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Derivatives occur frequently in computer graphics and arise in many different contexts. Gradients and often
Hessians of objective functions are required for efficient optimization. Gradients of potential energy are
used to compute forces. Constitutive models are frequently formulated from an energy density, which must
be differentiated to compute stress. Hessians of potential energy or energy density are needed for implicit
integration. As themethods used in computer graphics becomemore accurate and sophisticated, the complexity
of the functions that must be differentiated also increases. The purpose of this course is to show that it is
practical to compute derivatives even for functions that may seem impossibly complex. This course provides
practical strategies and techniques for planning, computing, testing, debugging, and optimizing routines for
computing first and second derivatives of real-world routines. This course will also introduce and explore
auto differentiation, which encompasses a variety of techniques for obtaining derivatives automatically.
Applications to machine learning and differentiable simulation are also considered. The goal of this course is
not to introduce the concept of derivatives, how to use them, or even how to calculate them per se. This is not
intended to be a calculus course; we will assume that our audience is familiar with multivariable calculus.
Instead, the emphasis is on implementing derivatives of complicated computational procedures in computer
programs and actually getting them to work.
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1 OVERVIEW
This course focuses on the very practical and occasionally daunting task of implementing derivatives
in programs. The starting point is assumed to be a function that takes some arguments (scalars,
vectors, or matrices), performs some mathematical calculations on those inputs, and then returns
one or more outputs (also scalars, vectors, or matrices). The output is a routine that additionally
computes derivatives of the outputs with respect to one or more of the inputs. That is, if the starting
routine computes 𝑓 (𝑥) then the final routine will compute 𝑓 (𝑥) and 𝑓 ′(𝑥). For some applications,
second derivatives are also required, in which case the final routine would compute 𝑓 (𝑥), 𝑓 ′(𝑥),
and 𝑓 ′′(𝑥). In principle, any number of derivatives might be required, but in practice generally
only one or two are required.

The goal of this course is not to introduce the concept of derivatives, how to use them, or even
how to calculate them per se. This is not intended to be a calculus course; we will assume that
our audience is familiar with multivariable calculus. Instead, the emphasis is on implementing
derivatives of complicated computational procedures in computer programs and actually getting
them to work. This course emphasizes practical strategies for working out and implementing
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derivatives, testing strategies to make sure that the result is correct, tips for making the routines
efficient without sacrificing debuggability, and numerical robustness considerations.
This course will also introduce auto differentiation, which encompasses a variety of techniques

for obtaining derivatives automatically. We will explore forward mode and reverse mode auto
differentiation to understand what they are and when each is preferred. Finally, we will explore the
benefits and limitations of auto differentiation as a replacement for manually computing derivatives.

2 OUTLINE
• Basics - 20 minutes
– Motivation
– What not to do
– Chain rule
– Tensor notation
– Efficiency considerations
• Practical considerations - 15 minutes
– Testing it
– Getting it to work
– Optimizing it
– Numerical difficulties
– Implicit differentiation
– Differentiating the function or the algorithm
• Differentiating matrix factorizations - 0 minutes
– Differentiating singular values
– Differentiating eigenvalues
• Differentiating other special cases - 10 minutes
– Rotations
– Differentiating numerical simulations
• Automatic differentiation - 15 minutes
– Compile time
– Runtime
– Code generation
– Differentiate the function
– When to use automatic differentiation
– Automatic differentiation libraries
– PyTorch and TensorFlow
• Concluding remarks

3 BASICS
Let 𝑓 (𝑥) be a function that takes as input a scalar 𝑥 and returns another scalar. For example,
𝑓 (𝑥) = 3𝑥3 + 2. The derivative of 𝑓 (𝑥) tells us how the value of 𝑓 (𝑥) changes as 𝑥 changes and is
defined as

𝑓 ′(𝑥) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

.

In our example, 𝑓 ′(𝑥) = 9𝑥2. Here the prime (𝑓 ′) denotes the derivative of the function; it is
frequently used for functions that depend only on one scalar variable. We will also use other
notation such as 𝑑𝑓

𝑑𝑥
(𝑥) or 𝑑

𝑑𝑥
𝑓 (𝑥).
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This definition is rarely used to directly calculate derivatives. Instead, it is used to derive rules,
which are much simpler to apply. For reference, this is a short table of derivative rules. It is by no
means exhaustive, but it includes the rules that we will need to get started. More extensive lists of
rules are available readily available in calculus textbooks.

Let 𝑓 (𝑥) and 𝑔(𝑥) be functions of the scalar 𝑥 . Let 𝑎 and 𝑏 be constants. Then

𝑑

𝑑𝑥
(𝑎𝑓 (𝑥) + 𝑏𝑔(𝑥)) = 𝑎𝑓 ′(𝑥) + 𝑏𝑔′(𝑥) differentiation is linear

𝑑

𝑑𝑥
(𝑓 (𝑥)𝑔(𝑥)) = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓 (𝑥)𝑔′(𝑥) product rule

𝑑

𝑑𝑥

(
𝑓 (𝑥)
𝑔(𝑥)

)
=

𝑓 ′(𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑔′(𝑥)
𝑔(𝑥)2 quotient rule; 𝑔(𝑥) ≠ 0

𝑑

𝑑𝑥
(𝑓 (𝑥)𝑛) = 𝑛𝑓 (𝑥)𝑛−1 𝑓 ′(𝑥) power rule; 𝑛 ≠ 0

𝑑

𝑑𝑥
𝑓 (𝑔(𝑥)) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥) chain rule

Derivatives of vectors. Frequently we must compute derivatives of vectors. For example, if x(𝑡) is
a vector representing the position of an object, then v(𝑡) = x′(𝑡) is its velocity and a(𝑡) = x′′(𝑡) is
its acceleration. Derivatives of vectors are computed componentwise. Computing derivatives with
vectors requires more rules, but these can all be derived from the scalar case by considering the
components. For example, if 𝑓 (𝑡) = u(𝑡) · v(𝑡), then 𝑓 ′(𝑡) = u′(𝑡) · v(𝑡) + u(𝑡) · v′(𝑡); that is, dot
product follows the product rule. Cross products also follow the chain rule, though care must be
taken not to change the order of the cross product.

Derivatives with respect to vectors. In optimization, if is common for an objective to depend on a
vector (either physically or by simply stacking all of the inputs into a vector). For example, I may
wish to minimize 𝑓 (x) = x · x. In this case, we must compute the derivative of the function with
respect to each component of the vector. If the function returns a scalar, then the derivative will be
a vector, which we generally call the gradient and denote as ∇𝑓 or ∇𝑓 (x). If x is a 3D vector, then

∇𝑓 =

©­­­­­­­­«

𝜕𝑓

𝜕𝑥1
𝜕𝑓

𝜕𝑥2
𝜕𝑓

𝜕𝑥3

ª®®®®®®®®¬
,

where 𝜕𝑓

𝜕𝑥1
means the derivative should be taken of 𝑓 with respect to 𝑥1 (the first component of x)

while the other components are treated as constants.
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More extensions. We can also consider derivatives of vector-valued functions with respect to
vector inputs, in which case the result is a matrix. We use the following convention in this course:

∇f =

©­­­­­­­­«

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2

𝜕𝑓1

𝜕𝑥3
𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2

𝜕𝑓2

𝜕𝑥3
𝜕𝑓3

𝜕𝑥1

𝜕𝑓3

𝜕𝑥2

𝜕𝑓3

𝜕𝑥3

ª®®®®®®®®¬
.

Note that the first index indicates which component of f is being differentiated. The second index
indicates which component of the input we are differentiating with respect to. It is also possible
to differentiate matrices (also componentwise) or to differentiate other quantities with respect to
matrices (also componentwise in a manner analogous to the gradient). For example, differentiating
a matrix-valued function by a vector would produce a rank-3 tensor.

3.1 Motivation
Derivatives come up in computer graphics in many different contexts. Many problems are formu-
lated as optimization problems. As a simple case

Minimize: 𝑓 (x).

Here, 𝑓 (x) might be a measure of error, where x is a vector filled with parameters. To optimize this
function, we generally like to move from our current configuration x to a nearby configuration
x + 𝛿x that produces a lower error. The gradient ∇𝑓 gives us a direction in which we can move to
find a smaller error. When the gradient is zero (∇𝑓 = 0), we have found a (locally) optimal solution.
Most optimization algorithms use the gradient. More efficient methods also use the Hessian, which
is the matrix filled with second derivatives, H =

𝜕2 𝑓
𝜕x𝜕x . To use these, we must differentiate our

error function 𝑓 (x) twice. Often this error function is something rather complicated, such as a
discrete measure for curvature. In machine learning, optimization procedure is used for training
the network.
Derivatives are also ubiquitous in physics and thus physical simulation. One common way to

define forces is to instead construct a potential energy function 𝜙 (x), from which the forces can be
computed from the gradient as f = −∇𝜙 . Implicit methods frequently involve the force derivatives
𝜕f
𝜕x , which involves the Hessian of the potential energy function. Thus, we often must compute first
and second derivatives of scalars with respect to vectors.
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To give a motivation for the types of energies that must sometimes be differentiated, consider
this rather complex example from a graphics paper.

𝑑𝑚𝑖𝑛 = (x𝐴 − c) ·
(x𝐶 − x𝐴) × (x𝐵 − x𝐴)
∥(x𝐶 − x𝐴) × (x𝐵 − x𝐴)∥

cot(𝛼) = (x𝐶 − x𝐴) · (x𝐵 − x𝐴)
∥(x𝐶 − x𝐴) × (x𝐵 − x𝐴)∥

cot(𝛽) = (x𝐴 − x𝐵) · (x𝐶 − x𝐵)
∥(x𝐴 − x𝐵) × (x𝐶 − x𝐵)∥

cot(𝛾) = (x𝐵 − x𝐶 ) · (x𝐴 − x𝐶 )
∥(x𝐵 − x𝐶 ) × (x𝐴 − x𝐶 )∥

𝐸𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 = 𝑑−2𝑚𝑖𝑛 (cot(𝛼)∥x𝐵 − x𝐶 ∥2 + cot(𝛽)∥x𝐴 − x𝐶 ∥2 + cot(𝛾)∥x𝐴 − x𝐵 ∥2)

𝐸𝑎𝑟𝑒𝑎 = 𝑑−2𝑚𝑖𝑛

∥(x𝐴 − x𝐶 ) × (x𝐵 − x𝐶 )∥2
𝐼𝑛𝑝𝑢𝑡𝐴𝑟𝑒𝑎

𝐸 = 𝐸𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑎 · 𝐸𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 + 𝑏 · 𝐸𝑎𝑟𝑒𝑎

Here, two derivatives of 𝐸 are required with respect to x𝐴, x𝐵 , and x𝐶 . In the original paper, the
authors computed the derivatives in Maple.

Another place where difficult derivatives frequently emerge is in constitutive modeling. Here, we
define an energy density𝜓 (F), which is a scalar defined as a function of a matrix (the deformation
gradient F). The first derivative yields the first Piola-Kirchoff stress P =

𝜕𝜓

𝜕F . For implicit methods,
the second derivative is also required. That is, we need 𝜕P

𝜕F , which is a rank-4 tensor. In practice, it
is often sufficient to compute double-contractions 𝜕P

𝜕F : A with a matrix A. Implementing a routine
that takes in a matrix A and returns this double contraction (also a matrix) is often easier and more
efficient than computing and storing a rank-4 tensor. Many commonly-used constitutive models
in computer graphics are defined in terms of the singular values of F, which will require us to
differentiate the singular values. Although this seems daunting, it is actually quite doable; we will
show how to do this later in the course.

3.2 What not to do
When the function to be differentiate seems daunting, there are a few tempting solutions that
authors sometimes resort to to avoid the task.

Finite differences. Finite differences are a flexible approach to approximating derivatives on grids.
They are one of the most commonly employed and useful discretization techniques for PDEs. They
allow one to approximate a derivative by evaluating the function at nearby points and applying the
definition of the derivative. For example,

𝑓 ′(𝑥) ≈ 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 − ℎ)
2ℎ

.

There are a number of reasons why this is a bad idea. The first of these is that the derivatives are
only going to be approximate, with an error that depends on the displacements ℎ that are used.
Approximate derivatives may cause numerical optimization routines to fail. For gradients with 𝑛
components, the function must be evaluated at least 𝑛 + 1 times, which can be quite expensive.
A less obvious problem is that the roundoff errors may be very bad if ℎ is small. In this case, the
numerator is the difference between two nearly identical quantities, which results in catastrophic
cancellation.
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Maple/Mathematica. A rather tempting way to obtain the actual derivatives is to use Maple,
Mathematica, or another computer algebra system to compute the derivatives. These software
packages even have commands to dump out expressions as source code in languages like C,
which makes this even more tempting. There are four major problems with this strategy. First,
the resulting expressions tend to be very long and require significant manual simplification. The
second problem with them is that they tend to not be very robust (division by zero, square root of a
negative number). A third problem is that they are often not very efficient, since they do not reuse
intermediate computations. In our case, however, the biggest problem with them is that they are
neither debuggable nor maintainable. What if you made a mistake while you were simplifying the
expressions? How would you ever find the mistake?

Some of these problems can be illustrated on the rathermodest example 𝑓 (u, v) =


u(u · v)2 − v∥u∥3

2.

Computing H =
𝜕2 𝑓
𝜕u𝜕u with Maple, asking Maple to simplify, and then generating C code for just

the entry 𝐻11 (with optimization enabled and basic manual simplifications performed) produces
t1 = v2 * v2; t4 = v1 * v1; t6 = t1 * t1; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; t12 = u2 * u2; t13 = t12 * t12;
t19 = u1 * v1; t24 = t12 * u2; t31 = t9 / 5; t33 = u3 * u3; t35 = 3 * t1; t41 = u1 * u1; t42 = t4 * t4; t46 = 3 * t9;
t52 = u3 * v3; t61 = 0.8 * u1 * u3 * v1 * v3; t73 = t33 * t33; t77 = t33 * u3; t88 = t41 * u1; t94 = t41 * t41;
t100 = sqrt(t41 + t12 + t33); t102 = t4 / 5;
H11 = -60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10) - 0.4 * t24 * v2 * (u3 * (t4 + t1 / 3) * v3

+ (t4 + t1) * t19) + t12 * (t33 * (t4 * (-t1 - t9 - 1) / 5 + t1 * (-t9 - 1) / 5 - t31) - 0.4 * u3 * (t4 + t35) * v3 * t19
- (t42 + t4 * (6 * t1 + 3) + t35 + t46) * t41 / 5) - 4. / 3 * u2 * (t33 * (0.3 * t4 + t10) + t61 + t4 * t41) * v2 * (t19 + t52)
+ t73 * (t4 * (-t31 - 0.1) - t8 - (t9 + 3) * t9 / 30) - 0.4 * t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35
+ t46) * t41 / 5 - 4. / 3 * v3 * t4 * v1 * u3 * t88 - (t42 + t4 + t1 + t9) * t94 / 2) + (u2 * v2 + t19 + t52) * (t13 * (t102 + t8)
+ 0.8 * t24 * v2 * (t19 + t52 / 4) + t12 * (t33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41) + u2 * (t88 * v1
+ 0.4 * t41 * t52 + 0.8 * u1 * v1 * t33 + v3 * t77 / 5) * v2 + t73 * (t102 + t10) + 0.8 * v3 * u1 * v1 * t77 + 1.1 * t33 * t41 * (t4
+ 2. / 11 * t9) + t88 * v3 * u3 * v1 + t4 * t94));

Note that this is just the entry 𝐻11. There will also be similar expressions for 𝐻12, 𝐻13, 𝐻22, 𝐻23,
and 𝐻33. If I made a mistake in simplifying any of these expressions, how would anyone debug it? I
will return to this example later and show how to do this example manually.

3.3 Chain rule
They key to implementing derivatives practically is the chain rule. As a simple example, lets
compute the derivative of 𝑓 (𝑥) = (𝑥3 +

√
1 + 𝑥2)2. The first step is to break the computation into

very small pieces.

𝑎 = 1 + 𝑥2 𝑏 = 𝑥3 𝑐 =
√
𝑎 𝑑 = 𝑏 + 𝑐 𝑓 = 𝑑2

Next, we can compute the derivative of each step using the chain rule.

𝑎′ = 2𝑥 𝑏 ′ = 3𝑥2 𝑐 ′ =
𝑎′

2𝑐
𝑑 ′ = 𝑏 ′ + 𝑐 ′ 𝑓 ′ = 2𝑑𝑑 ′

There is no need to combine all of the pieces together. This is a good form for implementation in
code. What is more, it is very easy to see how the derivatives were computed and to see mistakes.
If the original expression must change, the derivatives are easy to update accordingly. Of course,
we can simplify the expressions when we get them working.

What if we need second derivatives? Surely that would far too complex. But in fact it is quite
manageable, since all of the equations we must differentiate are very simple. We just differentiate
our formulas for the first derivatives.

𝑎′′ = 2 𝑏 ′′ = 6𝑥 𝑐 ′′ =
𝑎′′

2𝑐
− 𝑎′𝑐 ′

2𝑎
𝑑 ′′ = 𝑏 ′′ + 𝑐 ′′ 𝑓 ′′ = 2(𝑑 ′)2 + 2𝑑𝑑 ′′

Note that I reused a lot of the work I already did for the first derivatives. As a bonus, when computing
the second derivatives I basically get the function and first derivatives for free.
Lets now return to our more complex example: 𝑓 (u, v) =



u(u · v)2 − v∥𝑢∥3

2. This was the
example where Maple gave us very complicated results. This example also includes lots of vectors,
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which will make it more complicated than the very simple scalar example we just did. First, break
up the function into small pieces. Smaller is better. Ideally, I want pieces that will stay relatively
simple when I compute the second derivatives. If only first derivatives are desired, this is less of a
concern.

𝑎 = u · v 𝑏 = ∥u∥ 𝑐 = 𝑎2 𝑑 = 𝑏3 w = 𝑐u − 𝑑v 𝑓 = ∥w∥2

Next, I take the gradient of each equation in sequence. Note that the gradients of scalars (such as
𝑎𝑢 ) are vectors, and the gradients of vectors (such as w𝑢 ) are actually matrices.

𝑎𝑢 = v 𝑏𝑢 =
u
𝑏

𝑐𝑢 = 2𝑎𝑎𝑢 𝑑𝑢 = 3𝑏2𝑏𝑢 w𝑢 = 𝑐I + u𝑐𝑇𝑢 − v𝑑𝑇𝑢 𝑓𝑢 = 2w𝑇
𝑢w

First derivatives were fairly straightforward. Second derivatives will be more difficult, but lets get
started with the easier ones.

𝑎𝑢𝑢 = 0 𝑏𝑢𝑢 =
1
𝑏
(I − 𝑏𝑢𝑏𝑇𝑢 ) 𝑐𝑢𝑢 = 2𝑎𝑢𝑎𝑇𝑢 𝑑𝑢𝑢 = 6𝑏𝑏𝑢𝑏𝑇𝑢 + 3𝑏2𝑏𝑢𝑢

Getting the second derivatives on w is awkward due w𝑢𝑢 being a rank-3 tensor, but using indexing
techniques we will introduce later, we are able to eliminate the tensors and get

z = w ·w𝑢𝑢 = (u ·w)𝑐𝑢𝑢 + 𝑐𝑢w𝑇 +w𝑐𝑇𝑢 + (v ·w)𝑑𝑢𝑢 𝑓𝑢𝑢 = 2z + 2w𝑇
𝑢w𝑢

Note that unlike in the Maple example, where we only computed the first entry of the Hessian
matrix, here we have computed the entire matrix. The resulting expressions are relatively simple
and take advantage of existing linear algebra routines. Although these may also seem difficult to
debug, we will show later how they can be debugged in a very straightforward way.

3.4 Tensor notation
The last example showed us that there are a couple hurdles we may need to deal with when dealing
with vectors, matrices, and derivatives. The first problem is that the vector derivative rules can be
quite obscure. Does anyone really remember the rule for ∇(u · v)? Is it (∇u)v + (∇u)v? Or was
it (∇u)𝑇 v + (∇u)𝑇 v? (It is the latter.) How about the rule for ∇ · (u × v)? The second problem is
that when we have vectors, we tend to end up needing rank-3 tensors. When we are differentiating
with respect to matrices, we tend to get rank-4 tensors. Vector notation really is not up to the task
here. Indexed tensor notation, though tedious, turns out to work very well here.
The idea behind tensor notation is that we refer to objects by their indices rather than writing

them as vectors or matrices directly. Thus, for example, we might write the vector u as 𝑢𝑖 or the
matrix A as 𝐴𝑖 𝑗 . The outer product A = uv𝑇 looks like 𝐴𝑖 𝑗 = 𝑢𝑖𝑣 𝑗 . The names of the indices are not
important. I could just as easily have written 𝐴𝑟𝑠 = 𝑢𝑟𝑣𝑠 . A rank-3 and rank-4 tensors simply have
more indices, such as 𝐵𝑖 𝑗𝑘 or 𝐶𝑖 𝑗𝑘𝑙 . They cause us no problems at all.
A dot product looks like u · v =

∑
𝑖 𝑢𝑖𝑣𝑖 . A very useful observation is that repeated indices in

a term are virtually always summed over. This gave rise to the Einstein summation convention,
where indices that occur twice in a term are implicitly summed. The summation symbol is omitted
but understood to be there. Now we can write dot product as u · v = 𝑢𝑖𝑣𝑖 . Again, the name of
the index does not matter. I could write 𝑢𝑟𝑣𝑟 instead. Matrix-vector multiply looks like 𝑣𝑖 = 𝐴𝑖 𝑗𝑢 𝑗 .
Matrix-matrix product looks like 𝐴𝑖𝑘 = 𝐵𝑖 𝑗𝐶 𝑗𝑘 . A𝑇u looks like 𝐴 𝑗𝑖𝑢 𝑗 . Note the reversed indices on
the matrix. Trace is just 𝐴𝑖𝑖 . The summation convention is elegant indeed.

At this point, we see that the indices are very important. 𝑢𝑖𝑣 𝑗 is an outer product matrix, whereas
𝑢𝑖𝑣𝑖 represents a dot product and is a scalar. One more thing to remember is that the 𝑢𝑖 is actually
the component of the vector, so the 𝑢𝑖𝑣𝑖 is really product of two scalars, with an implied summation
sign. As such, we simply use the usual scalar differentiation rules.

7
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Before jumping to differentiation, we need a couple special tensors. 𝛿𝑖 𝑗 is the identity matrix. It
is 1 if 𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗 . The other matrix is the permutation tensor 𝑒𝑖 𝑗𝑘 , which is only defined in
3D. 𝑒123 = 𝑒312 = 𝑒231 = 1, 𝑒132 = 𝑒321 = 𝑒213 = −1, and all other entries are zero. This tensor will
allow us to do cross products. w = u × v becomes 𝑤𝑖 = 𝑒𝑖 𝑗𝑘𝑢 𝑗𝑣𝑘 . Note that 𝛿𝑖 𝑗 and 𝑒𝑖 𝑗𝑘 are filled
with constants, so their derivatives vanish.

Now we are ready to start doing derivatives. To do this, we need a notation for gradients. This is
done with a comma before an index. Thus, the gradient of the scalar 𝑎 is 𝑎,𝑟 . The gradient of the
vector 𝑢𝑖 is 𝑢𝑖,𝑟 . The second derivative is 𝑢𝑖,𝑟𝑠 . The vector Laplacian, for example, looks like 𝑢𝑖,𝑟𝑟 .
Note that something like 𝑎,𝑟𝑠 represents the second derivative of a scalar with respect to a vector. (If
needed, a notation like 𝑎,(𝑟𝑠) could be used to indicate a first derivative with respect to a matrix, but
we will not worry about that here.) Observe that ∇(u · v) becomes (𝑢𝑖𝑣𝑖 ),𝑟 = 𝑢𝑖,𝑟𝑣𝑖 + 𝑢𝑖𝑣𝑖,𝑟 simply
by applying the scalar product rule and shows the source of the transposes in the vector notation.
∇ · (u× v) likewise becomes (𝑒𝑖 𝑗𝑘𝑢 𝑗𝑣𝑘 ),𝑟 = 𝑒𝑖 𝑗𝑘𝑢 𝑗,𝑟𝑣𝑘 + 𝑒𝑖 𝑗𝑘𝑢 𝑗𝑣𝑘,𝑟 by just using the product rule. One
of the beauties of this notation is that there are few rules to remember.
Now lets put this notation to use on something that caused us problems. Lets return to the

rank-3 tensor w𝑢𝑢 and the seemingly magical expression for w ·w𝑢𝑢 . Recall that 𝑢𝑖,𝑠 = 𝛿𝑖𝑠 , since
the derivative is with respect to 𝑢𝑠 . Observe that 𝛿𝑖 𝑗𝑣 𝑗 = 𝑣𝑖 , since 𝛿𝑖 𝑗 is the identity.

w𝑢 = 𝑐I + u𝑐𝑇𝑢 − v𝑑𝑇𝑢
𝑤𝑖,𝑟 = 𝑐𝛿𝑖𝑟 + 𝑢𝑖𝑐,𝑟 − 𝑣𝑖𝑑,𝑟
𝑤𝑖,𝑟𝑠 = 𝑐,𝑠𝛿𝑖𝑟 + 𝑢𝑖𝑐,𝑟𝑠 + 𝑢𝑖,𝑠𝑐,𝑟 − 𝑣𝑖𝑑,𝑟𝑠

𝑤𝑖𝑤𝑖,𝑟𝑠 = 𝑤𝑖𝑐,𝑠𝛿𝑖𝑟 +𝑤𝑖𝑢𝑖𝑐,𝑟𝑠 +𝑤𝑖𝛿𝑖𝑠𝑐,𝑟 −𝑤𝑖𝑣𝑖𝑑,𝑟𝑠

𝑤𝑖𝑤𝑖,𝑟𝑠 = 𝑤𝑟𝑐,𝑠 + (𝑤𝑖𝑢𝑖 )𝑐,𝑟𝑠 + 𝑐,𝑟𝑤𝑠 − (𝑤𝑖𝑣𝑖 )𝑑,𝑟𝑠
w ·w𝑢𝑢 = w𝑐𝑇𝑢 + (w · u)𝑐𝑢𝑢 + 𝑐𝑢w𝑇 − (w · v)𝑑𝑢𝑢

This calculation in tensor notation is relatively straightforward.

Differentiation with respect to many variables. Another consideration with vector notation is the
need to indicate which of potentially many variables are being differentiated with respect to. In
the previous example, we may actually want 𝑓𝑢𝑢 , 𝑓𝑢𝑣 = 𝑓𝑣𝑢 , and 𝑓𝑣𝑣 . In this case, it is convenient
to imagine that𝑤𝑖,𝑟𝑠 is referring to differentiation with respect to some components 𝑟 and 𝑠 of u
or v. In this case, we would not simplify 𝑢𝑖,𝑟 to 𝛿𝑖𝑟 and 𝑣𝑖,𝑟 to 0 while working out the derivation.
Instead, when we would implement chain of computations and make three identical copies of it
(with different variable names), one copy for 𝑓𝑢𝑢 , 𝑓𝑢𝑣 , and 𝑓𝑣𝑣 . In the 𝑓𝑢𝑢 and 𝑓𝑢𝑣 copies of the code,
we let 𝑢𝑖,𝑟 = 𝛿𝑖𝑟 . In the 𝑓𝑣𝑣 copy we let 𝑢𝑖,𝑟 = 0. This will result in a lot of simple optimization
opportunities, which can be easily performed (and debugged) once a working version of the
derivatives is completed.
Another common case is when we are working our derivatives in unrelated variables. For

example, if I need to work out 𝜕u
𝜕w = 𝜕u

𝜕v
𝜕v
𝜕w , I will need to distinguish between differentiation in w

and v. One simple way to do this is to reserve different sets of index names for each. For example,
I can use 𝑟, 𝑠 for w and 𝛼, 𝛽 for v. This would allow me to unambiguously write 𝑢𝑖,𝑟 = 𝑢𝑖,𝛼𝑣𝛼,𝑟 It
is also convenient to designate different indices for different types of indices more generally; for
example, I might reserve 𝑝, 𝑞 for particle indices, 𝑖, 𝑗 for grid indices, and then use Greek letters for
spatial indices (such as components of vectors or gradient indices).

3.5 Efficiency considerations
Oftenwe are interested in computing partial derivatives with respect to many variables. For example,
lets say we want to compute a simple bending energy for two triangles connected by a line segment.
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x𝑐

x𝑑x𝑎 x𝑏n𝑎 n𝑏

Fig. 1. Two triangles connected by an edge.

(See Figure 1.) A simple bending energy depending on the angle between the triangles is

u = x𝑎 − x𝑑 v = x𝑏 − x𝑑 w = x𝑐 − x𝑑 N𝑎 = u ×w N𝑏 = w × v

n𝑎 =
N𝑎

∥N𝑎 ∥
n𝑏 =

N𝑏

∥N𝑏 ∥
𝑟 = n𝑎 · n𝑏 𝑠 = ∥n𝑎 × n𝑏 ∥ 𝜃 = atan2(𝑠, 𝑟 )

Straightforward application of the above approach would involve computing first derivatives
and second derivatives in x𝑎, x𝑏, x𝑐 , x𝑑 for each of the intermediates u, v,w,N𝑎,N𝑏, n𝑎, n𝑏, 𝑟 , 𝑠, 𝜃 .
Although many of these are zero (for example, N𝑎 does not depend on x𝑏 ), for 𝑟 , 𝑠 , and 𝜃 we require
the calculation of 4 first derivatives (vectors) and 10 second derivatives (matrices) each. This is
inefficient, and we can do better.

Modes of differentiation. Lets say that we have a calculation where 𝑥 is the input, 𝑦 is the output,
and 𝑎 = 𝑎(𝑥), 𝑏 = 𝑏 (𝑎), and 𝑐 = 𝑐 (𝑏) are intermediates with the result computed as 𝑦 = 𝑦 (𝑐). Then,
our strategy was to compute

𝜕𝑎

𝜕𝑥
=

𝜕𝑎

𝜕𝑥

𝜕𝑏

𝜕𝑥
=

𝜕𝑏

𝜕𝑎

𝜕𝑎

𝜕𝑥

𝜕𝑐

𝜕𝑥
=

𝜕𝑐

𝜕𝑏

𝜕𝑏

𝜕𝑥

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑐

𝜕𝑐

𝜕𝑥

This is called forward mode differentiation. But we did not need to do it this way. Here is another
way to compute the same thing.

𝜕𝑦

𝜕𝑐
=

𝜕𝑦

𝜕𝑐

𝜕𝑦

𝜕𝑏
=

𝜕𝑦

𝜕𝑐

𝜕𝑐

𝜕𝑏

𝜕𝑦

𝜕𝑎
=

𝜕𝑦

𝜕𝑏

𝜕𝑏

𝜕𝑎

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑎

𝜕𝑎

𝜕𝑥

This is called reverse mode differentiation [Bartholomew-Biggs et al. 2000]. (For those familiar with
machine learning techniques, the technique of backpropagation of errors is really an application of
reverse mode differentiation [Baydin et al. 2018].)
To see that these modes can have different computational cost, consider two different cases. In

the first case, 𝑥 is a vector but 𝑎, 𝑏, 𝑐,𝑦 are scalars. The forward mode calculation requires three
scalar-vector multiplies, since all of the derivatives are vector quantities. In the reverse case, 𝜕𝑦

𝜕𝑥
is a

vector and the rest are scalars, so the resulting computations are cheaper. If on the other hand 𝑦 is
a vector but the rest are scalars, the conclusion is the opposite. All of the reverse mode derivatives
are vector quantities but only one for the forward mode.

Consider that x, a, b, c, y are all vectors. Then, the same calculation looks like
𝜕y
𝜕b

=
𝜕y
𝜕c

𝜕c
𝜕b

𝜕b
𝜕a

𝜕a
𝜕x

The solution is obtained as the product of four matrices. (Each of the derivatives is the partial
derivative of a vector with respect to a vector, which results in a matrix.) We are free to perform the
matrix-matrix multiplications in any order we like, and we can choose the order that is cheapest.
For example, if the dimensions of x, a, b, c, y are 4, 3, 20, 2, 5 then the matrices have dimensions 5× 2,
2 × 20, 20 × 3, and 3 × 4. The optimal order is then

𝜕y
𝜕b

=
𝜕y
𝜕c

((
𝜕c
𝜕b

𝜕b
𝜕a

)
𝜕a
𝜕x

)
.
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x𝑎

x𝑏

x𝑐

x𝑑

u

v

w

N𝑎

N𝑏

n𝑎

n𝑏

𝑟

𝑠

𝜃

Fig. 2. Computational dependencies for angle between two triangles.

We call this mixed mode. By contrast, forward mode performs the multiplications from right to
left. Reverse mode performs them left to right. Note that c and a both small sets of intermediate
variables from which the result can be computed. I will refer to small sets of intermediates like this
as bottlenecks. Note that the optimal ordering saves the bottlenecks states for last. Although this is
not guaranteed to be the case (the task of determining the optimal ordering is called the optimal
Jacobian accumulation problem; it is NP-complete [Naumann 2008]), it is a very useful heuristic.

Let us return to the triangle bending angle example, whose calculation dependencies are shown
in Figure 2. We can think of the intermediates in this example as being the vectors

x =

©­­­«
x𝑎
x𝑏
x𝑐
x𝑑

ª®®®¬ z = ©­«
u
v
w

ª®¬ N =

(
N𝑎

N𝑏

)
n =

(
n𝑎
n𝑏

)
p =

(
𝑟

𝑠

)
𝜃 = 𝜃

with dimensions 12, 9, 6, 6, 2, and 1. Note that these matrices are not fully dense. For example, the
6×6 matrix 𝜕n

𝜕N is composed of two 3×3 blocks on the diagonal, since n𝑎 does not depend onN𝑏 and
n𝑏 does not depend on N𝑎 . The matrix 𝜕z

𝜕x contains few nonzeros, all of which are ±1. Nevertheless,
this suggests that the optimal order here is reverse mode. That is, we should be computing

𝜕𝜃

𝜕p
𝜕𝜃

𝜕n
𝜕𝜃

𝜕N
𝜕𝜃

𝜕z
𝜕𝜃

𝜕x
𝜕2𝜃

𝜕p𝜕p
𝜕2𝜃

𝜕n𝜕n
𝜕2𝜃

𝜕N𝜕N
𝜕2𝜃

𝜕z𝜕z
𝜕2𝜃

𝜕x𝜕x

Since 𝜃 is actually just a scalar, the first derivatives are all vectors and the second derivatives are all
matrices. This suggests that we do not need any tensors, but this may not actually be the case. For
example, we will need to deal with 𝜕2n

𝜕N𝜕N , which is a rank-3 tensor. For explicitness, the calculation
rules take the form

𝜕𝜃

𝜕n
=

𝜕𝜃

𝜕p
𝜕p
𝜕n

𝜕2𝜃

𝜕n𝜕n
=

(
𝜕p
𝜕n

)𝑇
𝜕2𝜃

𝜕p𝜕p
𝜕p
𝜕n
+ 𝜕𝜃

𝜕p
𝜕2p
𝜕n𝜕n

Using 𝑖, 𝑗 for indices into n and 𝑟, 𝑠 for indices into p, we can write this in index notation as

𝜃,𝑖 = 𝜃,𝑟𝑝𝑟,𝑖 𝜃,𝑖 𝑗 = 𝜃,𝑟𝑠𝑝𝑟,𝑖𝑝𝑠,𝑗 + 𝜃,𝑟𝑝𝑟,𝑖 𝑗

Note the pattern of summation on the rank-3 tensors, which is less clear in the vector notation. If 𝜃
was instead a vector (indexed by 𝑘), then

𝜃𝑘,𝑖 = 𝜃𝑘,𝑟𝑝𝑟,𝑖 𝜃𝑘,𝑖 𝑗 = 𝜃𝑘,𝑟𝑠𝑝𝑟,𝑖𝑝𝑠,𝑗 + 𝜃𝑘,𝑟𝑝𝑟,𝑖 𝑗
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3.6 Reverse mode procedure.
Let’s return to the example we worked out earlier in forward mode,

𝑎 = u · v 𝑏 = ∥u∥ 𝑐 = 𝑎2 𝑑 = 𝑏3 w = 𝑐u − 𝑑v 𝑓 = ∥w∥2,

where we computed the derivative 𝜕𝑓

𝜕u . If we also wanted to compute 𝜕𝑓

𝜕v , then we would have
effectively repeated the entire derivative calculation to get 𝜕𝑓

𝜕v . Now, we will work it out in reverse
mode and compute both derivatives essentially for the cost of one. The forward mode procedure was
comparably straightforward and intuitive. The reverse mode procedure, by contrast, is somewhat
counterintuitive. This is because quantities such as 𝜕𝑓

𝜕𝑏
depend on which variables are considered

to be independent. In the forward mode case, the independent variables are the inputs (u and v in
the example above) to the routine and do not change. In the reverse mode case, the independent
variables change after every operation.

As with the forward mode case, break the computation into lots of small pieces. Next, list them
in reverse order. Then, we must write out the computation. In general if we have an intermediate
computation 𝑦 = 𝑓 (𝑥) and final output 𝑧 then we will be using the chain rule to do 𝜕𝑧

𝜕𝑥
= 𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑥
.

Since we may have vectors (v = 𝑓 (u)), it is more convenient to write 𝜕𝑧
𝜕u = 𝜕𝑧

𝜕v ·
𝜕v
𝜕u , which is a bit of

a notation abuse, as 𝜕𝑧
𝜕u =

(
𝜕v
𝜕u
)𝑇 𝜕𝑧

𝜕v .
Applying the reverse mode procedure we get

𝑓 = ∥w∥2 𝜕𝑓

𝜕w
=

(
𝜕𝑓

𝜕w

)𝑇
𝜕𝑓

𝜕𝑓
= 2w

w = 𝑐u − 𝑑v 𝜕𝑓

𝜕𝑐
=

(
𝜕w
𝜕𝑐

)𝑇
𝜕𝑓

𝜕w
= u𝑇

𝜕𝑓

𝜕w
𝜕𝑓

𝜕u
=

(
𝜕w
𝜕u

)𝑇
𝜕𝑓

𝜕w
= 𝑐

𝜕𝑓

𝜕w

𝜕𝑓

𝜕𝑑
=

(
𝜕w
𝜕𝑑

)𝑇
𝜕𝑓

𝜕w
= −v𝑇 𝜕𝑓

𝜕w
𝜕𝑓

𝜕v
=

(
𝜕w
𝜕v

)𝑇
𝜕𝑓

𝜕w
= −𝑑 𝜕𝑓

𝜕w

𝑑 = 𝑏3
𝜕𝑓

𝜕𝑏
=

(
𝜕𝑑

𝜕𝑏

)𝑇
𝜕𝑓

𝜕𝑑
= 3𝑏2

𝜕𝑓

𝜕𝑑

𝑐 = 𝑎2
𝜕𝑓

𝜕𝑎
=

(
𝜕𝑐

𝜕𝑎

)𝑇
𝜕𝑓

𝜕𝑐
= 2𝑎

𝜕𝑓

𝜕𝑐

𝑏 = ∥u∥ 𝜕𝑓

𝜕u
+ =

(
𝜕𝑏

𝜕u

)𝑇
𝜕𝑓

𝜕𝑏
=
u
𝑏

𝜕𝑓

𝜕𝑏

𝑎 = u · v 𝜕𝑓

𝜕u
+ =

(
𝜕𝑎

𝜕u

)𝑇
𝜕𝑓

𝜕𝑎
= v

𝜕𝑓

𝜕𝑎

𝜕𝑓

𝜕v
+ =

(
𝜕𝑎

𝜕v

)𝑇
𝜕𝑓

𝜕𝑎
= u

𝜕𝑓

𝜕𝑎

The first column is the original computation, and the subsequent columns are the corresponding
derivative computations. There is one computation per input, each computed as though the other
inputs were constants. When a derivative is computed more than once (as with 𝜕𝑓

𝜕u and 𝜕𝑓

𝜕v in this
example), the result is added to the previous one. A perhaps simpler way to think of this is that the
update rule is 𝜕𝑧

𝜕u+ =
(
𝜕v
𝜕u
)𝑇 𝜕𝑧

𝜕v or alternatively 𝜕𝑧
𝜕u ←

𝜕𝑧
𝜕u +

(
𝜕v
𝜕u
)𝑇 𝜕𝑧

𝜕v , with all variables initialized to
zero.

We can see the source of the addition rule by giving different names to the variables before and
after the computation. Consider that we start with variables u = (𝑎, 𝑏, 𝑐) and then perform the
computation 𝑑 = 𝑎𝑏, after which we have variables v = (𝑎,𝑏, 𝑐, 𝑑). Let’s write this as 𝑎 = 𝑎,𝑏 =
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𝑏, 𝑐 = 𝑐, 𝑑 = 𝑎𝑏.

𝜕𝑓

𝜕u
=

(
𝜕v
𝜕u

)𝑇
𝜕𝑓

𝜕v

©­­­­­­­­«

𝜕𝑓

𝜕𝑎

𝜕𝑓

𝜕𝑏

𝜕𝑓

𝜕𝑐

ª®®®®®®®®¬
=

©­­­­­­­­«

𝜕𝑎

𝜕𝑎

𝜕𝑏

𝜕𝑎

𝜕𝑐

𝜕𝑎

𝜕𝑑

𝜕𝑎

𝜕𝑎

𝜕𝑏

𝜕𝑏

𝜕𝑏

𝜕𝑐

𝜕𝑏

𝜕𝑑

𝜕𝑏

𝜕𝑎

𝜕𝑐

𝜕𝑏

𝜕𝑐

𝜕𝑐

𝜕𝑐

𝜕𝑑

𝜕𝑐

ª®®®®®®®®¬

©­­­­­­­­­­­­­«

𝜕𝑓

𝜕𝑎

𝜕𝑓

𝜕𝑏

𝜕𝑓

𝜕𝑐

𝜕𝑓

𝜕𝑑

ª®®®®®®®®®®®®®¬
=
©­«
1 0 0 𝑏

0 1 0 𝑎

1 0 1 0

ª®¬

©­­­­­­­­­­­­­«

𝜕𝑓

𝜕𝑎

𝜕𝑓

𝜕𝑏

𝜕𝑓

𝜕𝑐

𝜕𝑓

𝜕𝑑

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­«

𝜕𝑓

𝜕𝑎
+ 𝑏 𝜕𝑓

𝜕𝑑

𝜕𝑓

𝜕𝑏
+ 𝑎 𝜕𝑓

𝜕𝑑

𝜕𝑓

𝜕𝑐

ª®®®®®®®®¬
𝜕𝑓

𝜕𝑎
=

𝜕𝑓

𝜕𝑎
+ 𝑏 𝜕𝑓

𝜕𝑑

𝜕𝑓
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=
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𝜕𝑐
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Here we see that (1) variables used as input to a computation have their derivative added to and (2)
the derivative for variables that are not used by the computation are unaffected. Simplifying down,
the computations for the derivatives are

𝜕𝑓

𝜕w
= 2w

𝜕𝑓

𝜕𝑑
= −v𝑇 𝜕𝑓

𝜕w
𝜕𝑓

𝜕𝑐
= u𝑇

𝜕𝑓

𝜕w
𝜕𝑓

𝜕𝑏
= 3𝑏2

𝜕𝑓

𝜕𝑑

𝜕𝑓

𝜕𝑎
= 2𝑎

𝜕𝑓

𝜕𝑐

𝜕𝑓

𝜕v
= −𝑑 𝜕𝑓

𝜕w
+ u 𝜕𝑓

𝜕𝑎

𝜕𝑓

𝜕u
= 𝑐

𝜕𝑓

𝜕w
+ u
𝑏

𝜕𝑓

𝜕𝑏
+ v 𝜕𝑓

𝜕𝑎

That gives us the first derivatives a fair bit cheaper than was obtained with forward mode. Recall
that the original derivative computation was only for 𝜕𝑓

𝜕u ; the procedure for
𝜕𝑓

𝜕v is similar in cost.
When there are more inputs and more complex calculations, the cost difference will become much
more pronounced.

The original example asked for second derivatives ( 𝜕2 𝑓
𝜕u𝜕u ,

𝜕2 𝑓
𝜕u𝜕v , and

𝜕2 𝑓
𝜕v𝜕v ) as well. We thus need to

compute another round of derivatives. This time, there are 6 dofs for input (the components of u and
v) and also 6 dofs for the output (the components of 𝜕𝑓

𝜕u and 𝜕𝑓

𝜕v ). Thus, forward and reverse mode
should have similar cost, and we might as well use forward mode for the next round of derivatives
since it is simpler. Note that we must do forward mode differentiation on the full calculation

𝑎 = u · v 𝑏 = ∥u∥ 𝑐 = 𝑎2 𝑑 = 𝑏3 w = 𝑐u − 𝑑v 𝑓 = ∥w∥2 w = 2w 𝑑 = −v𝑇w

𝑐 = u𝑇w 𝑏 = 3𝑏2𝑑 𝑎 = 2𝑎𝑐 v = −𝑑w + u𝑎 u = 𝑐w + u
𝑏
𝑏 + v𝑎

with the goal of computing 𝜕2 𝑓
𝜕u𝜕u = 𝜕u

𝜕u ,
𝜕2 𝑓
𝜕u𝜕v = 𝜕u

𝜕v = 𝜕v
𝜕u , and

𝜕2 𝑓
𝜕v𝜕v = 𝜕v

𝜕v . I have used the notation
w =

𝜕𝑓

𝜕w to avoid confusion between the forward and reverse mode derivatives. The procedure
is similar to what we did earlier, so I will not repeat it here. Note that, unlike in the original
version, there are no matrices in the first derivative calculations. That means applying forward
mode differentiation will only require matrices. We do not need to deal with tensors as we did
when we computed both first and second derivatives in forward mode.
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4 PRACTICAL CONSIDERATIONS
At this point, the basic ideas for computing derivatives are all here. The next problem will be
actually getting them to work.

4.1 Testing it
As with most things, code cannot be assumed to be working until it has been tested and shown
to be working. Derivatives are no different. Observing that Newton’s method for optimization
converged does not mean the derivatives are correct, and fixing the derivatives may accelerate the
convergence. Thus, we need a practical way to test the derivatives. One obvious way to do this is
to compute the derivatives in another way (such as Maple/Mathematica or finite differences) and
then compare them to see if they match. This works, but there is a much more convenient way to
do this.

One nice property of the approach advocated above, namely breaking the computation into tiny
pieces, is that the implementation can be tested in tiny pieces. The tool for doing this is something
I will refer to as the derivative test. The test will take different forms depending on the type of
object being considered (scalar, vector, matrix, etc.) In its basic form, I compute both 𝑧 and 𝑧 ′. I can
test to see if this is right by using the definition of a derivative.

𝑧 (𝑥 + Δ𝑥) − 𝑧 (𝑥)
Δ𝑥

− 𝑧 ′(𝑥) = 𝑂 (Δ𝑥)

There are a couple ways of using this. One way is to do a refinement test to verify that convergence
is observed. This is in practice more than is required. It is often sufficient to verify that the error is
small. When doing so, this in not the best formula to use. Better is to do a central difference and
central average.

𝑧 (𝑥 + Δ𝑥) − 𝑧 (𝑥 − Δ𝑥)
2Δ𝑥

− 𝑧 ′(𝑥 + Δ𝑥) + 𝑧 ′(𝑥 − Δ𝑥)
2

= 𝑂 (Δ𝑥2)

There is now a much bigger separation between a passing score 𝑂 (Δ𝑥2) and a failing score 𝑂 (1).
When using this formula, it is best to do the test using Δ𝑥 ≈ 𝜖1/3, where 𝜖 is machine precision. This
is because one factor of Δ𝑥 is lost due to cancelation in the central difference, leaving two factors
of Δ𝑥 left to distinguish a passing and failing score. This test should always be done in double
precision, in which case I typically choose Δ𝑥 randomly in the interval [−𝛿, 𝛿], where 𝛿 = 10−6.
Note that an average is used for the derivative rather than a midpoint approximation, since this
way all computations are done at two locations; this is convenient since the value will often be
computed along with the derivatives.
When x is a vector, the perturbation 𝛿x is also a vector, whose entries are chosen uniformly in

the range [−𝛿, 𝛿]. The test must be altered somewhat, since division is no longer possible. Note
that the factor of 2 can be omitted.

𝑧 (x + Δx) − 𝑧 (x − Δx) − (∇𝑧 (x + Δx) + ∇𝑧 (x − Δx)) · 𝛿x = 𝑂 (𝛿3)

In practice, it is more convenient to keep failing scores at 𝑂 (1), so one would use

𝑧 (x + Δx) − 𝑧 (x − Δx) − (∇𝑧 (x + Δx) + ∇𝑧 (x − Δx)) · 𝛿x
𝛿

= 𝑂 (𝛿2)

If z(x) is a vector, then ∇z(x) is a matrix, and the test can be performed as

∥z(x + Δx) − z(x − Δx) − (∇z(x + Δx) + ∇z(x − Δx))𝛿x∥
𝛿

= 𝑂 (𝛿2)
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Any norm can be used; 𝐿2 or 𝐿∞ are reasonable choices. Other cases, such as where x or z are a
matrix are treated similarly. Note that if x is a matrix, one would design the test so that it behaved
the same as if x were instead flattened into a vector.

There are some other practical tips that can be used to improve the test. One of these is to print
out ∥z(x + Δx) − z(x − Δx)∥/𝛿 , ∥(∇z(x + Δx) + ∇z(x − Δx))𝛿x/2∥/𝛿 , and the relative error, which
is obtained by dividing the above error by the maximum of these quantities, while preventing the
denominator from being zero. This improves the test for a number of reasons. One is that it makes
the test invariant with respect to the absolute scale of z. Another is that it gives an idea of the
size of the quantities being computed; if they are very tiny, then they may actually be roundoff
approximations of zero, in which case the relative error will be huge, but the test should still be
considered as a pass. One more benefit is that the mistake of having the answer off by a simple
factor (usually being off by a sign) will be very obvious from the output.
Testing second derivatives is done in the same way; in this case, z will be the first derivatives,

and ∇z will be the Hessian.

Reverse mode vs forward mode. Derivative testing seems more natural in forward mode. The
inputs to the function are being differentiated with respect to throughout the calculations, which
makes it easy to do the derivative tests. But in fact, the technique works well in reverse mode or even
in arbitrary orders. All that is required to test 𝜕𝑦

𝜕𝑥
is the availability of two slightly different values

for 𝑥 , along with corresponding 𝑦 and 𝜕𝑦

𝜕𝑥
. These will be available even if 𝑥 and 𝑦 are intermediates

(unless of course 𝑥 does not depend on the inputs).

Pass or fail. Sometimes it can be difficult to distinguish between a passing result and a failing
result. A clever trick to help distinguish what is passing and what is a failing result that just
happens to be small in magnitude is to introduce an error deliberately. For example, multiply the
derivatives by 2. The result should obviously be failing, and the magnitude of the output will give
a sense for how large failing results should be. It is also a good idea to avoid testing derivatives
near configurations where the derivatives are not well-behaved, such as near a divide-by-zero
configuration. It is also important to make sure that exactly the same code path is taken in both
configurations; the derivative tests may fail if a collision is detected in one configuration but not
the other. Or if different numbers of conjugate gradient iterations are performed.

4.2 Getting it to work
The key to getting things to work is to perform derivative tests on the intermediates directly. I don’t
need to implement the entire thing, and then run derivative tests on 𝑓 vs 𝑓𝑢 or 𝑓𝑢 vs 𝑓𝑢𝑢 . Instead, I
test 𝑎𝑢 , 𝑏𝑢 , 𝑐𝑢 , 𝑑𝑢 , w𝑢 , and 𝑓𝑢 in sequence (or indeed run the derivative test on all of them at the
same time). At each step, I know that the inputs are being computed correctly (they were already
tested). The first result that is failing will be a very tiny expression that is very easily fixed on
inspection. Thus, I can fix the derivatives in small digestible pieces. The second derivatives are the
same way. I can test 𝑎𝑢𝑢 , 𝑏𝑢𝑢 , 𝑐𝑢𝑢 , 𝑑𝑢𝑢 , and 𝑓𝑢𝑢 in sequence. In this case, however, we lack a simple
way to test w𝑢𝑢 . A simple solution to this is to implement rank-3 tensors as a type and compute
w𝑢𝑢 directly, verifying that it is correct, then testing z against w ·w𝑢𝑢 .

Although these things are easiest to write and test in a separate standalone setting, these tests
can often be performed even from within a complex system. All that is needed is to arrange for the
routines that compute the derivatives to be called with two slightly different inputs. The first set of
values can be stored in global variables until the second call is made, at which point the test can be
performed and the results printed.
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4.3 Optimizing it
Optimizing derivatives should start before any code is written. It is often very helpful to simplify
the function we are differentiating before actually computing the derivatives. Differentiating simple
expressions can make the process far easier. It will be a lot easier to start with simplified expressions
than to optimize it afterwards with the derivatives. Next, we can break the computation into lots of
tiny intermediate steps and work out the dependency graph (as we did in Figure 2). This will make
it easier to identify bottlenecks in the computation, and it can also help us to choose an ordering
for our derivative calculations. A good compromise is to identify bottlenecks and then compute
the derivatives from one bottleneck to the next using forward differentiation. Then, combine the
remaining derivatives at the end.
The straightforward implementation is often not the most efficient. For example, derivatives

might be constant or even zero. We might end up multiplying by identity matrices. Once everything
is working, we can be more flexible about intermediates. The result can still be tested by running
the numerical derivative test on the final result or by comparing directly against the unoptimized
but working version. The strategy is to perform optimizations in small steps, testing the results
after each small change. In this way, we can have routines that work and are efficient, too.

4.4 Numerical difficulties
Numerical difficulties tend to occur when working with derivatives. The types of difficulties that
may arise can be illustrated even with simple function 𝑦 = ∥x∥. Letting u = x

∥x∥ , we have
𝜕𝑦

𝜕x = u

and 𝜕2𝑦
𝜕x𝜕x = 1

𝑦
(I − uu𝑇 ).

Computing 𝑦 when x ≈ 0 may lead to underflow, since 𝑤2 may underflow to zero in floating
point even when 𝑤 can be represented. Similarly, overflow may occur, where 𝑤2 overflows to
infinity even though𝑤 can be represented. We will ignore these difficulties in this course. Overflow
can be avoided by choosing units that keep numbers on the order of one. Even with this, stiffnesses
may be 106, and time step sizes may be 10−5, but calculations on numbers at this scale are unlikely
to overflow. Similarly, if a number like 10−30 is computed, it is likely zero with roundoff error. In
this case, underflowing to zero may be fine.

The calculation of 𝜕𝑦

𝜕x = u = x
∥x∥ brings up more serious issues. The most obvious is that if x = 0,

we will divide by zero. Although it may seem tempting to let u = 0 in this case, that is a bad idea. It
breaks the invariant that ∥u∥ = 1. Instead, it is better to select something like u = ⟨1, 0, 0⟩. In this
way, one may imagine that the input was perturbed due to roundoff error to ⟨𝜖, 0, 0⟩ and normalized
correctly. The next complication is that the values of u vary wildly when x ≈ 0. This difficulty is
mathematical, in the sense that the difficulty exists analytically and is not merely an artifact of
floating point or the way in which it is computed. Difficulties of this nature must be lived with; we
can do nothing to fix them since they aren’t broken. With care, we can ensure that all components
of u are no larger than 1 in magnitude and that ∥u∥ ≈ 1. In spite of these difficulties, we will say
that u can be (and should be) robustly computed.

The calculation of 𝜕2𝑦
𝜕x𝜕x presents the first major problems. With the robust computation of u, the

computation of I − uu𝑇 poses no problems. However, scaling it by 1
𝑦
may result in an unbounded

result. This difficulty is mathematical, in the sense that 𝜕2𝑦
𝜕x𝜕x is really unbounded in the neighborhood

of zero. In this case, one may choose to calculate the derivative as infinity or clamp the magnitude
of the derivatives to avoid overflow to infinity. Avoiding the infinity may be preferable, since some
calculations with infinity may lead to NaNs. Calculating 1

𝑦
(I−uu𝑇 ) is preferable to 1

𝑦3 (I∥x∥2−xx𝑇 ),
since in the first case at least two factors of 𝑦 have been handled robustly.
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When handling numerical difficulties, it is helpful to first determine whether the difficulty is
mathematical or numerical. If the derivatives are analytically bounded, then it should be possible
to arrange the calculations in a way that avoids computing unbounded quantities. For example,
consider the function 𝑦 = cos ∥x∥. Broken up into pieces, we have𝑤 = ∥x∥ and 𝑦 = cos𝑤 . Then,

𝑤 = ∥x∥ u =
x
𝑤

𝑤 ′ = u · x′ u′ =
1
𝑤
(x′ − u𝑤 ′) 𝑤 ′′ = u′ · x′ + u · x′′

𝑦 = cos𝑤 𝑦 ′ = −(sin𝑤)𝑤 ′ 𝑦 ′′ = −(cos𝑤) (𝑤 ′)2 − (sin𝑤)𝑤 ′′

In this case, we see two divisions by𝑤 , which could be zero or nearly zero. The computation of u,
as noted above, can be done robustly. The computation of u′ may be unbounded. This in turn may
cause𝑤 ′′ to be unbounded. But we see that𝑤 ′′ only comes into our calculation of 𝑦 ′′ multiplied
by sin𝑤 , which goes to zero as 𝑤 ′′ diverges. This suggests delaying the division by 𝑤 with the
assignments p = 𝑤u′ = x′ − u𝑤 ′ and 𝑞 = 𝑤𝑤 ′′ = p · x′ + x · x′′. The new computation is

𝑤 = ∥x∥ u =
x
𝑤

𝑤 ′ = u · x′ p = x′ − u𝑤 ′ 𝑞 = p · x′ + x · x′′

𝑦 = cos𝑤 𝑦 ′ = −(sin𝑤)𝑤 ′ 𝑦 ′′ = −(cos𝑤) (𝑤 ′)2 − sin𝑤
𝑤

𝑞

This computation is robust, since sin𝑤
𝑤

can be computed robustly. These difficulties are best handled
after the derivatives already work in the general case. They can be fixed in small steps as we do for
optimizations.

4.5 Implicit differentiation
Occasionally, a the quantity that must be differentiated cannot be computed using arithmetic
or elementary functions. For example, the quantity of interest may be the root of a polynomial
of degree three of higher. (Cubic and quartic polynomials can be solved in closed form, but the
formulas are not numerically robust. It is generally better to solve these iteratively. Whether
the appropriate root is computed iteratively or in closed form, the derivatives should always be
computed implicitly.) In this case, it is often necessary to employ implicit differentiation.
Implicit differentiation is used when some quantity 𝑦 is defined implicitly in terms of some

other quantity 𝑥 as 𝑓 (𝑥,𝑦) = 0. Differentiating both sides of the equation with respect to 𝑥 yields
𝑓𝑥 (𝑥,𝑦) + 𝑓𝑦 (𝑥,𝑦)𝑦 ′ = 0, which can be solved for 𝑦 ′. The second derivative is (𝑓𝑦𝑦𝑦 ′ + 2𝑓𝑥𝑦)𝑦 ′ +
𝑓𝑥𝑥 + 𝑓𝑦𝑦 ′′ = 0. From these, 𝑦 ′ and 𝑦 ′′ can be computed as

𝑦 ′ = − 𝑓𝑥
𝑓𝑦

𝑦 ′′ = −
(𝑓𝑦𝑦𝑦 ′ + 2𝑓𝑥𝑦)𝑦 ′ + 𝑓𝑥𝑥

𝑓𝑦
.

Note that numerical difficulties may occur if 𝑓𝑦 ≈ 0. It is convenient that implicit differentiation
is quite inexpensive. The calculation of 𝑦 may be relatively expensive and may involve iterative
root-finding techniques. By contrast, the calculations of 𝑦 ′ and 𝑦 ′′ only involve basic arithmetic.
The same procedure can be applied with vector quantities. For example, if x and y are vectors,

then y may be defined by f (x, y) = 0. The function f and unknown y should have the same
dimensions, since we need the same number of equations as unknowns. The quantity that in the
scalar case was 𝑓𝑦𝑦 will become a rank-three tensor in the vector case, so I will use indexed tensor
notation. I will need to distinguish between 𝑓𝑥 and 𝑓𝑦 , which I will do by using 𝑓𝑖,𝑟 and 𝑓𝑖, [𝑠 ] to
represent the derivatives 𝜕𝑓𝑖

𝜕𝑥𝑟
and 𝜕𝑓𝑖

𝜕𝑦𝑠
(using square brackets to indicate that the derivative is with
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respect to the second argument). Let𝑀𝑖 𝑗 be the inverse of 𝑓𝑖, [𝑘 ] so that𝑀 𝑗𝑖 𝑓𝑖, [𝑘 ] = 𝛿 𝑗𝑘 .

0 = 𝑓𝑖

0 = 𝑓𝑖,𝑟 + 𝑓𝑖, [𝑘 ]𝑦𝑘,𝑟 =⇒ 𝑦 𝑗,𝑟 = −𝑀 𝑗𝑖 𝑓𝑖,𝑟

0 = 𝑓𝑖,𝑟𝑠 + 𝑓𝑖,𝑟 [𝑘 ]𝑦𝑘,𝑠 + 𝑓𝑖, [𝑘 ]𝑠𝑦𝑘,𝑟 + 𝑓𝑖, [𝑘 ] [𝑚]𝑦𝑘,𝑟𝑦𝑚,𝑠 + 𝑓𝑖, [𝑘 ]𝑦𝑘,𝑟𝑠
𝑦 𝑗,𝑟𝑠 = −𝑀 𝑗𝑖 (𝑓𝑖,𝑟𝑠 + 𝑓𝑖,𝑟 [𝑘 ]𝑦𝑘,𝑠 + 𝑓𝑖, [𝑘 ]𝑠𝑦𝑘,𝑟 + 𝑓𝑖, [𝑘 ] [𝑚]𝑦𝑘,𝑟𝑦𝑚,𝑠 )

As in the scalar case, numerical difficulties may occur if𝑀𝑖 𝑗 is not invertible.
Implicit differentiation is also a useful way to derive differentiation rules. For example, dif-

ferentiating ∥x∥2 = x · x yields 2∥x∥ 𝑑
𝑑𝑡
∥x∥ = 2x · x′, which can be solved to recover the rule

𝑑
𝑑𝑡
∥x∥ = x

∥x∥ · x
′.

4.6 Differentiating the function or the algorithm
There is a subtle but very important distinction to be made between differentiating the result of a
function and differentiating the algorithm used to compute that function. For example, consider the
example A = F−1, where the matrix A(𝑡) is defined as a function of the time-varying matrix F(𝑡).
One way to compute compute A′ from F′ would be to write out the algorithm used to compute the
inverse (for example, Gaussian elimination) as a sequence of simple arithmetic computations and
then differentiate those computations to construct the result. In this case, the derivative can be
obtained in closed form using implicit differentiation (by differentiatingAF = I toA′F+AF′ = 0 and
solving for F′ = −FA′F.) When possible, one should always differentiate the function. In particular,
the function and the numerical routine used to compute it may have very different derivatives. This
is especially true when the algorithm must make choices (such as pivoting for Gaussian elimination)
or when the algorithm is iterative (such as for computing the roots of a polynomial). In other cases,
especially when the output is not otherwise uniquely determined (such as the QR decomposition),
differentiating the algorithm may be necessary.

4.7 Derivative-vector products

Certain derivative products such as ∇𝑓 ·u, (∇v)u and
(
𝜕2 𝑓
𝜕x𝜕x

)
uwarrant special consideration. These

combinations occur in practical applications and are often referred to as directional derivatives.
It is generally more efficient to compute them as a unit than by forming the derivative and then
performing the product.
We can see the difference on a simple example, where I will compute 𝑔 = ∇𝑓 · w in forward

mode using the ideas we have seen so far.

𝑎 = u · x v = x − 1
𝑎
u 𝑐 = ∥v∥ 𝑓 = sin 𝑐

𝜕𝑎

𝜕x
= u

𝜕v
𝜕x

= I + 1
𝑎2

u
(
𝜕𝑎

𝜕x

)𝑇
𝜕𝑐

𝜕x
=

(
𝜕v
𝜕x

)𝑇 v
𝑐

𝜕𝑓

𝜕x
= (cos 𝑐) 𝜕𝑐

𝜕x
𝑔 =

𝜕𝑓

𝜕x
·w

We see that where the original function had scalars and vectors the derivatives now have vectors
and matrices. If x has 𝑛 entries, then the derivative computation is about 𝑂 (𝑛) times the cost of
evaluating the function. We can actually introduce the dot product with w earlier through the
computation, which gives us

𝜕𝑎

𝜕x
·w = u ·w 𝜕v

𝜕x
·w = w + 1

𝑎2
u
(
𝜕𝑎

𝜕x
·w

)𝑇
𝜕𝑐

𝜕x
·w =

(
𝜕v
𝜕x
·w

)𝑇 v
𝑐

𝑔 =
𝜕𝑓

𝜕x
·w = (cos 𝑐) 𝜕𝑐

𝜕x
·w
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Next, let’s define the notation 𝛿𝑎 = 𝜕𝑎
𝜕x ·w. With this notation, we are trying to compute 𝑔 = 𝛿 𝑓 .

𝛿𝑎 = u ·w 𝛿v = w + 𝛿𝑎
𝑎2

u 𝛿𝑐 =
v · 𝛿v
𝑐

𝑔 = 𝛿 𝑓 = (cos 𝑐)𝛿𝑐

Note that 𝛿𝑎 is a scalar just like 𝑎, and 𝛿v is a vector just like v. The cost of performing the
computation this way comparable to the cost of computing the original function. In this case, we
could have achieved a comparable cost by using reverse mode differentiation. In the case (∇v)u, the
forward mode and reverse mode computations of ∇v are comparable in cost and will be𝑂 (𝑛) times
the cost of computing v(x). The directional derivative strategy, however, has a cost comparable to
computing v(x).
Next, let’s turn out attention to Hessian-vector products

(
𝜕2 𝑓
𝜕x𝜕x

)
u, which are a particularly

important case. When optimizing an objective with many variables (say 𝑛), the gradient has 𝑂 (𝑛)
entries, and the Hessian has 𝑂 (𝑛2) entries. In some applications (especially physics), the Hessian
is frequently sparse, which allows the Hessian to be formed explicitly. In other applications such
as machine learning, the Hessian will tend to be dense. If 𝑛 is large, formation and storage of the
Hessian may be prohibitive. If the Hessian is being used for Newton’s method with conjugate
gradient (or another Krylov method) as a linear solver, then the Hessian will only be used to
compute matrix-vector products.

Efficient Hessian-vector products can be computed by (1) writing a function that calculates the
gradient 𝜕𝑓

𝜕x using reverse mode and then (2) computing the directional derivative of routine (1)
using forward mode as outlined above. The cost of computing 𝜕𝑓

𝜕x in reverse mode is similar to the
cost of computing 𝑓 itself. The cost of computing the directional derivative

(
𝜕2 𝑓
𝜕x𝜕x

)
u in forward

mode is comparable to the cost of computing 𝜕𝑓

𝜕x . Thus, we have Hessian-vector products at a
cost comparable to computing 𝑓 . There is no need to form or store the Hessian, and the cost is
independent of the sparsity of the Hessian.

5 DIFFERENTIATING MATRIX FACTORIZATIONS
In constitutive modeling, two matrix factorizations occur frequently enough to merit special consid-
eration: the symmetric eigenvalue decomposition S = U𝚲U−1 and the singular value decomposition
F = U𝚺V𝑇 . We will be interested in differentiating quantities defined in terms of the eigenvalues 𝚲
or singular values 𝚺 with respect to the original matrix S or F. We will present the formulas for
reference and explain how to use them, but we will not derive them (See [Stomakhin et al. 2012]
and the technical document that accompanies it).

5.1 Differentiating singular values
When dealing with hyperelastic isotropic constitutive models, it is not uncommon to define the
energy density𝜓 (F) in terms of the singular values,𝜓 (𝚺), where F = U𝚺V𝑇 . What is often needed
is derivatives like 𝜕𝜓

𝜕F , but what is available is
𝜕𝜓

𝜕𝚺
. For example, the popular corotated constitutive

model is conveniently defined in terms of singular values as

𝜓 (𝜎1, 𝜎2, 𝜎3) = 𝜇 ((𝜎1 − 1)2 + (𝜎2 − 1)2 + (𝜎3 − 1)2) +
𝜆

2
(𝜎1 + 𝜎2 + 𝜎3 − 3)2.

The derivatives 𝜕𝜓

𝜕𝚺
are easy to compute; this function is a degree-two polynomial.

Depending on how the function relates to its diagonal space version, the full derivatives can often
be conveniently obtained directly from the diagonal space version. The table below summarizes
many of these. Note that for the table below, the computations in the right are done assuming the
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diagonal matrices are treated as vectors. The following intermediates are used (no summation is
implied):

𝑎𝑖𝑘 =
𝜓,𝑖 −𝜓,𝑘

𝜎𝑖 − 𝜎𝑘
𝑏𝑖𝑘 =

𝜓,𝑖 +𝜓,𝑘

𝜎𝑖 + 𝜎𝑘
𝑓𝑖𝑘 =

𝐴𝑖 −𝐴𝑘

𝜎𝑖 − 𝜎𝑘
𝑔𝑖𝑘 =

𝐴𝑖 +𝐴𝑘

𝜎𝑖 + 𝜎𝑘
ℎ𝑖𝑘 =

𝐴𝑖 −𝐴𝑘

𝜎𝑖 + 𝜎𝑘

In each case, we compute the desired derivatives in three steps. (1) Compute the intermediates. (2)
Compute the diagonal space version of the desired result (𝑇𝑖 𝑗 or 𝑇𝑖 𝑗𝑘𝑙 ) using the fourth column of
the table. (3) Transform the diagonal space quantity into regular space to get the desired result (𝑇𝑖 𝑗
or 𝑇𝑖 𝑗𝑘𝑙 ) using the third column of the table.

Expression Want Relation to diagonal Nonzero entries (no summation)

𝜓 (F) = 𝜓 (𝚺) T =
𝜕𝜓

𝜕F
𝑇𝑖 𝑗 = 𝑇𝑚𝑛𝑈𝑖𝑚𝑉𝑗𝑛 𝑇𝑖𝑖 = 𝜓,𝑖

𝜓 (F) = 𝜓 (𝚺) T =
𝜕2𝜓

𝜕F2
𝑇𝑖 𝑗𝑘𝑙 = 𝑇𝑚𝑛𝑟𝑠𝑈𝑖𝑚𝑉𝑗𝑛𝑈𝑘𝑟𝑉𝑙𝑠

𝑇𝑖𝑖𝑘𝑘 = 𝜓,𝑖𝑘

𝑇𝑖𝑘𝑖𝑘 =
𝑎𝑖𝑘 + 𝑏𝑖𝑘

2
, 𝑖 ≠ 𝑘

𝑇𝑖𝑘𝑘𝑖 =
𝑎𝑖𝑘 − 𝑏𝑖𝑘

2
, 𝑖 ≠ 𝑘

A(F) = UÂ(𝚺)V𝑇 T =
𝜕A
𝜕F

𝑇𝑖 𝑗𝑘𝑙 = 𝑇𝑚𝑛𝑟𝑠𝑈𝑖𝑚𝑉𝑗𝑛𝑈𝑘𝑟𝑉𝑙𝑠

𝑇𝑖𝑖𝑘𝑘 = 𝐴𝑖,𝑘

𝑇𝑖𝑘𝑖𝑘 =
𝑓𝑖𝑘 + 𝑔𝑖𝑘

2
, 𝑖 ≠ 𝑘

𝑇𝑖𝑘𝑘𝑖 =
𝑓𝑖𝑘 − 𝑔𝑖𝑘

2
, 𝑖 ≠ 𝑘

A(F) = UÂ(𝚺)U𝑇 T =
𝜕A
𝜕F

𝑇𝑖 𝑗𝑘𝑙 = 𝑇𝑚𝑛𝑟𝑠𝑈𝑖𝑚𝑈 𝑗𝑛𝑈𝑘𝑟𝑉𝑙𝑠

𝑇𝑖𝑖𝑘𝑘 = 𝐴𝑖,𝑘

𝑇𝑖𝑘𝑖𝑘 =
𝑓𝑖𝑘 − ℎ𝑖𝑘

2
, 𝑖 ≠ 𝑘

𝑇𝑖𝑘𝑘𝑖 =
𝑓𝑖𝑘 + ℎ𝑖𝑘

2
, 𝑖 ≠ 𝑘

A(F) = VÂ(𝚺)V𝑇 T =
𝜕A
𝜕F

𝑇𝑖 𝑗𝑘𝑙 = 𝑇𝑚𝑛𝑟𝑠𝑉𝑖𝑚𝑉𝑗𝑛𝑈𝑘𝑟𝑉𝑙𝑠

𝑇𝑖𝑖𝑘𝑘 = 𝐴𝑖,𝑘

𝑇𝑖𝑘𝑖𝑘 =
𝑓𝑖𝑘 + ℎ𝑖𝑘

2
, 𝑖 ≠ 𝑘

𝑇𝑖𝑘𝑘𝑖 =
𝑓𝑖𝑘 − ℎ𝑖𝑘

2
, 𝑖 ≠ 𝑘

The table has two types of entries. The first two rows have a scalar function defined in terms
of the eigenvalues 𝜓 (F) = 𝜓 (𝚺). We want to compute the derivatives 𝜕𝜓

𝜕F (a matrix) and 𝜕2𝜓
𝜕F2 (a

rank-four tensor).
The last three rows consider quantities of the form UÂV𝑇 , UÂU𝑇 , or VÂV𝑇 . This is a general-

ization of the Hessian rule, and derivatives of this form are sometimes encountered. Here, Â(𝚺)
is a diagonal matrix. We will sometimes treat the diagonal matrix Â as the vector containing its
diagonal entries (such as when we write 𝐴𝑘 ). The use of quantities as vectors or matrices can be
deduced from context.

Note that there are many other variations that could we written down, such as A(F) = UÂ(𝚺)U
or A(F) = Â(𝚺)V𝑇 . These forms do not have physically meaningful transformation properties. As
such, they are very unlikely to be encountered, and their derivatives are unlikely to take on nice
forms.
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5.2 Differentiating eigenvalues
Let S be a symmetric matrix and S = U𝚲U−1 its eigenvalue decomposition. We can always compute
U to be an orthogonal matrix, and we will assume this has been done. Then, U−1 = U𝑇 . This gives
us S = U𝚲U𝑇 . We can define a scalar function 𝜓 (S) in terms of the singular values as 𝜓 (𝚲). The
eigenvalue decomposition case can be treated as a special case of the singular value decomposition,
and the differentiation formulas are similar. The intermediates we use are

𝑎𝑖𝑘 =
𝜓,𝑖 −𝜓,𝑘

𝜆𝑖 − 𝜆𝑘
𝑓𝑖𝑘 =

𝐴𝑖 −𝐴𝑘

𝜆𝑖 − 𝜆𝑘
.

The corresponding derivative rules are given by the table below. The rules are used in the same
way as the rules for the singular value decomposition.

Expression Want Relation to diagonal Nonzero entries (no summation)

𝜓 (S) = 𝜓 (𝚲) T =
𝜕𝜓

𝜕S
𝑇𝑖 𝑗 = 𝑇𝑚𝑛𝑈𝑖𝑚𝑈 𝑗𝑛 𝑇𝑖𝑖 = 𝜓,𝑖

𝜓 (S) = 𝜓 (𝚲) T =
𝜕2𝜓

𝜕S2
𝑇𝑖 𝑗𝑘𝑙 = 𝑇𝑚𝑛𝑟𝑠𝑈𝑖𝑚𝑈 𝑗𝑛𝑈𝑘𝑟𝑈𝑙𝑠

𝑇𝑖𝑖𝑘𝑘 = 𝜓,𝑖𝑘

𝑇𝑖𝑘𝑖𝑘 = 𝑇𝑖𝑘𝑘𝑖 = 𝑎𝑖𝑘 , 𝑖 ≠ 𝑘

A(S) = UÂ(𝚲)U𝑇 T =
𝜕A
𝜕S

𝑇𝑖 𝑗𝑘𝑙 = 𝑇𝑚𝑛𝑟𝑠𝑈𝑖𝑚𝑈 𝑗𝑛𝑈𝑘𝑟𝑈𝑙𝑠

𝑇𝑖𝑖𝑘𝑘 = 𝐴𝑖,𝑘

𝑇𝑖𝑘𝑖𝑘 = 𝑇𝑖𝑘𝑘𝑖 = 𝑓𝑖𝑘 , 𝑖 ≠ 𝑘

6 DIFFERENTIATING OTHER SPECIAL CASES
Besides matrix factorizations, there are also other operations that must sometimes be differentiated.

6.1 Rotations
One operation that is encountered (especially with rigid bodies) is rotation of vectors. Let v be the
vector obtained when u is rotated about the axis z by the angle 𝜃 = ∥z∥. Here, z is a rotation vector
representation for a rotation. This occurs naturally when considering rigid bodies. For example, if
we consider the effect of allowing an object to rotate with angular velocity 𝝎 for time Δ𝑡 . In this
case, z = Δ𝑡𝝎.
Let’s denote the rotation operation as

v = R(z)u.

Here, R(z) represents the rotation matrix representation of z. In practice, R(z) might not be
computed directly. For example, z might be used to form a quaternion, which is then used to
perform the rotation. The derivative 𝜕v

𝜕u = R(z) is straightforward, since it is simply the rotation
itself. The derivative 𝜕v

𝜕z is more interesting.
There are a few algorithms for computing v from z and u, which become candidates for computing

the derivative. (1) Convert z to a quaternion, which is used to perform the rotation. The formulas
used to do this are straightforward to differentiate. (2) The rotation matrix can be computed from
R(z) = 𝑒z

∗ using an algorithm for matrix exponentiation. Since z∗ is skew-symmetric, it is always
diagonalizable (its eigenvalues are 0 and i∥z∥). The eigenvectors are also simple enough to write
down directly. This procedure may then be differentiated. (3) The rotation is given by Rodrigues’
rotation formula

v = u cos𝜃 + (ẑ × u) sin𝜃 + ẑ(ẑ · u) (1 − cos𝜃 ) 𝜃 = ∥z∥ ẑ =
z
∥z∥ .

Of these, option (3) is by far the simplest and is straightforward to differentiate. In particular, since
Rodrigues’ rotation formula involves scalars and vectors only, no tensors are required. Note that
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𝜕R(z)
𝜕z is a tensor; although it can be computed from Rodrigues’ rotation formula, it is simpler and

more efficient to treat the rotation of a vector as a single operation.

6.2 Differentiating numerical simulations
Over the last several years, there have been a significant increase in the interest in differentiable
simulation. One common application of this is finding optimal values of a set of input parameters
such that the result of the simulation minimizes some objective function 𝐸. If the goal is to make an
actuated creature walk, the objective might be to maximize the 𝑥 component of the center of mass
after a fixed period of time 𝑇 (i.e., make as much progress as possible). The free parameters might
be the coefficients of some periodic actuation curves. Alternatively, the actuation curves might be
fixed but the geometry or material properties may be varied instead. Computing the gradient of the
objective function with respect to the input parameters allows standard optimization procedures
such as gradient descent to be employed.

The main additional complicating factor for differentiable simulation is the number of intermedi-
ate computations performed. For example, we might be performing 𝑁 steps of backward Euler on
a deforming object with 𝐷 degrees of freedom. This gives us an update rule of the form

x𝑛+1 = x𝑛 + Δ𝑡v𝑛+1 v𝑛+1 = v𝑛 + Δ𝑡M−1f (x𝑛+1),
where x𝑛 and v𝑛 are vectors with 𝐷 entries. At each step, we must solve a nonlinear system of
equations (perhaps with Newton’s method) to compute x𝑛+1 and v𝑛+1. (To give a scale, 𝑁 might be
on the order of 100 and 𝐷 might be on the order of 1000.) With this, the cost of the simulation is
then 𝑂 (𝑁𝐷) assuming the nonlinear problem can be solved in linear time (in practice it will be
somewhat slower than that, but this does not matter here).
If the number of parameters is relatively small, then this task can largely be achieved with the

ideas we have already seen. We simply perform forward mode differentiation on the routines used
to perform a time step. Recall that we compute the derivative of backward Euler using implicit
differentiation, which is likely to be cheaper than the cost of computing the backward Euler step
itself. If we have 𝑃 parameters, the cost to get the derivatives along with the simulation is𝑂 (𝑁𝐷𝑃).
When 𝑃 is small, this is comparable in cost to the simulation. Optimizing the objective will require
many simulations and derivatives, which limits the feasible size of the simulation, but the idea is
quite practical.
If the number of parameters is large, things are different. For example, the parameters might

be the stiffness of every element in the mesh or the initial velocity of each vertex. In this case,
𝑃 = 𝑂 (𝐷), and the entire idea of using forward mode differentiation rapidly becomes infeasible. We
have 𝑃 inputs and just one output 𝐸 (the objective). This suggests using reverse mode differentiation,
but here we run into a major complication. When we perform the simulation, we compute lots
of intermediates x𝑛 . In each time step, we compute a new state x𝑛+1 and discard the previous
state x𝑛 , which keeps the total memory size small. However, if we wish to perform reverse mode
differentiation, we need to keep all of the intermediate computations. This includes not only the x𝑛
but also all of the intermediate computations that occurred during the time step. For any practical
simulation, this will require far too much memory to be feasible.

Let’s take a step back and look a bit at how the reverse mode differentiation will work. We start
by computing 𝜕𝐸

𝜕x𝑁 , which amounts to differentiating the objective function. (We will assume 𝐸 is
purely a function of the final state, but it is only a minor complication if it is not.) From this, we trace
backwards through the computations eventually computing 𝜕𝐸

𝜕x𝑁−1 ,
𝜕𝐸

𝜕x𝑁−2 , . . . ,
𝜕𝐸
𝜕x0 . The intermediates

that were computed during time step x𝑛 → x𝑛+1 are only needed when computing 𝜕𝐸
𝜕x𝑛 from 𝜕𝐸

𝜕x𝑛+1 .
This means we can throw away all of the intermediates except for the states x0, . . . , x𝑁 . During the
reverse mode differentiation pass, we simply re-compute the time step to obtain the intermediates
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needed to propagate the derivatives back across the time step. By doing this we effectively perform
the entire simulation twice, but we save an enormous amount of memory (and time).
If the state is large and there are many time steps, then it may not even be feasible to store

all of the states x0, . . . , x𝑁 . Lets assume that 𝑁 = 𝑎𝑏. Instead of storing all of the states, we will
only store x0, x𝑎, x2𝑎, . . . , x𝑎 (𝑏−1) , x𝑎𝑏 during the original simulation. During the reverse mode
differentiation pass, we propagate the derivatives from state x(𝑟+1)𝑎 to x𝑟𝑎 by re-simulating to
get x𝑟𝑎+1, x𝑟𝑎+2, . . . , x(𝑟+1)𝑎−1. Then, we can propagate the derivatives as before. With this strategy,
we end up performing the full simulation three times: once for the original computation, once to
fill in the states that we discarded in the original computation, and once more to propagate the
derivatives. The memory required is reduced from 𝑂 (𝑁𝐷) to 𝑂 ((𝑎 + 𝑏)𝐷). This is optimized when
𝑎 = 𝑏 =

√
𝑁 . If we are willing to simulate a fourth time, we can reduce the memory requirements to

𝑂 (𝑁 1/3𝐷), and so on. In the extreme case, we perform lg𝑁 + 1 full simulations and use 𝑂 (𝐷 lg𝑁 )
space.

7 AUTOMATIC DIFFERENTIATION
Although much of this course has focused on manually writing code for calculating derivatives,
there are many tools available to compute them automatically. These techniques are called automatic
differentiation.

Automatic differentiation strategies differ in the mode of differentiation (usually forward mode
or reverse mode) and the time when the derivatives are computed (code generation, compile time,
or runtime). We have already seen forward mode and reverse mode differentiation; we explored
these when choosing an effient strategy for calculating derivatives. Depending on when and how
automatic differentiation is performed, the same tradeoffs may be available. We begin by exploring
options for when automatic differentiation can be performed.

7.1 Compile time
One particularly simple way to implement automatic differentiation is using operator overloading.
This strategy is particularly appealing in languages like C++ which have native support operator
overloading. This is done by creating a custom structure type (Diff_TT below; I am using the two
letters to indicate the type of quantity that is being computed and what type of object it is being
differentiated with respect to) that contains the value being computed as well as its derivatives. For
example,

struct Diff_TT

{

double x, dx;

Diff_TT () {}

Diff_TT(double y) : x(y), dx(0) {}

Diff_TT(double y, double dy) : x(y), dx(dy) {}

};

Diff_TT operator+ (const Diff_TT& a, const Diff_TT& b)

{

Diff_TT r = {a.x + b.x, a.dx + b.dx};

return r;

}
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Diff_TT operator* (const Diff_TT& a, const Diff_TT& b)

{

Diff_TT r = {a.x * b.x, a.dx * b.x + a.x * b.dx};

return r;

}

Diff_TT sin(const Diff_TT& a)

{

Diff_TT r = {sin(a.x), cos(a.x) * a.dx};

return r;

}

// and so on ...

This class might be used to implement a routine to calculate a function like 𝑓 (𝑥) = (𝑥2 + 2𝑥 +
3) sin(𝑥 + 1) and its derivative.

void Compute_Derivatives(double x, double & f, double & df)

{

Diff_TT y = {x, 1};

Diff_TT w = (y * y + y * 2 + 3) * sin(y + 1);

f = w.x;

df = w.dx;

}

This strategy is intuitive, easy to implement, and easy to use. The code that must be written
often looks nearly the same as the code that would have been written to just compute the function
alone. Once the result is computed, the derivatives are available as well. With inlining, all of the
calculations are available for compiler optimization. For example, the code above results in addition
of zero or multiplication by zero or one in several places. These routines can be improved by creating
overloads for mixtures of scalars and derivative types which avoid generating these unnecessary
operations.

This strategy is also rather flexible. Second derivatives can be handled by storing second deriva-
tives in the structure and adding suitable differentiation rules to the overloaded operators and
functions. Similar structures Diff_VT and Diff_MT can be defined for vectors and matrices being
differentiated by a scalar. One may then provide overloads for routines like matrix-vector multi-
plication and dot product. Differentiation with respect to vectors and matrices can be handled by
storing derivatives of the correct type. For example, we might create types Diff_TV and Diff_VV
for storing the derivative of a scalar or a vector with respect to another vector. These structures
might look like the following.

template <int n>

struct diff_TV

{

double x;

fixed_size_vector <n> dx;

};
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template <int m,int n>

struct Diff_VV

{

fixed_size_vector <m> x;

fixed_size_matrix <m,n> dx;

};

template <int m,int n>

Diff_TV <n> dot(const Diff_VV <m,n>& a, const Diff_VV <m,n>& b)

{

Diff_TV <n> r = {dot(a.x, b.x), a.dx.t() * b.x + b.dx.t() * a.x};

return r;

}

Observe that the size of dx scales with the number of inputs that must be differentiated with
respect to. The cost of computing those entries will grow with the storage. When Hessians (ddx) are
required, the storage and computational costs grow even quicker. The convenience and efficiency
of this strategy break down when computing derivatives with respect to multiple different inputs.
Note also that this strategy is mostly restricted to forward mode differentiation.
Reverse mode differentiation is possible in a compile-time implementation through the use of

expression templates in C++. The technique is significantly more complex than the simple strategy
described above and largely amounts to recording the operations that were used to compute a
quantity as part of the type of that quantity (e.g., for 𝑧 = 3𝑥2+cos𝑦, the type of 𝑧 might be something
like Add<Scale<Square<Var<0> > >, Cos<Var<1> > >). Special member functions in each of
these helper classes are then used to recurse back through the operations to perform the reverse
mode gradient calculations. We do not pursue this strategy further in this course. Instead, we refer
the interested reader to [Hogan 2014].

7.2 Runtime
An alternative strategy for automatically computing derivatives is to do so at runtime. As code is
executed (E.g., z = x * y + x * 2 + 3), a list of operations can be recorded dynamically (with
𝑣0 = 𝑥, 𝑣1 = 𝑦 and the result 𝑧 = 𝑡3):
out op in0 in1
𝑡0 ∗ 𝑣0 𝑣1
𝑡1 ∗ 𝑣0 2
𝑡2 + 𝑡0 𝑡1
𝑡3 + 𝑡2 3

Rather than defining overloaded operators to compute derivatives on the fly, the operators can
instead add an entry to a list indicating the inputs and operation that should be performed. This
creates a dynamic representation of the function that can be manipulated by the program. The
value or derivatives can be computed from this representation. Since the entire function is available
before derivatives are computed, it is possible to calculate them using forward mode or reverse
mode.

To do forward mode, one simply walks the list. Since derivatives are required with respect to two
inputs in this example (𝑣0 = 𝑥 and 𝑣1 = 𝑦), we would store the value 𝑡𝑘 and both partial derivatives
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𝜕𝑡𝑘
𝜕𝑣0

and 𝜕𝑡𝑘
𝜕𝑣1

at each step in the calculation in much the same way that we did in the compile-time
approach.
It is also straightforward to compute the derivatives in reverse mode by walking the list of

operations backwards. First, the intermediates values 𝑡0, 𝑡1, 𝑡2, 𝑡3 are computed as usual. Then, in a
reverse pass, we compute derivatives. For the 𝑡3 operation, we compute 𝜕𝑡3

𝜕𝑡2
. For the 𝑡2 operation, we

compute 𝜕𝑡3
𝜕𝑡0

and 𝜕𝑡3
𝜕𝑡1

. For the 𝑡1 operation, we compute 𝜕𝑡3
𝜕𝑣0

. Finally, for the 𝑡0 operation we compute
𝜕𝑡3
𝜕𝑣1

and modify 𝜕𝑡3
𝜕𝑣0

. Unlike the forward mode implementation, this reverse mode is very efficient
for the case when a scalar must be differentiated with respect to many inputs (gradient of a scalar).
In fact, it scales at the same rate as the function value computation itself.

The dynamic approach to automatic differentiation has a number of advantages. One of these is
the ability to compute derivatives in reverse mode. It can also be used when the number of inputs
is not known at compile time.

A major disadvantage of the dynamic approach is its runtime cost. Building up and evaluating the
dynamic representation creates overhead. Further, these operations cannot be inlined or optimized
by the compiler. Indeed, calculating the function and derivatives from the stored representation
amounts to interpreting the code rather than compiling it.

There are some variations on the dynamic approach that are worth mentioning. There are some
circumstances where one may want to dynamically parse code and interpret that code anyway.
This occurs when, for example, you would like to be able to specify analytical expressions in input
files. In this case, the dynamic representation is already available, and derivatives can be computed
directly from this representation.

7.3 Code generation
Another option for automatic differentiation is to use code generation. A program takes as input code
to compute some function and outputs a new routine to compute the function and its derivatives.
This strategy is in many ways similar to the dynamic strategy. Instead of actually performing the
calculations, however, the program instead emits code to perform the calculations. This code can
then be copied to a source file, compiled, and optimized as with any other code. The program may
also emit code that uses linear algebra routines like matrix-vector multiplication or vector addition
to produce more compact and readable code. The resulting code may also be used as a starting
point for manual optimization.
The code generation strategy should be distinguished from the Maple/Mathematica approach

that we discouraged earlier. A good automatic differentiation package based on code generation
will emit code that is designed to be efficient to execute. Unlike symbolic tools, it will not produce
a tangled mess by writing the code as a monolithic expression and then trying to simplify it. The
linear algebra representation tends to naturally capture redundancies in the computations. Symbolic
tools tend to lose these natural intermediates.

Since the code generation is done only once while the program is written (and perhaps repeated
if the code is changed), one can afford to spend more computational resources computing and
optimizing the derivatives. This includes choosing between forward mode, reverse mode, or even a
mixed mode. The program can use dynamic programming to optimize the order in which to evaluate
the derivatives. The program can also identify and perform optimizations that take advantage
of the special structure of some intermediate values. For example, a derivative may be a scalar
multiple of the identity matrix (the derivative of the expression 2x+ 1 with respect to x is 2I), which
would allow a subsequent matrix-matrix multiply to be replaced with a more efficient scalar-matrix
multiply.
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7.4 Differentiate the function
When using automatic differentiatiation, it is important to keep in mind that some functions should
be differentiated by differentiating their implementation and others should be differentiated directly.
Especially for functions whose definitions are templated to compile for float or double, it may be
possible to instantiate the functions on a custom type like our Diff_TT or Diff_TV. This would
cause us to differentiate the implementation of the function. Often, this will be the desired behavior.
In some cases, however, it is better to create a special overloaded version of the function to compute
the derivatives in a way that is specific to the mathematical properties of the function. Simple math
functions (trigonometry, exponentials, logarithms, and other special functions like the gamma
function or Bessel functions) should be differentiated using appropriate calculus rules. Routines for
solving equations should be differentiated using implicit differentiation.

7.5 When to use automatic differentiatiation
There are many times when it is appropriate to automate the process of computing derivatives.
Prototyping. Such tools are particularly useful for prototying, since they allow one to quickly
implement, test, and evaluate many different options before selecting the the one the performs
best. Only the option that is selected needs to be differented manually. Debugging. Some styles
of automatic differentiation give you a working implementation of derivatives, which can be
optimized by hand or used to debug a manually-derived version. Infrequently executed code.
Some derivatives are used only infrequently and do not contribute significantly to the overall
runtime of a system. It may not be worthwhile to invest time and resources to manually differentiate
and optimize such routines.

The performance cost of automatic differentiation can be quite significant. My experiences with
the compiled approach, even with sigificant effort to be efficient, is that I should expect to pay a
factor of two performance cost. This depends greatly on the particular function being differentiated
and the number of inputs and outputs. With the code generation strategy, this may be reduced
somewhat. The dynamic strategy will likely be quite a bit slower.
One should also keep in mind that automatic differentiation will not make adjustments to the

way quantities are computed in order to resolve numerical difficulties. This may lead to Infs, NaNs,
or inaccurate derivatives. One one hand, these difficulties may only rarely case problems. On the
other hand, that also makes them harder to find with testing.

7.6 Automatic differentiation libraries
Many libraries are available for automatic differentiation. These libraries vary in license, program-
ming language, modes supported (forward, reverse, often both), the number of derivatives they can
compute (gradients, Hessians, or unlimited), efficiency, and ease of use. Those interested in using
an automatic differentiation library are referred to http://www.autodiff.org/. This site maintains
an extensive list of existing software tools and libraries. It also provides a reading list for those
interested in learning more about the techniques involved or those interested in writing their own
customized library.

7.7 PyTorch and TensorFlow
The two automatic differentiation libraries PyTorch and TensorFlow are particularly widely used
and worth special mention due to their focus on machine learning. At their core, both libraries are
based on reverse-mode automatic differentiation, which is better known in the machine learning
community as backpropagation. On top of this core, both libraries implement a rich ecosystem of
machine learning utilities and tools. These libraries are optimized for machine learning, where
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the vast majority of the computations occur in the form of dense linear algebra operations or
component-wise operations and the objective will be evaluated on many inputs. By arranging
calculations into a small number of large and easily-parallelized operations, the computations can
be performed very efficiently on GPUs (and TPUs, which were designed specifically for this task).
Internally, both libraries construct a computation graph for the objective function, which they

then traverse to compute the gradient via backpropagation. Since the graph need only be constructed
at the granularity of layers and activation functions, the graph itself is quite small. Further, the
amount of computation that must be performed at each node (such as a medium-sized matrix-matrix
multiply) is significant compared with the cost of graph assembly and traversal. This is unlike
general applications of reverse mode differentiation, where the operations are not structured and
must be recorded at the granularity of scalar operations. While I would not normally recommend
using automatic differentiation in production code due to the overhead associated with it, machine
learning is an important and dramatic exception to this rule.

8 CONCLUDING REMARKS
Differentiating computer routines may seem daunting, especially when the routines in questions
are complex. Further, this task is often delegated to students or interns, who may lack many of the
skills that have been accumulated by their more senior researchers. The main message of this course
is that manually calculating derivatives is often quite feasible even for the very complex functions
that occur in practical applications. These derivatives can be implemented, numerically tested, and
debugged in small manageable pieces. Optimization and robustness concerns can be addressed and
tested incrementally once the derivatives work. Derivative testing routines are also useful to keep
around for later debugging purposes, even after the implementation has been thoroughly tested,
since this can help when debugging more subtle problems like inefficient solver convergence.

In some cases, automatic differentiation is a convenient alternative to manual derivatives. This
is especially useful for prototyping, since is allows new ideas to me implemented and evaluated
more rapidly. If derivative computations occupy a significant fraction of overall runtime, these
derivatives should be replaced with manually-computed and optimized derivatives when a final
prototype has been selected.
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