
Drucker-Prager Elastoplasticity for Sand Animation

Gergely Klár Theodore Gast Andre Pradhana Chuyuan Fu Craig Schroeder Chenfanfu Jiang Joseph Teran

University of California, Los Angeles

Figure 1: Sand falls through the narrow neck of an hourglass, accumulating at the bottom.

Abstract

We simulate sand dynamics using an elastoplastic, continuum as-
sumption. We demonstrate that the Drucker-Prager plastic flow
model combined with a Hencky-strain-based hyperelasticity accu-
rately recreates a wide range of visual sand phenomena with mod-
erate computational expense. We use the Material Point Method
(MPM) to discretize the governing equations for its natural treat-
ment of contact, topological change and history dependent con-
stitutive relations. The Drucker-Prager model naturally represents
the frictional relation between shear and normal stresses through
a yield stress criterion. We develop a stress projection algorithm
used for enforcing this condition with a non-associative flow rule
that works naturally with both implicit and explicit time integra-
tion. We demonstrate the efficacy of our approach on examples
undergoing large deformation, collisions and topological changes
necessary for producing modern visual effects.

Keywords: MPM, APIC, elastoplasticity, sand, granular

Concepts: •Computing methodologies→ Physical simulation;
Continuous simulation;

1 Introduction

Sand dynamics are ubiquitous in every day environments. Its char-
acteristic flowing and piling motions must be recreated with a high

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
SIGGRAPH ’16 Technical Paper,, July 24 - 28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925906

level of accuracy when animating scenes like beaches or play-
grounds. Sand and many other similar everyday materials like salt,
powder, rubble, etc are granular materials composed of many dis-
crete macroscopic grains colliding and sliding against one another.
These materials exhibit complex behaviors with aspects compara-
ble to both fluids (e.g. they can assume the shape of a container)
and solids (they can support weight and form stable piles) [Jaeger
et al. 1996; Bardenhagen et al. 2000].

Unfortunately, this complex material behavior makes it very diffi-
cult to develop numerical methods capable of reproducing sand dy-
namics. Given the incredibly high number of grains in practical sce-
narios, a continuum description of the governing equations is useful
for simulation. However, it is difficult to design a single constitutive
law that reproduces all sand behaviors. Furthermore, these laws are
relatively complex and require subtle aspects of elastic and plastic
response. On the other hand, a Lagrangian view where all grains
are simulated only requires a description of the frictional contact
between grains. Unfortunately, numerical methods designed from
this view would require the computationally prohibitive simulation
of many millions or even of billions of individual grains. Further-
more, it is difficult to tune the grain frictional parameters to match
observed piling and flowing behaviors in everyday experiments.

We build on the work of Mast et al. [2013; 2014] and develop an im-
plicit version of their Drucker-Prager-based elastoplasticity model
for granular materials. The Drucker-Prager conception of elasto-
plasticity is often used in the mechanical engineering literature for
granular materials [Drucker and Prager 1952], and we show that
it can be adopted to animation applications with relatively simple
implementation and efficient runtimes. This is useful because the
models are well developed and the literature can be consulted to re-
duce the difficulty of parameter tuning. We use the Material Point
Method (MPM) [Sulsky et al. 1994] to discretize the model since it
provides a natural and efficient way of treating contact, topological
change and history dependent behavior. Furthermore, we show that
this can be done with little more effort than was used for simulating
snow dynamics in the MPM approach of Stomakhin et al. [2013].
Lastly, we replace the particle/grid transfers used by Mast et al.
with APIC transfers [Jiang 2015; Jiang et al. 2015] and show that

http://dx.doi.org/10.1145/2897824.2925906

this allows for more stable behavior, particularly with simulations
that have higher numbers of particle per cell.

2 Related Work

Continuum approaches have been used in a number of graphics
methods for granular materials. Zhu and Bridson [2005] animate
sand as a continuum with a modified Particle-In-Cell fluid solver.
Narain et al. [2010] improve on the method of Zhu and Bridson
by removing cohesion artifacts associated with incompressibility.
Both of these works led to a number of generalizations and im-
provements. Nkulikiyimfura et al. [2012] develop a GPU version
of the Zhu and Bridson approach. Laenerts and Dutre [2009] use
an SPH version to couple water with porous granular materials.
Alduán and Otaduy [2011] generalize the unilateral incompress-
ibility developed by Narain et al. to SPH. Imhsen et al. [2013]
show how to improve the convergence of the method of Alduán
and Otaduy [2011] and also detail refinement of base simulations
to upscale to millions of grains. Chang et al. [2012] use a modified
Hooke’s law to handle friction between grains.

Many methods are developed by modeling interactions between in-
dividual grains or particle idealizations of grains, rather than from
a continuum. Miller and Pearce [1989] simulate interactions be-
tween particles to model sand, solid and viscous behaviors. Luciani
et al. [1995] use a similar approach. Bell et al. [2005] got very im-
pressive results by simulating many sand grains as spherical rigid
bodies with friction. Milenkovic [1996] also simulated individual
grains to solve for piles of rigid materials via energy minimiza-
tion/optimization. Mazhar et al. [2015] use Nestov’s method to
simulate millions of individual grains. Yasuda et al. [2008] use
the GPU to get real-time results with rigid grains. Alduan et al.
[2009] use an adaptive resolution version of the method by Bell et
al. [2005] to improve performance. Macklin et al. [2014] show
that the extremely efficient position based dynamics methods can
be applied by casting granular interactions as hard constraints in.

As a method that combines aspects of particle-based and grid-based
methods, MPM has proven to be a useful discretization choice for
granular materials, such as snow [Stomakhin et al. 2013] and sand
[Jiang et al. 2015]. It has also been used for more general elasto-
plastic flows for computer graphics [Yue et al. 2015; Stomakhin
et al. 2014; Ram et al. 2015; Jiang 2015; Jiang et al. 2015] and engi-
neering applications [Mast 2013; Mast et al. 2014]. Brackbill et al.
[Bardenhagen et al. 2000; Cummins and Brackbill 2002] simulate
individual grains but use MPM to resolve collisions and friction.

When extreme computational efficiency is required, simplified ap-
proaches like height fields [Sumner et al. 1999; Onoue and Nishita
2003; Li and Moshell 1993; Chen and Wong 2013; Chanclou et al.
1996] and cellular automata [Pla-Castells et al. 2006] have been
used to provide real-time interaction.

3 Background

Conservation laws. We represent the sand as an elastoplastic con-
tinuum, whose state can be described at each location by its density
ρ(x, y, z) and velocity v(x, y, z). Our sand experiences internal
stress σ and gravity g. The motion of the sand satisfies conserva-
tion of mass

Dρ

Dt
+ ρ∇ · v = 0 (1)

and conservation of momentum, which can be simplified to the
Euler-Lagrange equations,

ρ
Dv

Dt
= ∇ · σ + ρg. (2)

Here, we have used Dφ
Dt

= ∂φ
∂t

+ v · ∇φ to denote the material
derivative of an arbitrary function φ(x, y, z). The text of Gonzalez
and Stuart [2008] provides useful background for these equations.

Deformation gradient. The deformation gradient represents how
deformed a material is locally. For example, let x0

1 and x0
2 be two

nearby points embedded in the material (see Figure 4) at the begin-
ning of the simulation, and let x1 and x2 be the same two points
in the current configuration. Then (x2 − x1) = F(x0

2 − x0
1). The

deformation gradient F evolves according to

DF

Dt
= (∇v)F. (3)

Elastic and plastic deformation gradient. We represent plastic-
ity by factoring deformation gradient into elastic and plastic parts
as F = FEFP . The deformation gradient is a measure of how
a material has locally rotated and deformed due to its motion. By
factoring the deformation gradient in this way, we divide this defor-
mation history into two pieces. The plastic part, FP , represents the
portion of the material’s history that has been forgotten. If a metal
rod is bent into a coiled spring, the rod forgets that it used to be
straight; the coiled spring behaves as though it was always coiled
(see Figure 6). The twisting and bending involved in this opera-
tion is stored in FP . If the spring is compressed slightly, the spring
will feel strain (deformation). This is elastic deformation, which is
stored in FE . The spring remembers this deformation. In response,
the material exerts stress to try to restore itself to its coiled shape.
In this way, we see that only FE should be used to compute stress.
The full history of the metal rod consists of being bent into a spring
shape (FP) and then being compressed (FE).

Constitutive model. A constitutive model relating the state to the
stress is needed. The text of Bonet and Wood [2008] provides use-
ful background for elastoplastic constitutive modeling. Following
Mast el al. [2013; 2014], we use Drucker-Prager elastoplasticity
[Drucker and Prager 1952]. The elastic part of this relation is ex-
pressed through the deformation gradient F.

For perfectly hyperelastic materials the constitutive relation is de-
fined through the potential energy, which increases with non-rigid
deformation from the initial state. However, in the case of large-
strain elastoplasticity, there will be some permanent (or plastic) de-
formation and the potential will only increase for deformation be-
yond this state. In this case, the stress in the material is

σ =
1

det(F)

∂ψ

∂FE
FE

T
(4)

where ψ(FE) is the elastic energy density designed to penalize
non-rigid FE (see Section 6.3 for more detailed discussion).

With the Drucker-Prager model, frictional interactions between
grains of sand can be expressed in the continuum via a relation be-
tween shear and normal stresses. Using a Coulomb friction model,
shear stresses resisting sliding motions between grains can only be
as large as a constant times the normal stress holding them together.
For example, if shear stresses larger than this value are required to
maintain a static pile, plastic flow will commence when the limit is
reached and the material will move. This constraint defines a fea-
sible region of stresses, the surface of the feasible region is often
referred to as the yield surface. The decomposition of the deforma-
tion gradient into elastic and plastic components F = FEFP can

Figure 2: A solid ball drops into a sandbox, spraying sand in all directions.

be viewed as a means of projecting the deformation to satisfy the
constraint. Notably, the projection must be designed carefully to
ensure for increase of entropy as well as volume preserving plastic
flow. We discuss the model in more detail in Section 7 as well as in
the supplementary technical document [Klár et al. 2016].

Discretization. Traditional approaches for discretization are typ-
ically either Eulerian or Lagrangian, which differ by their frame
of reference. An Eulerian description computes quantities of inter-
est at fixed locations in space. These methods feature fixed grids.
Eulerian methods are ideal for handling collisions and changes in
topology, making them a popular choice for fluids.

A Lagrangian description uses quantities that move with the ma-
terial being described. These methods tend to use moving parti-
cles often connected by a mesh. This representation automatically
conserves mass, and the mesh provides a straightforward way to
determine how deformed the material is. Lagrangian methods are
preferred for elastic solids.

Some materials, such as sand, exhibit characteristics of both fluids
and solids. Sand can support a load like a solid, but it can also flow
like a liquid. For materials like these, there is growing interest in

Figure 3: A sand castle is hit with a deformable ball while falling.
The sand and ball are fully coupled in the simulation.

b

b

x0
1

x0
2

Ω0

b

b

x1

x2

Ω

F

Figure 4: Relationship between deformation and F.

hybrid methods, such as the Material Point Method, which combine
aspects of both types of discretization, seeking to obtain some of the
benefits of each.

The Material Point Method stores information on Lagrangian parti-
cles, but it computes forces using a fixed Eulerian grid. The use of
particles makes mass conservation trivial, and it provides a simple
means of moving information around. The use of a fixed grid pro-
vides automatic handling of topology changes (merging and sep-
arating) and collisions between regions of material. Since MPM
uses two distinct representations, information must be transferred
between them. These transfers play a very important role in the
numerical behavior of a hybrid method. Furthermore, to simplify
topology changes, MPM does not store connectivity between parti-
cles. This avoids the need for complex remeshing, but deformation
must now be tracked in an Eulerian way.

In the next section, we outline our discretization steps.

4 Overview

Before presenting the algorithm in detail, we first provide an
overview of the steps that are involved in the algorithm and the
role that they play, which is summarized in Figure 7.

1. Transfer to grid. Transfer mass and momentum from parti-
cles to the grid. Use mass and momentum to compute velocity
on the grid. (§5.1)

2. Apply forces. Compute elastic forces using a deformation
gradient that has been projected into the plastic yield surface
and apply the forces to the grid velocities. (§6)

3. Grid collisions. Project grid velocities for collisions against
scripted bodies and obstacles, ignoring friction (§8). For im-
plicit, this is merged with the force application step (§5.6).

4. Friction. Compute and apply friction based on the collisions
that were resolved. The velocity before and after this step are
retained for use during the transfers. (§8.1)

5. Transfer to particles. Transfer velocities from grid to parti-
cles, being careful to handle friction in a manner that does not
lead to inconsistencies. (§5.3)

6. Update particles. Update remaining particle state, including
positions and deformation gradient. (§5.4)

7. Plasticity and hardening. Project the deformation gradient
for plasticity, updating the elastic and plastic parts. Perform
hardening, which updates the plastic yield surface. (§5.5)

5 Algorithm

Notation. It is helpful to establish the conventions for notation (see
Table 1 for a complete list). Scalars are represented by non-bold
Latin or Greek characters (mp, αnp , Gk). Vectors are represented

Figure 5: A rake is dragged around a rock, producing a circular pattern in the sand.

by bold lowercase Latin characters (vnp , xn+1
i). Matrices are repre-

sented by bold uppercase Latin characters or bold Greek characters
(I, F̂P,n+1

p , σ). Derivatives alter this in the usual way, so that∇Gki
is a vector and (∇v)p is a matrix.

Many quantities are indexed with subscripts, which indicate where
quantities are stored. Quantities that are stored at grid nodes are
indexed with i and particle quantities have the index p. Collision-
related quantities have an index k relating them to a particular colli-
sion interaction. A quantity may have more than one subscript (wnip,
∇Gki). The quantity Fn+1

p represents the quantity corresponding
to one index, and 〈Fn+1

p 〉 represents a vector of all such quantities.

Superscript n is used to indicate a quantity near the beginning of the
time step, before forces are applied, (mn

i , Bn
p). Superscript n + 1

indicates a quantity near the end of the time step, after forces are
applied, (xn+1

i , FP,n+1
p).

Stars, tildes, and bars are used to distinguish intermediate quantities
(v?i , ṽn+1

i , vn+1
i), and some effort is made to group them, but the

adornments do not have any intrinsic meaning.

Superscripts E and P are used to denote the elastic or plastic part
of a deformation gradient (FE,np , FP,np).

Generally, quantities that are stored on particles have indicators of
time, and those that lack other adornments are state variables (αnp ,
FE,np , xnp ; not vni , F̂E,n+1

p). There are two exceptions to this. We
do not store the deformation gradient itself, so Fnp for us is not a
state variable. The mass mp is a state variable, but we omit a time
indicator because it never changes. State variables are those that
persist from the end of one time step to the beginning of the next.

Particle state. In MPM, the primary representation of state is
stored on particles. We maintain mass mp, position xnp , velocity
vnp , and affine momentum Bn

p , which is related to the velocity spa-
tial derivatives. The extra matrix Bn

p stored per particle is used for
APIC transfers [Jiang et al. 2015]. Up to a constant scale, this quan-
tity approximates the spatial derivative of the grid velocity field at

original rest shape

new rest shape

current shape

FP

FE

F

Figure 6: Relationship between F, FE , and FP .

Particle state

Particle velocity (§5.3)

Updated positions (§5.4)

Plasticity, hardening (§5.5)

Grid velocity, mass (§5.1)

Forces (§6)

Collisions (§8)

Friction (§8.1)

Particles Grid

Figure 7: Overview of MPM stages.

the end of the previous time step.

We also store the elastic and plastic components of the deformation
gradient, FE,np and FP,np . Note that while we use FE,np to compute
forces, FP,np is not required and need not be stored. For plasticity,
we must store one parameter αnp , which defines the size of the yield
surface and may change per particle as a result of hardening.

Weights. We will frequently need to transfer information between
particle and grid representations. We do this by associating with
each particle p and grid node i a weight wnip which determines how
strongly the particle and node interact. If the particle and grid node
are close together, the weight should be large. If the particle and
node are farther apart, the weight should be small. We compute
our weights based on a kernel as wnip = N(xnp − xni), where xnp
and xni are the locations of the particle and grid node locations.
We will also need the spatial derivatives of our weights, ∇wnip =
∇N(xnp − xni), when we compute forces. We use time indices on
the fixed grid node locations xni to distinguish them from estimates
(such as xn+1

i) of where those nodes would end up if evolved with
node velocities. We also indicate time on weights wnip since they
were computed using quantities at this time.

Choosing a kernel N leads to trade offs with respect to smooth-
ness, computational efficiency, and the width of the stencil. We
prefer tensor product splines for their computational efficiency, as
they are relatively inexpensive to compute, differentiate, and store.
The multilinear kernel typically employed for FLIP fluid solvers
is the simplest of these options, but it is not suitable here. There
are two reasons for this (see [Steffen et al. 2008]). The first is that
∇wnip would be discontinuous and produce discontinuous forces.
The second is that∇wnip may be far from zero whenwnip ≈ 0, lead-
ing to large forces being applied to grid nodes with tiny weights.
Quadratic and cubic b-splines work well, and we choose cubic b-
splines for convenience. Our kernel is

N̂(x) =

1
2
|x|3 − |x|2 + 2

3
0 ≤ |x| < 1

1
6
(2− |x|)3 1 ≤ |x| < 2

0 2 ≤ |x|
(5)

N(u) = N̂
(ux
h

)
N̂
(uy
h

)
N̂
(uz
h

)
, (6)

Figure 8: A stick is dragged through a bed of sand, tracing out a butterfly shape in the sand.

Variable Where Type Meaning

I - matrix identity matrix

∆t - scalar time step size

h - scalar grid resolution
D

Dt
- - material derivative

g - vector gravity

σ - matrix Cauchy stress

ρ - scalar density

v - vector velocity

mp particles† scalar particle mass

V 0
p

particles† scalar initial particle volume

αn
p

,αn+1
p

particles† scalar yield surface size

qn
p

, qn+1
p

particles† scalar hardening state

Bn
p

, Bn+1
p

particles† matrix affine momentum

Fn
p

, Fn+1
p

particles matrix deformation gradient

FE,n
p

, FE,n+1
p

particles† matrix elastic deformation gradient

FP,n
p

, FP,n+1
p

particles† matrix plastic deformation gradient

vn
p

, vn+1
p

particles† vector particle velocity

xn
p

, xn+1
p

particles† vector particle position

Cn
p

particles matrix particle velocity derivative (APIC)

Dn
p

particles matrix affine inertia tensor (APIC)

F̂n+1
p

particles matrix deformation gradient, before plasticity

F̂E,n+1
p

particles matrix elastic deformation gradient, before plasticity

F̂P,n+1
p

particles matrix plastic deformation gradient, before plasticity

(∇v)p particles matrix grid-based velocity gradient

vp particles vector particle affine velocity field

Zp particles matrix→ matrix project to yield surface

mn
i

grid scalar grid node mass

vn
i

grid vector rasterized velocity

vn+1
i

grid vector final grid velocity, no friction

ṽn+1
i

grid vector final grid velocity

v?
i

grid vector velocity with explicit forces

xn
i

grid vector Cartesian grid node locations

xn+1
i

grid vector grid positions moved by vn+1
i

fi grid matrix→ vector compute forces

λk - scalar Lagrange multiplier for enforcing collision

Gk - vector→ scalar collision criterion

∇Gki grid vector→ vector collision criterion gradient

N̂ - scalar→ scalar interpolation spline

N - vector→ scalar tensor product interpolation spline

∇N - vector→ scalar tensor product interpolation spline gradient

wip mixed scalar interpolation weight

∇wip mixed vector interpolation weight gradient

Table 1: Table of notation used in this paper. †These quantities are
state on particles.

where h is the grid spacing. Sometimes the quadratic kernel is also
useful. We plot the quadratic and cubic kernels in Figure 9. We use
the cubic spline for all of our examples.

5.1 Transfer to grid

The first step of each time step is the transfer of state particles to
the fixed Cartesian grid. We begin by distributing the mass of each
particle to its neighboring grid nodes.

mn
i =

∑
p

wnipmp (7)

Grid nodes far enough from any particle that they do not receive
mass are inactive and do not participate in any further computations.

The next task is to transfer velocity. We do this using the APIC
transfers in [Jiang et al. 2015]. The velocity state on the particle
is represented by vnp and Bn

p . The affine momentum Bn
p is related

to the velocity spatial derivatives Cn
p through Cn

p = Bn
p (Dn

p)−1,
where Dn

p is a matrix that behaves as an inertia tensor and is

Dn
p =

∑
i

wnip(x
n
i − xnp)(xni − xnp)T =

{
h2

3
I cubic

h2

4
I quadratic

(8)

where h is the grid spacing. Although the definition of the iner-
tia tensor Dn

p depends on the relative positions of the grid nodes
and particles through a relatively high-degree polynomial (both ex-
plicitly and through wnip), it simplifies to a constant multiple of the
identity in the cases of the quadratic and cubic splines presented.

With Cn
p , we can define an affine velocity field vp(x) for particle p

by vp(x) = vp + Cn
p (x−xnp). The momentum contribution from

N̂(x)

Figure 9: Cubic (blue) and quadratic (red) splines used for com-
puting interpolation weights.

E = 1kPa

E = 10kPa

E = 100kPa

E = 1000kPa

Figure 10: This simulation shows the effects of Young’s modulus on
the behavior of a simulation. Sand with a very low Young’s modulus
tends to be bouncy. The behavior is more like sand as the Young’s
modulus approaches its physical value.

Figure 11: A shovel digs through sand and pushes it aside.

particle p to node i is wnipmpvp(x
n
i). This leads to the full form of

the velocity transfer,

vni =
1

mn
i

∑
p

wnipmp(v
n
p + Bn

p (Dn
p)−1(xni − xnp)) (9)

5.2 Grid update

We next update velocities on the grid. This involves applying forces
and processing for collisions with scripted objects. We present two
approaches for doing this, explicit and implicit. For most of our
examples, explicit is more efficient, since we are running with rela-
tively low stiffness. For stiff examples, implicit becomes advisable.
We defer the implicit formulation until (§5.6).

Explicit The simplest approach for handling forces is explicit. In
this case, we compute and apply an explicit force (§6)

v?i = vni +
∆t

mn
i

fi(〈FE,np 〉). (10)

After forces are applied, we can process the velocities for collisions
v?i → vn+1

i and then apply friction vn+1
i → ṽn+1

i . The collision
processing is described in (§8).

5.3 Transfer to particles

Next we transfer velocities from the grid back to particles. Since we
are using APIC, we need to compute new velocities vn+1

p and affine
momentum Bn+1

p . Velocities are interpolated back to particles in
the straightforward way

vn+1
p =

∑
i

wnipṽ
n+1
i . (11)

The transfer for Bn+1
p is

Bn+1
p =

∑
i

wnipṽ
n+1
i (xni − xnp)T . (12)

5.4 Update particle state

Next, we update the particle’s position and deformation gradient.
Positions are updated by interpolating moving grid node positions

xn+1
p =

∑
i

wnipx
n+1
i . (13)

Since the particles move with the flow, the material derivative in
Equation 3 is just a normal time derivative and a simple difference
yields the particle deformation gradient update

Fn+1
p = Fnp + ∆t(∇v)pF

n
p (14)

where (∇v)p is calculated by differentiating (11)

(∇v)p =
∑
i

vn+1
i (∇wnip)T . (15)

Figure 12: Sand is poured from a spout into a pile in a lab (left)
and with our method (right).

Note that we only store the elastic (FE,np) and plastic (FP,np) parts
of Fnp rather than Fnp itself. These are related by Fnp = FE,np FP,np
(§7). During this evolution step, we assume that the plastic part is
not changing (F̂n+1

p = Fnp), which gives us the rule

F̂E,n+1
p = FE,np + ∆t(∇v)pF

E,n
p . (16)

The plastic update is covered in (§7).

Note that the update of the particle position and deformation gra-
dient use vn+1

i while the velocity and related quantities use ṽn+1
i .

The use of the frictional velocity in the updates of positional up-
dates resulted in less stable behavior with implicit time stepping.
With explicit time stepping, ṽn+1

i could be used for both position
and velocity related updates.

5.5 Plasticity, hardening

The final step is to apply plasticity and hardening. Plasticity is per-
formed by projecting the elastic deformation gradient to its yield
surface, an action denoted by Z(·, ·) which we describe in detail
later (§7). Plasticity does not change the full deformation gradient,
so that Fn+1

p = F̂E,n+1
p F̂P,n+1

p = FE,n+1
p FP,n+1

p . This allows
us to update the plastic part.

FE,n+1
p = Z(F̂E,n+1

p , αnp) (17)

FP,n+1
p = (FE,n+1

p)−1F̂E,n+1
p F̂P,n+1

p (18)

The last step is hardening which updates αnp → αn+1
p (§7.3).

5.6 Implicit velocity update

The implicit velocity update is

vn+1
i = vni +

∆t

mn
i

fi(〈FE,n+1
p 〉) +

∑
k

∇Gkiλk (19)

subject to the additional conditions Gk ≥ 0, λk ≥ 0, and Gkλk =
0. Here, Gk(〈xn+1

i 〉) ≥ 0, with xn+1
i = xni + ∆tvn+1

i , is the
collision-free criterion for all object-node collision pairs k. (§8)
These forces are implicit, since FE,n+1

p depends on vn+1
i through

(16), (15), and (17). As in the explicit case, we complete the grid
update by applying friction vn+1

i → ṽn+1
i and described in (§8).

Note that we are implicit in plasticity, but we are not implicit in
hardening or friction. In the absence of plasticity, these are just
the Karush-Kuhn-Tucker (KKT) conditions [Nocedal and Wright
2006] for minimization. Unlike solving a minimization problem,
however, our linear systems are not generally symmetric, and we
do not have an objective with which to do line searches.

Solving the system. Since the collision constraints are indepen-
dent, we use the projection method to eliminate the collisions. We

Figure 13: Varying the friction angle changes the shape of a pile of
sand. A larger angle produces a taller sand pile with steeper sides.

solve the nonlinear system of equations using Newton’s method.
Note that because of plasticity, the systems will in general be asym-
metric, and we solve with GMRES. These systems usually converge
sufficiently in three or fewer iterations of GMRES, rarely (< 1%)
taking more than four iterations. We limit GMRES to 15 iterations
and allow multiple Newton iterations.

5.7 Initialization

Particle locations are initialized with Poisson disk sampling. Initial
values for mp, xnp , and vnp = v(xnp) are chosen based on the needs
of the example, with v(x) the desired initial velocity field. Bn

p

is initialized so that Cn
p = Bn

p (Dn
p)−1 = ∇v is the gradient of

the initial velocity field and Dn
p is computed from (8). Our initial

setups have no deformation, so FE,np = FE,n+1
p = I. We initialize

our hardening parameter with qnp = 0, from which we can compute
αnp using (30) and (31). Initial particle volume V 0

p is computed
from the seeding density.

6 Forces

Here we derive the MPM forces on Eulerian grid nodes fi(〈FEp 〉).
These forces are obtained by differentiating a discretization of the
potential energy with respect to the motion of grid nodes.

6.1 Continuous setting

Elastic materials are characterized by their ability to store potential
energy and then release it by doing work to cause motion (kinetic
energy). Let Ψ be the total potential energy stored by a material at
a given time. In a real material, potential energy is stored locally
in response to deformation. This is called energy density, or energy
per unit volume, and represented by ψ. Since this depends only
on the local deformation, we can write ψ(F). The function ψ(F)
captures the essential information about the way an elastic material
responds to deformation. This relationship depends on the material;
we choose our model in (§6.3).

In much the same way that total mass is computed by integrating
the density of a material over its volume Ω, potential energy is com-
puted by integrating energy density Ψ =

∫
Ω
ψ dV .

6.2 Discrete setting

We discretize the potential energy with a sum on particles,

Ψ =
∑
p

V 0
p ψ(FEp) (20)

Note that V 0
p is the volume of material attributed to a particle in the

initial configuration. Only the elastic portion of the deformation
gradient FEp contributes to the energy [Bonet and Wood 2008].

If the state of the system is described by a finite number of positions
x1, . . . ,xm (picture a bunch of point masses connected by springs),
then the potential energy can be written Φ(x1, . . . ,xm). Moving
one of these points causes the amount of energy to change (energy
is required to stretch or compress the springs). The springs will
push back on these points so as to release this built-up energy. In
this way, the force felt by particle j will be fj = − ∂Ψ

∂xj
.

With MPM, grid nodes are temporarily Lagrangian, and can be
moved to define the force. If the current grid node velocity is vi,
then its position can be approximated as xi = xni + ∆tvi. Consid-
ering a different ending position implies a different velocity to get
there. These node velocities are used in (15) to compute (∇v)p,
which is in turn used by (16) to compute a new deformation gradi-
ent FEp . This deformation gradient will be used to compute energy
density using a model ψ(FEp), which finally gives us total potential
energy. In this way, the potential energy of the material can be ex-
pressed in terms of the locations of the grid nodes. We can use this
relationship, summarized below, to compute forces on grid nodes.

Ψ(〈xi〉) =
∑
p

V 0
p ψ(FEp (〈xi〉)) (21)

FEp (〈xi〉) =

(
I +

∑
i

(xi − xni)(∇wnip)T
)

FE,np (22)

This relationship can be differentiated to deduce the desired equa-
tion for computing grid node forces

fi(〈FEp 〉) = − ∂Ψ

∂xi
= −

∑
p

V 0
p

(
∂ψ

∂F
(FEp)

)
(FE,np)T∇wnip. (23)

Note that FEp is the function parameter but FE,np is a known value
which is not changing during the current time step. Also note that
all deformation is assumed to be elastic. When computing the force,
the effect of further plastic flow is ignored [Bonet and Wood 2008].

Gravity. We include gravity as an additional term in (23)

fgravi =
∑
p

wnipmpg = mn
i g. (24)

6.3 Constitutive model

We adopt the energy density ψ(F) from Mast et al. [2013]. This
model uses the same energy density as St. Venant-Kirchhoff, but
it replaces the left Cauchy Green strain with the Hencky strain
1
2

ln(FFT). This makes a number of aspects of the Drucker-Prager
plastic projection very simple (see the supplementary technical doc-
ument [Klár et al. 2016]). The model is most conveniently written
in terms of the singular value decomposition F = UΣVT as

ψ(F) = µtr
(
(ln Σ)2)+

1

2
λ(tr(ln Σ))2, (25)

τ1

τ2

τ1

τ2

τ1

τ2

Figure 14: A column of sand collapses into a pile. Sand particles are colored based on their current plastic deformation behavior. The
plot shows the locations of these particles in principal stress space. Green particles lie within the yield surface and experience no plasticity.
Blue particles are projected to the yield surface along a direction that avoids volume change. Red particles are experiencing tension and are
projected to the tip of the conical yield surface; these particles are separating freely with no stress.

where Σ is diagonal so ln Σ is computed by taking the logarithm
of the diagonal entries. The force computation (23) requires the
derivative of this, which is

∂ψ

∂F
(F) = U(2µΣ−1 ln Σ + λtr(ln Σ)Σ−1)VT . (26)

7 Plasticity

7.1 Projecting to the yield surface

The only algorithmic aspect of our plasticity treatment that has not
yet been defined is our function Z(FEp , αp), which projects the de-
formation gradient FEp to the yield surface defined by the parameter
αp. The Drucker-Prager plasticity model is based on Coulomb fric-
tion interactions between sand particles. In the continuum setting,
this means that the shear stress cannot be larger than a coefficient of
friction times the normal stress. This results in a simple constraint
on the principal stresses which we derive in the supplementary tech-
nical document [Klár et al. 2016].

In the space of principal stress, the yield surface looks like a cone
(see Figure 15). There are three possible cases that must be consid-
ered. If the stress lies within the yield surface (Case I), then there
is static friction between sand particles, and no plasticity occurs. If
the sand is undergoing expansion (Case II), then there is no resis-
tance to motion; this corresponds to the tip of the cone. Otherwise,
there is dynamic friction (Case III), and we should project to the
side of the cone. Examples of these cases in an actual simulation
can be seen in Figure 14.

As with energy density, plasticity is most conveniently defined in
terms of the singular value decomposition of the deformation gra-
dient, FEp = UpΣpVp

T . Let εp = ln Σp and

ε̂p = εp−
tr(εp)

d
I δγp= ‖ε̂p‖F +

dλ+ 2µ

2µ
tr(εp)αp (27)

where d is the spatial dimension and δγp is the amount of plastic
deformation. If δγp ≤ 0, then the candidate FEp is already in the
yield surface and should be returned without modification (Case
I). If ‖ε̂p‖F = 0 or tr(εp) > 0, then we need to project to the
cone’s tip (Case II), in which case we should return UpVp

T . Oth-
erwise, we should project to the cone surface (Case III) by returning
Upe

HpVp
T , where

Hp = εp − δγp
ε̂p
‖ε̂p‖F

(28)

Note that the operations ln Σp and eHp involve diagonal matrices,
so that the logarithm and exponential functions are simply applied

to the diagonal elements. Note also that the result of this projection
Z has a straightforward singular value decomposition (Up and Vp

do not change), and this decomposition will be required when com-
puting the force. We avoid the extra decomposition by returning
the diagonal part (Σp, I, or eHp) rather than the full result (FEp ,
UpVp

T , or Upe
HpVp

T).

7.2 Note on preventing undesired volume change

The method as described has the desirable feature that sand is pre-
vented from compressing arbitrarily as a byproduct of losing vol-
ume in the plasticity projection. To see this, note that a change in
det(FEp) corresponds to a change in volume of the elastic deforma-
tion. In Case I, FEp is unchanged, so volume is not changed. In Case
II, the sand expands, and volume should be gained. In Case III,
the sand deforms plasticly and an associative flow rule [Bonet and

τ1

τ2

Figure 15: The yield surface for Drucker-Prager is shown in prin-
ciple stretch space. The yield surface has the shape of a cone with
its tip at the origin, which corresponds to no stress. Green par-
ticles are inside the yield surface and exhibit an elastic response.
Blue particles are under compression but experience more shear
than friction allows. These configurations are projected to the yield
surface along a direction that avoids volume change. Red particles
are experiencing tension and are projected to the tip of the conical
yield surface. These particles separate freely without stress.

τ1

τ2φF

q

τ1

τ2φF

q

τ1

τ2φF

q

Figure 16: Three particles in a collapsing pile of sand are colored for reference. As these particles deform plasticly, their yield surface
changes as they undergo hardening, resulting in a wider cone for projection. Hardening causes each particle to have its own yield surface.

Wood 2008] would lead to excessive volume gain. Instead, noting
that tr(ε̂p) = 0, the Drucker-Prager model uses a non-associative
flow to preserve volume during the plastic projection

det(Upe
HpVp

T) = etr(Hp) = etr(εp) = det(Σp) = det(FEp).

The key to retaining volume in this case is to ensure that tr(Hp) =
tr(εp), which means the projection to the cone should locate the
closest point on the cone that does not change the trace, rather than
the closest point on the cone. We discuss this in more detail in the
supplementary technical document [Klár et al. 2016].

7.3 Hardening

We adopt the hardening model of Mast et al. [2014], where plastic
deformation can increase the friction between sand particles. The
amount of hardening depends on the amount of correction that oc-
curred due to plasticity. In Case I, no plasticity occurred, so δqp =
0. In Case II, all of the stress was removed, so δqp = ‖εE,n+1

p ‖F .
In Case III, the amount of plasticity that occurred was δqp = δγp.
In each case, δqp ≥ 0. We define our hardening update using

qn+1
p = qnp + δqp (29)

φF p = h0 + (h1q
n+1
p − h3)e−h2q

n+1
p (30)

αn+1
p =

√
2

3

2 sinφF p
3− sinφF p

(31)

The quantity qnp is the hardening state, φF p is often referred to as
the friction angle, the internal coefficient of friction is tanφF p, and
(30) models a curve with a maximum and an asymptote. Plausible
values of φF p lie in [0, π

2
), with φF p = 0 behaving as a fluid.

Feasible hardening parameters satisfy h0 > h3 ≥ 0 and h1, h2 ≥
0. The values we use are listed in Table 3. Figure 16 illustrates the
change in yield surface as particles undergo hardening in 2D.

8 Collisions

We separate our collision response into two distinct steps: resolving
the actual collision and applying friction. The motivation for this is
that the collision response can be added into the implicit solve, but
doing the same for friction would be more difficult. In the explicit
case, this separation does not matter.

We use a signed distance function φ(x) to represent each obstacle,
with the convention that negative is inside the object and positive
is outside. If we could process particles for collisions directly, then
the collision constraint would be φ(xn+1

p) ≥ 0. In practice, pro-
cessing collisions directly on particles produces poor results, since
it causes xn+1

p and FE,n+1
p to get out of sync. This can cause

objects to slowly seep into the ground. Instead, it is necessary to
process collisions using the grid velocities.

Since xn+1
p will be computed based on vn+1

i , one could adjust
vn+1
i to enforce φ(xn+1

p) ≥ 0. While this would likely lead to
good results, it complicates collision processing in both the ex-
plicit and implicit cases. Instead, we process collisions against
the nodes themselves as in [Gast et al. 2015]. This is difficult be-
cause φ(xn+1

i) ≥ 0 does not make sense. There should be grid
nodes inside obstacles. A set of constraints Gk(〈xn+1

i 〉) ≥ 0 or
Gk(〈xn+1

i 〉) = 0 on grid nodes is needed that avoid collisions for
particles, at least approximately, but which can be applied indepen-
dently per grid node in an straightforward manner. This depends on
the type of collision being applied. We support three types of col-
lisions: sticky, slipping, and separating. Note that a grid node must
have received mass during the transfer in order to be considered for
a collision constraint of any type.

Sticky. Sticky collisions enforce that a point remains fixed to a
particular reference point on the collision object. We enforce this
by requiring vn+1

i = vn+1
b , where vn+1

b is the velocity of the
collision object at the candidate position. In terms of positions, this
is Gk(xn+1

i) = xn+1
i −xni −∆tvn+1

b = 0. The constraint can be
enforced by directly setting the velocity.

Separating. Separating constraints have two cases. If a node is
already inside a collision body (φ(xni) < 0), then it should not
penetrate any deeper, φ(xn+1

i) ≥ φ(xni). If a node is originally
outside the object (φ(xni) ≥ 0) then it should remain φ(xn+1

i) ≥
0. These cases can be combined into the constraint φ(xn+1

i) ≥
min(φ(xni), 0). Note that movement along and away from the col-
lision object are fully permitted by this rule, even if the collision
surface is curved. An unsatisfied constraint of the form φ(xi) ≥ a
or φ(xi) = a can be enforced by xi ← xi − (φ(xi)− a)∇φ(xi),
noting that∇φ is the normal direction.

Figure 17: Sand is poured into a pile with APIC (left) and FLIP
(right) transfers. FLIP tends to accumulate spurious velocities on
particles. In some cases, FLIP leads to unstable behavior, as was
the case in this simulation.

Figure 18: Comparison on notched sand block fall. Initial (left), ours (middle), and Narain et al. [2010] (right).

Slipping. For a slipping constraint, we do not want to allow sep-
aration for existing collisions, but sliding along the surface is per-
mitted. If a node is already inside a collision body (φ(xni) < 0),
then it should stay at its current depth, φ(xn+1

i) = φ(xni). If a
node is originally outside the object (φ(xni) ≥ 0) then no collision
constraint is enforced. By not enforcing this constraint for non-
penetrating nodes, penetration becomes possible and leads to en-
forcement in the next time step. Slipping constraints are enforced
as in the separating case.

With a mathematical description for the constraints for all cases and
a method for directly enforcing those constraints, direct enforce-
ment (v?i → vn+1

i) is all that is required for the explicit case. The
implicit case uses the constraintsGk that have been defined in order
to couple collision enforcement with force application (§5.6).

8.1 Friction

To apply friction, we look not at the manner in which collisions
were enforced but the effect that this enforcement had on the veloc-
ities. In the explicit case, velocities before (v?i) and after (vn+1

i)
are already available. ∆vi = vn+1

i − v?i is the velocity change
attributable to collisions.

In the implicit case, the collision contribution is from the last term
of Equation 19. We compute the velocity estimate before forces
as v?i = vni + ∆t

mni
fi(〈FE,n+1

p 〉). Although vn+1
i would be the

after-collision velocity if the implicit solve had converged, this is
not often done in practice. Instead, we repeat collision processing
on v?i to compute the difference for ∆vi.

For both cases, ∆vi is the velocity change that collisions caused.
Corresponding to this, an impulse j = mn

i ∆vi must have been
applied. Since each node participates in at most one collision (the
constraints do not mix), the normal direction n is known. (If it were
not, it could be approximated as n = j

‖j‖ .) This divides velocity
into normal and tangential parts: vin = n·vn+1

i and vit = vn+1
i −

nvin. The tangential direction is t = vit
‖vit‖

. The Coulomb friction
law limits the amount of friction that can be applied to µb‖j‖, where
µb is the coefficient of friction. If ‖vit‖ ≤ µb

mni
‖j‖, then friction

suffices to eliminate tangential motion entirely, and ṽn+1
i = nvin.

Otherwise, ṽn+1
i = vn+1

i − µb
mni
‖j‖t.

9 Render

Zhu and Bridson [2005] render sand with a reconstructed surface.
Narain et al. [2010] associate a number of render points sampled
near each particle for high resolution rendering. In our examples
we have a sufficient number of simulated particles to simply render

each particle as a matte sphere. The color of each particle is ran-
domly chosen from yellow (RGB 225/169/95 with a probability
of 0.85), brown (RGB 107/84/30 with a probability of 0.1) and
white (RGB 255/255/255 with a probability of 0.05) to further
improve realism. All scenes were rendered using SideFX’s Mantra.
For scenes with rapidly flowing sand (such as the hourglass) we
turned on motion blur where appropriate.

10 Results

Flowing and Piling. We demonstrate the accuracy of our model by
showing the characteristic behaviors of sand flowing and piling. In
Figure 1, we simulate sand flowing inside an hourglass. The sand
forms a smooth granular flow and piles up at the bottom. Figure 12
shows a stream of sand inflow hitting a high frictional surface. We
compare this simulation with real world footage. Our model suc-
cessfully captures the interesting avalanche instability [Yoshioka
2003] of this experiment.

Easy Tuning. We list the parameters used in our examples in
Table 3 and the runtime performance of those simulations in Ta-
ble 2. In Figure 13, we simulate columns of dry sand with dif-
ferent friction angles collapsing on the ground. Different friction
angles directly affect the interaction between sand grains, there-
fore the final piling angle. While the real Young’s modulus of sand
is 3.537 × 107, we found that sometimes choosing a moderately
smaller value does not change the visual appearance. In Figure 10,
we show 2D inflow simulations with different Young’s modulus. A
moderately smaller Young’s modulus improves the efficiency of the
implicit solve. However, the material may exhibit jiggling behavior
if it is too small. We assert physically accurate Young’s modulus is
always the best choice unless an artistic elastic effect is desirable.

Two-way Coupling. The benefits of using MPM include automatic
self collision and coupling between different materials. In Figure 3,
we show an elastic ball interacting with a dry sand castle. MPM
naturally handles the two-way coupling without requiring any ad-
ditional treatment other than assigning different constitutive models
to different particles.

Drawing and Scooping. We further demonstrate the versatility of
our method by performing various tasks in a sand box. Figure 8
shows drawing a butterfly with a wooden stick. Figure 5 shows
raking sand in a Zen garden. Figure 11 shows scooping sand.

APIC Stability. Our method benefits from the APIC particle/grid
transfers [Jiang 2015; Jiang et al. 2015] due to its stability and low
numerical dissipation. In Figure 17, we run a 2D inflow simula-
tion and compare our result with Mast et al. [2013; 2014] where
a traditional FLIP transfer scheme is used. With the same material
parameters and time step sizes, our method does not suffer from the

Frame rate Min/frame Scheme ∆t Particle # Threads CPU ∆x Grid resolution Particles/cell
Castle 72 6.80 Implicit 1 × 10−3 7.95 × 105 4 †2.67GHz 0.01 300 × 140 × 200 8

Friction angle 120 4.10 Explicit 1 × 10−4 1.20 × 106 4 ‡3.33GHz 0.001 432 × 144 × 432 32
Hourglass 48 2.00 Explicit 1 × 10−4 4.60 × 105 12 ?3.00GHz 0.0025 160 × 360 × 160 8
Butterfly 24 10.31 Explicit 2.5 × 10−4 3.84 × 106 10 ?3.00GHz 0.0045 220 × 55 × 220 8

Butterfly close 48 21.23 Explicit 1 × 10−4 4.1 × 106 8 ?3.00GHz 0.0014 280 × 140 × 210 2
Raking 24 9.78 Explicit 2.5 × 10−4 3.84 × 106 10 ?3.00GHz 0.0045 220 × 55 × 220 8

Raking close 24 32.84 Explicit 1 × 10−4 4.3 × 106 8 ◦2.90GHz 0.0021 336 × 96 × 288 2
Pile from spout 120 4.34 Implicit 1.5 × 10−4 9.94 × 105 8 †2.67GHz 0.00083 240 × 96 × 240 32

Splash 240 9.27 Explicit 5 × 10−5 6.6 × 106 8 §3.47GHz 0.0078 256 × 256 × 256 9
Shovel 24 24.84 Explicit 1 × 10−4 1.96 × 106 4 §3.47GHz 0.005 160 × 100 × 100 8

Young’s modulus 24 49 × 10−4 Implicit 7.5 × 10−4 742/739/746/745 1 †2.67GHz 0.016 256 × 64 4

Table 2: Simulation performance. Note that ∆t denotes the maximum allowed time step size. The actual ∆t is adaptive and may be restricted
by CFL condition when the particle velocities are high. In all of our simulations we use a CFL number of 1, i.e., we don’t allow particles
to move further than ∆x in a time step. CPU types used are: †Intel Xeon X5650, ‡Intel Xeon W3680, ?Intel Xeon E5-2690 v2, ◦Intel Xeon
E5-2690, §Intel Xeon X5690.

unstable ringing instability like FLIP does. We further show the ro-
bustness and stability of our method in a 3D energetic scenario. In
Figure 2, a rigid ball is dropped into a 1m×1m×0.35m sand box
with impact speed 6m/s. The impact dynamics are stable and al-
most noise-free, resulting in a smooth and symmetric crown splash
visual appearance.

Comparison with the state-of-the-art method. We compare the
result of our method with the algorithm proposed by Narain et al.
[2010] for the collapse of a column of granular material. The results
shown in Figure 18 are at 150× 100× 150 grid resolution. Perfor-
mance data for this example at a variety of resolutions is shown in
Table 4. Two particle counts (initial and final) are listed for Narain
et al., since their particle counts tend to increase over time due to
particle splitting and merging. Although their algorithm runs 8.7
times faster at the highest resolution, our algorithm avoids the stair-
casing artifact and is able to produce a less viscous flow of dry
cohesion-less granular materials.

11 Discussion and Limitations

Limitations. There are methods that are much faster, for example
the position based dynamics approach in Macklin et al. [2014] or
other existing continuum approaches such as Narain et al. [2010].
However, when realism and intuitively designed parameters are
more important than raw performance, our method provides an al-
ternative with competitive computational expense. Also, although
the framework would generalize to a wide range of yield surfaces
and elastic potentials, we only investigated the Drucker-Prager
model. However, the Drucker-Prager cone is only equivalent to the
Coulomb friction shear/normal-stress relation in two dimensions.
In three dimensions, the elastic regime is described by the more
complicated region in the Mohr-Coulomb model, but the Drucker-
Prager model is a decent approximation [Mast 2013].

Future work. In future work, we will investigate a wider range
of plastic flows and yield surfaces and the effect of cohesion in
modeling soil or wet-sands. We would also like to investigate the
importance of hardening to visual simulation of sand.

Discussion. We note that explicit time stepping was often faster
than implicit time stepping. Although implicit steps are generally
larger than explicit, the cost required to solve the nonlinear equa-
tions of the implicit step was often larger than just taking more inex-
pensive explicit steps. Improvements in stability of explicit integra-
tion may be partly due to a better position update and APIC trans-
fers providing more stability than FLIP/PIC blends as in Stomakhin
et al. [2013], whose implicit scheme also benefited from a symmet-
ric treatment. Tuning time step and solver tolerances proved diffi-
cult to optimize, requiring different values for different examples.

Acknowledgements

The authors were partially supported by NSF CCF-1422795,
ONR (N000141110719, N000141210834), DOD (W81XWH-15-
1-0147), Intel STC-Visual Computing Grant (20112360) as well as
a gift from Disney Research. We would also like to thank R. Narain
for providing invaluable assistance in comparing with their method.

References

ALDUÁN, I., AND OTADUY, M. 2011. SPH granular flow with
friction and cohesion. In Proc ACM SIGGRAPH/Eurograph
Symp Comp Anim, 25–32.

ALDUÁN, I., TENA, A., AND OTADUY, M. 2009. Simulation of
high-resolution granular media. In Proc Cong Español Inf Graf.

BARDENHAGEN, S., BRACKBILL, J., AND SULSKY, D. 2000.
The material-point method for granular materials. Comp Meth
App Mech Eng 187, 3–4, 529–541.

BELL, N., YU, Y., AND MUCHA, P. 2005. Particle-based simula-
tion of granular materials. In Proc ACM SIGGRAPH/Eurograph
Symp Comp Anim, 77–86.

BONET, J., AND WOOD, R. 2008. Nonlinear continuum mechanics
for finite element analysis. Cambridge University Press.

CHANCLOU, B., LUCIANI, A., AND HABIBI, A. 1996. Physical
models of loose soils dynamically marked by a moving object.
In Comp Anim, 27–35.

CHANG, Y., BAO, K., ZHU, J., AND WU, E. 2012. A particle-
based method for granular flow simulation. Sci China Inf Sci 55,
5, 1062–1072.

ρ E ν Friction angle h0/h1/h2/h3

Castle 2200 3.537 × 105 0.3 — 35/0/0.2/10
Friction angle 2200 3.537 × 105 0.3 20/25/30/35/40 —

Hourglass 2200 3.537 × 105 0.3 — 35/9/0.3/10
Butterfly 2200 3.537 × 105 0.3 — 35/9/0.2/10

Butterfly close 2200 3.537 × 105 0.3 — 35/9/0.2/10
Raking 2200 3.537 × 105 0.3 — 35/9/0.2/10

Raking close 2200 3.537 × 105 0.3 — 35/9/0.2/10
Pile from spout 2200 3.537 × 105 0.3 30 —

Splash 1582 3.537 × 106 0.3 22 —
Shovel 2200 3.537 × 105 0.3 — 35/9/0.2/10

Young’s modulus 2200 103,4,5,6 0.3 — 35/9/0.3/10

Table 3: Material parameters are provided for all of our 3D simu-
lations. Friction angle φF and hardening parameters h0, h1, and
h3 are listed in degrees for convenience.

CHEN, P., AND WONG, S. 2013. Real-time auto stylized sand art
drawing. In CAD Comp Graph, 439–440.

CUMMINS, S., AND BRACKBILL, J. 2002. An implicit particle-
in-cell method for granular materials. J Comp Phys 180, 2, 506–
548.

DRUCKER, D., AND PRAGER, W. 1952. Soil mechanics and plas-
ticity analysis or limit design. Quart App Math 10, 157–165.

GAST, T., SCHROEDER, C., STOMAKHIN, A., JIANG, C., AND
TERAN, J. 2015. Optimization integrator for large time steps.
IEEE Trans Vis Comp Graph 21, 10, 1103–1115.

GONZALEZ, O., AND STUART, A. 2008. A first course in contin-
uum mechanics. Cambridge University Press.

IHMSEN, M., WAHL, A., AND TESCHNER, M. 2013. A la-
grangian framework for simulating granular material with high
detail. Comp Graph 37, 7, 800–808.

JAEGER, H., NAGEL, S., AND BEHRINGER, R. 1996. Granular
solids, liquids, and gases. Rev Mod Phys 68, 1259–1273.

JIANG, C., SCHROEDER, C., SELLE, A., TERAN, J., AND STOM-
AKHIN, A. 2015. The affine particle-in-cell method. ACM Trans
Graph 34, 4, 51:1–51:10.

JIANG, C. 2015. The material point method for the physics-based
simulation of solids and fluids. PhD thesis, University of Cali-
fornia, Los Angeles.

KLÁR, G., GAST, T., PRADHANA, A., FU, C., SCHROEDER, C.,
JIANG, C., AND TERAN, J. 2016. Drucker-prager elastoplas-
ticity for sand animation: Supplementary technical document.
ACM Trans Graph.

LENAERTS, T., AND DUTRÉ, P. 2009. Mixing fluids and granular
materials. Comp Graph Forum 28, 2, 213–218.

LI, X., AND MOSHELL, J. 1993. Modeling soil: realtime dynamic
models for soil slippage and manipulation. In Proc SIGGRAPH,
361–368.

LUCIANI, A., HABIBI, A., AND MANZOTTI, E. 1995. A multi-
scale physical model of granular materials. In Proc Graph Int,
136–146.

MACKLIN, M., MÜLLER, M., CHENTANEZ, N., AND KIM, T.
2014. Unified particle physics for real-time applications. ACM
Trans Graph 33, 4, 153:1–153:12.

MAST, C., ARDUINO, P., MACKENZIE-HELNWEIN, P., AND
MILLER, R. 2014. Simulating granular column collapse using
the material point method. Acta Geotech 10, 1, 101–116.

MAST, C. 2013. Modeling landslide-induced flow interactions with
structures using the Material Point Method. PhD thesis.

MAZHAR, H., HEYN, T., NEGRUT, D., AND TASORA, A. 2015.
Using Nesterov’s method to accelerate multibody dynamics with
friction and contact. ACM Trans Graph 34, 3, 32:1–32:14.

MILENKOVIC, V. 1996. Position-based physics: simulating the
motion of many highly interacting spheres and polyhedra. In
Proc SIGGRAPH, 129–136.

MILLER, G., AND PEARCE, A. 1989. Globular dynamics: a con-
nected particle system for animating viscous fluids. Comp Graph
13, 3, 305–309.

NARAIN, R., GOLAS, A., AND LIN, M. 2010. Free-flowing gran-
ular materials with two-way solid coupling. ACM Trans Graph
29, 6, 173:1–173:10.

Grid resolution Method Sec/Frame Particles

10 × 15 × 10
Ours 0.085 1.5K

Narain 0.019 1.8 − 2.4K

20 × 30 × 20
Ours 1.1 12K

Narain 0.16 13 − 20K

50 × 75 × 50
Ours 33 188K

Narain 3.4 194 − 330K

100 × 150 × 100
Ours 540 1.5M

Narain 62 1.5 − 2.7M

Table 4: Performance comparison with Narain et al. [2010].

NKULIKIYIMFURA, D., KIM, J., AND KIM, H. 2012. A real-time
sand simulation using a GPU. In Comp Tech Inf Man, vol. 1,
495–498.

NOCEDAL, J., AND WRIGHT, S. 2006. Numerical Optimization.
Springer series in operations research and financial engineering.
Springer.

ONOUE, K., AND NISHITA, T. 2003. Virtual sandbox. In Proc
Pac Conf Comp Graph App, 252–262.

PLA-CASTELLS, M., GARCIA-FERNANDEZ, I., AND MARTINEZ,
R. 2006. Interactive terrain simulation and force distribution
models in sand piles. In Cellular Automata, vol. 4173 of Lecture
Notes Comp Sci. 392–401.

RAM, D., GAST, T., JIANG, C., SCHROEDER, C., STOMAKHIN,
A., TERAN, J., AND KAVEHPOUR, P. 2015. A material point
method for viscoelastic fluids, foams and sponges. In Proc ACM
SIGGRAPH/Eurograph Symp Comp Anim, 157–163.

STEFFEN, M., KIRBY, R. M., AND BERZINS, M. 2008. Analysis
and reduction of quadrature errors in the material point method
(MPM). Int J Numer Meth Eng 76, 6, 922–948.

STOMAKHIN, A., SCHROEDER, C., CHAI, L., TERAN, J., AND
SELLE, A. 2013. A material point method for snow simulation.
ACM Trans Graph 32, 4, 102:1–102:10.

STOMAKHIN, A., SCHROEDER, C., JIANG, C., CHAI, L.,
TERAN, J., AND SELLE, A. 2014. Augmented MPM for phase-
change and varied materials. ACM Trans Graph 33, 4, 138:1–
138:11.

SULSKY, D., CHEN, Z., AND SCHREYER, H. L. 1994. A parti-
cle method for history-dependent materials. Comp Meth in App
Mech Eng 118, 1, 179–196.

SUMNER, R., O’BRIEN, J., AND HODGINS, J. 1999. Animating
sand, mud and snow. Comp Graph Forum 18, 1, 17–26.

YASUDA, R., HARADA, T., AND KAWAGUCHI, Y. 2008. Real-
time simulation of granular materials using graphics hardware.
In Comp Graph Imag Vis, 28–31.

YOSHIOKA, N. 2003. A sandpile experiment and its implica-
tions for self-organized criticality and characteristic earthquake.
Earth, planets and space 55, 6, 283–289.

YUE, Y., SMITH, B., BATTY, C., ZHENG, C., AND GRINSPUN,
E. 2015. Continuum foam: a material point method for shear-
dependent flows. ACM Trans Graph 34, 5, 160:1–160:20.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Trans Graph 24, 3, 965–972.

