIC with cubic splines, r = 1.045606358. For APIC with quadratic
splines, r = 3

2 . For APIC and CPIC, k = 1. For PIC, k = 0.

3.13 Effects of variable time step sizes

The analysis of the single particle instability was performed under the implicit assumption that every time
step would be of the same size. However, in practice it is common to run with varying time steps sizes.
Conventional wisdom suggests that as long as the time step sizes are below some time step restriction
the simulation will be stable for any combination of time step sizes. Although this has been our general
experience with MPM simulations, we discovered that this is not the case when simulating isolated particles.

We encountered the unexpected stability behavior while running numerical tests with CPIC, which is
perhaps fortuitous since this case is much simpler to analyze. Numerically, the failure mode had the form
An = anI and En = enI, where an and en are scalars. That is, the unstable mode was purely a compression-
pressure feedback loop. With these observations, we can reduce the investigation to a two-dof system.

17

Assuming an isotropic constitutive model, M : En = (3λ+ 2µ)enI. Letting m =
ξV 0

p

mp
(3λ+ 2µ) and recalling

that R = I for CPIC we have

An+1 = An −
ξ∆tV 0

p

mp
M : En (164)

= anI−
ξ∆tV 0

p

mp
(3λ+ 2µ)enI (165)

= anI−∆tmenI (166)

En+1 = ∆tAn −
ξ∆t2V 0

p

mp
(M : En)R + En (167)

= ∆tanI−∆t2menI + enI (168)

We can express this as a matrix (
an+1

en+1

)
=

(
1 −∆tm

∆t 1−∆t2m

)(
an

en

)
. (169)

If we take two steps with different time steps ∆t0 and ∆t1 then(
an+2

en+2

)
=

(
1 −∆t1m

∆t1 1−∆t21m

)(
1 −∆t0m

∆t0 1−∆t20m

)
︸ ︷︷ ︸

B

(
an

en

)
. (170)

If we were to alternate between these two time steps sizes, then the eigenvalues of B would determine the
stability. Observe that each of the 2 × 2 matrices has determinant 1, so that det(B) = 1. The product of
the eigenvalues is the determinant and thus also 1. If the eigenvalues are complex, they occur as a complex
conjugate pair with absolute value 1, which is stable. If the eigenvalues are real (and not both equal to 1 or
-1), then one of those eigenvalues will have magnitude larger than 1, making the simulation unstable. The
case we are in depends on tr(B), which is the negative sum of the eigenvalues. In particular, the simulation
is stable only if | tr(B)| ≤ 2. First, consider the positive direction.

2 ≥ tr(B) (171)

2 ≥ ∆t20∆t21m
2 −∆t20m− 2∆t0∆t1m−∆t21m+ 2 (172)

0 ≥ ∆t20∆t21m
2 −∆t20m− 2∆t0∆t1m−∆t21m (173)

0 ≥ ∆t20∆t21m− (∆t0 + ∆t1)2 (174)

Assume ∆t0 ≤ ∆t1 and let ∆t0 = k∆t1 with 0 < k ≤ 1. Then,

0 ≥ k2∆t41m− (k∆t1 + ∆t1)2 (175)

0 ≥ k2∆t21m− (k + 1)2 (176)

∆t1 ≤
k + 1

k
√
m

(177)

The tightest bound occurs when k = 1, which is simply the case when the time steps are all the same. Next,
consider the negative direction.

−2 ≤ tr(B) (178)

0 ≤ ∆t20∆t21m
2 −∆t20m− 2∆t0∆t1m−∆t21m+ 4 (179)

0 ≤ k2∆t21∆t21m
2 − k2∆t21m− 2k∆t1∆t1m−∆t21m+ 4 (180)

18

P1 P2 P3 P6 P49

A1 A2 A3 A6 A49

C1 C2 C3 C6 C49

Figure 2: Destabilizing effects of cycling between two time step sizes on stability with one particle. ∆t0 is the
x axis and ∆t1 is the y axis. The dashed box indicates the stable region based on constant time steps sizes.
Figures are label with a letter (P=PIC, A=APIC, C=CPIC) and a number (1, 2, 3, 6, 49). The number
indicates the number of times that ∆t1 is repeated. For example, A3 was run with APIC and time step sizes
∆t0,∆t1,∆t1,∆t1,∆t0,∆t1,∆t1,∆t1, For images A-C, time steps alternate: ∆t0,∆t1,∆t0,∆t1, . . . with
PIC (A), APIC (B), and CPIC (C). In (D), APIC is run with ∆t0,∆t1,∆t1,∆t0,∆t1,∆t1, In (E), ∆t0
is followed by 6 time steps at ∆t1 using APIC. In all cases, quadratic splines are used in 3D. All plots are
on the same scale. White is stable, and black is unstable. If stability is particle position dependent, colors
indicate the likelihood of any particular position being stable, with red being likely stable and blue being
likely unstable. The stability region can become quite complex with unstable time step sequences scattered
throughout the predicted stable region.

This inequality fails when√
2((k + 1)2 − (k − 1)

√
k2 + 6k + 1)

2k
√
m

< ∆t1 <

√
2((k + 1)2 + (k − 1)

√
k2 + 6k + 1)

2k
√
m

. (181)

This gives a range of unstable time step sizes for any 0 < k < 1. The bounds are equal when k = 1, so this
type of instability does not occur for constant time step sizes. The minimum of the lower bound occurs when

k = 1 − ε, at which point the lower bound is ∆t1 =
√

2√
m

+ O(ε). When two time step sizes are alternated,

the simulation could be unstable at a time step that is nearly a factor of
√

2 lower than what was predicted
in the constant time step analysis. Figure 2 shows the stability landscape with two different time step sizes.

3.14 Conclusions about varying time step sizes

Optimizing the trace while obeying the single particle instability criterion shows that the largest magnitude
eigenvalue of B occurs when 3∆t0 = ∆t1 = 2√

m
. With these, B has eigenvalues − 1

3 and −3. Every two time

19

steps, the state grows by a factor of three. This growth rate is fast enough for a particle that separates from
the main bulk to explode before colliding with an obstacle or other particles.

One might be tempted to simply accept this factor of
√

2 reduction in the time step size and be done
with the single particle instability. Unfortunately, this does not work. Cycling 3 nearly equal time step sizes
admits unstable time step sizes that are smaller by a factor of about 2. For a sequence of 50 time steps,
there are unstable time steps that are smaller by a factor of about 31. Of course, this extreme is quite
pathological; the unstable time step window is small and the growth factor is barely over 1. But this does
suggest that there is no time step bound for which a single-particle simulation with CPIC will be stable for
any combination of time step sizes. Since the scenario above is also realized with APIC if the particle is at
a grid node, the same conclusion applies to APIC. The analysis does not apply to PIC.

References

[1] Yunxin Sun, Tamar Shinar, and Craig Schroeder. Effective time step restrictions for explicit mpm
simulation. In Computer Graphics Forum, volume 39, pages 55–67. Wiley Online Library, 2020.

20

