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Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang and Joseph M. Teran

Abstract—Practical time steps in today’s state-of-the-art simulators typically rely on Newton’s method to solve large systems of nonlinear equations.
In practice, this works well for small time steps but is unreliable at large time steps at or near the frame rate, particularly for difficult or stiff simulations.
We show that recasting backward Euler as a minimization problem allows Newton’s method to be stabilized by standard optimization techniques with
some novel improvements of our own. The resulting solver is capable of solving even the toughest simulations at the 24 Hz frame rate and beyond.
We show how simple collisions can be incorporated directly into the solver through constrained minimization without sacrificing efficiency. We also
present novel penalty collision formulations for self collisions and collisions against scripted bodies designed for the unique demands of this solver.
Finally, we show that these techniques improve the behavior of Material Point Method (MPM) simulations by recasting it as an optimization problem.

Index Terms—Computer Graphics, Three-Dimensional Graphics and Realism, Animation

1 INTRODUCTION

THE most commonly used time integration schemes in use
today for graphics applications are implicit methods. Among
these, backward Euler [1], [2], [3], [4], [5] or variants on New-
mark methods [6], [7], [8] are the most common, though even
more sophisticated schemes like BDF-2 [9], [10], implicit-explicit
schemes [11], [12], or even the more exotic exponential integrators
[13] have received consideration. Integrators have been the subject
of comparison before (see for example [3], [9], [14]), seeking good
compromises between speed, accuracy, robustness, and dynamic
behavior.

These integrators require the solution to one or more nonlinear
systems of equations each time step. These systems are typically
solved by some variation on Newton’s method. Even the most
stable simulators are typically run several time steps per 24 Hz
frame of simulation. There is growing interest in running simu-
lations at larger time steps [15], so that the selection of Ar can
be made based on other factors, such as damping or runtime,
and not only on whether the simulator works at all. One of
the major factors that limits time step sizes is the inability of
Newton’s method to converge reliably at large time steps (See
Figures 3, 2, and 4), or if a fixed number of Newton iterations are
taken, the stability of the resulting simulation. We address this by
formulating our nonlinear system of equations as a minimization
problem, which we demonstrate can be solved more robustly.
The idea that dynamics, energy, and minimization are related
has been known since antiquity and is commonly leveraged in
variational integrators [6], [12], [16], [17], [18], [19], [20]. The
idea that the nonlinear system that occurs from methods like
backward Euler can be formulated as a minimization problem
has appeared many times in graphics in various forms [2], [4],
[5], [13], [19]. [19] point out that minimization leads to a method
that is both simpler and faster than the equivalent nonlinear root-
finding problem, and [5] show that a minimization formulation can
be used to solve mass-spring systems more efficiently. [17] use a
minimization formulation as a means of ensuring that a solution
to their nonlinear system can be found assuming one exists. [21]
shows that a minimization formulation can be used to enforce
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constraints robustly and efficiently. [2] shows that supplementing
Newton’s method with a line search greatly improves robustness.
[4] also shows that supplementing Newton’s method with a line
search and a definiteness correction leads to a robust solution
procedure. Following their example, we show that recasting the
solution of the nonlinear systems that result from implicit time
integration schemes as a nonlinear optimization problem results
in substantial robustness improvements. We also show that addi-
tional improvements can be realized by incorporating additional
techniques like Wolfe condition line searches which curve around
collision bodies, conjugate gradient with early termination on
indefiniteness, and choosing conjugate gradient tolerances based
on the current degree of convergence.

This publication is an extended version of [22] in which we
have applied the optimization integrator approach to the MPM
snow simulator of [23]. This allows us to take much larger time
steps than the original method and results in a significant speedup.

2 TIME INTEGRATION

The equations of motion for simulating solids are

f:f(xav)v

where f are forces. As is common in graphics we assume M
is a diagonal lumped-mass matrix. Since we are interested in
robustness and large time steps, we follow a backward Euler
discretization. This leads to
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which is a nonlinear system of equations in the unknown positions
x"*!. This system of nonlinear equations is normally solved with
Newton’s method. If we define
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then our nonlinear problem is one of finding a solution to h(x) = 0.
To do this, one would start with an initial guess x(o), such as the
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Fig. 1. Convergence of Newton’s method (middle) and our stabilized optimization
formulation (bottom) for a simple 36-dof simulation in 2D. The initial configuration
(top) is parameterized in terms of a pixel location, with the rest configuration
occurring at (%7 %) Initial velocity is zero, and one time step is attempted. Time
steps are (left to right) 170, 40, 20, 10, and 1 steps per 24 Hz frame, with
the rightmost image being At = 1. Color indicates convergence in 0 iterations
(black), 15 iterations (blue), 30 or more iterations (cyan), or failure to converge
in 500 iterations (red). Note that Newton’s method tends to converge rapidly or
not at all, depending strongly on problem difficulty and initial guess.

value predicted by forward Euler. This estimate is then iteratively
improved using the update rule

: . oh, .~ \ ' .
L) ) (a“‘(”)) h(x).
Each step requires the solution of a linear system, which is usually
symmetric and positive definite and solved with a Krylov solver
such as conjugate gradient or MINRES.

If the function h(x) is well-behaved and the initial guess
sufficiently close to the solution, Newton’s method will converge
very rapidly (quadratically). If the initial guess is not close enough,
Newton’s method may converge slowly or not at all. For small
enough time steps, the forward and backward Euler time steps
will be very similar (they differ by O(A#?)), so a good initial guess
is available. For large time steps, forward Euler will be unstable,
so it will not provide a good initial guess. Further, as the time
step grows larger, Newton’s method may become more sensitive
to the initial guess (see Figure 1). The result is that Newton’s
method will often fail to converge if the time step is too large.
Figures 2, 3, and 4 show examples of simulations that ought to be
routine but where Newton fails to converge at Ar = 1/24s.

Sometimes, only one, or a small fixed number, of Newton
steps are taken rather than trying to solve the nonlinear equation
to a tolerance. The idea is that a small number of Newton steps is
sufficient to get most of the benefit from doing an implicit method
while limiting its cost. Indeed, even a single Newton step with
backward Euler can allow time steps orders of magnitude higher
than explicit methods. Linearizing the problem only goes so far,
though, and even these solvers tend to have time step restrictions
for tough problems.

2.1 Assumptions

We have found that when trying to be very robust, assumptions
matter. Before introducing our formulation in detail, we begin
by summarizing some idealized assumptions we will make. In
practice, we will relax some of these as we go along.
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Fig. 2. Cube being stretched and then given a small compressive pulse, shown
with our method (top) and standard Newton’s method (bottom). Both simulations
were run with one time step per 24 Hz frame. In this simulation, Newton’s method
is able to converge during the stretch phase, but a simple pulse of compression,
as would normally occur due to a collision, causes it to fail to converge and never
recover. Newton’s method requires five time steps per frame to converge on this
simple example.

Al: Masses are positive

A2: f= —%—f for some function ®
A3: @ is bounded from below
A4 PisC!

Assumption (A1) implies that M is symmetric and positive definite
and is useful for theoretical considerations; scripted objects violate
this assumption, but they do not cause problems in practice.

Conservative forces always satisfy assumption (A2), and most
practical elastic force models will satisfy this. We will show in
Section 4.2 that even some damping models can be put into the
required form. Friction can be given an approximate potential
which is valid for small A¢ (See [24]). Since our examples focus on
taking larger time steps we address the problem by incorporating
friction explicitly after the Newton solve.

Assumption (A3) is generally valid for constitutive models,
with the global minimum occurring at the rest configuration.
Gravity is an important example of a force that violates this
assumption. In Section 2.3, we show that assumption (A3) can
be safely relaxed to include forces like gravity.

Assumption (A4) is a difficult assumption. Technically, this
assumption is a show-stopper, since we know of no constitutive
model that is both robust and satisfies it everywhere. To be
practical, this must be immediately loosened to C°, along with
a restriction on the types of kinks that are permitted in ®. The
practical aspects of this are discussed in Section 3.3.

2.2 Minimization problem

The solution to making Newton’s method converge reliably is to
recast the equation solving problem as an optimization problem,
for which robust and efficient methods exist. In principle, that can
always be done, since solving h(x) = 0 is equivalent to minimizing
|A(x)|| assuming a solution exists. This approach is not very
convenient, though, since it requires a global minimum of ||h(x)]|.
Further minimization using Newton’s method would require the
Hessian of ||h(x)||, which involves the second derivatives of our
forces. The standard approach only requires first derivatives. What
we really want is a quantity E that we can minimize whose second
derivatives only require the first derivatives of our forces. That
is, we need to infegrate our system of nonlinear equations h(x).
Assumption (A2) allows us to do this. This way of recasting the
problem also requires only a local minimum be found.
We can write (1) as

od
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h(x)=M A
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Fig. 3. Cube being stretched: initial configuration (left), our method at t = 0.4 s
and ¢t = 3.0s (middle), and standard Newton’s method att = 0.4s and t = 3.0s
(right). Both simulations were run with one time step per 24 Hz frame. Newton’s
method requires three time steps per frame to converge on this simple example.

We note that if we set
1
2At?

then we have h = a—f. If the required assumptions are met, a global
minimum of E always exists.! By assumption (A4), E(x"'!) is
smooth at its minima, so % (x"*') = 0 or equivalently h(x"*') =
0.2 Any local minimum is a solution to our original nonlinear
equation (1). Although we are now doing minimization rather than
root finding, we are still solving exactly the same equations. The
discretization and dynamics will be the same, but the solver will
be more robust. In particular, we are not making a quasistatic
approximation.

r=x"+A" E(x)= (x—%)"M(x—3)+,

2.3 Gravity

A graphics simulation would not be very useful without gravity.
Gravity has the potential energy function —Mg” x, where g is the
gravitational acceleration vector, but this function is not bounded.
An object can fall arbitrarily far and liberate a limitless supply of
energy, though in practice this fall will be stopped by the ground
or some other object. Adding the gravity force to our nonlinear
system yields

x—x"—Atv" 0P
Z Mo+ —
Ar? 8+ ox’

which can be obtained from the bounded minimization objective

1
E() = an
A more convenient choice of E, and the one we use in practice,
is obtained by simply adding the effects of gravity ®, = —Mg'x
into ®. Since all choices E will differ by a constant shift, this
more convenient minimization objective will also be bounded
from below.

h(x)=M

(x—x%—A’g) " M(x—i—A’g) + .

3 MINIMIZATION

The heart of our simulator is our algorithm for solving optimiza-
tion problems, which we derived primarily from [25], though
most of the techniques we apply are well-known. We begin by
describing our method as it applies to unconstrained minimization
and then show how to modify it to handle the constrained case.

1. Assumptions (A1) and (A3) ensure that E is bounded from below. Let B
be a lower bound on ®. Then, let L = ®(%) — B+ 1 and Q be the region where
2T1;2(x —%)"M(x — %) < L. Note that Q is a closed and bounded ellipsoid
centered at X. £ must have a global minimum when restricted to the set Q
since it is a continuous function on a closed and bounded domain. Outside Q,
we have E(x) > L+ B = E(%) + 1, so that the global minimum inside Q is in
fact a global minimum over all possible values of x.

2. Relaxation of assumption (A4) is discussed in Section 3.3, where @ is
allowed to have ridge-type kinks. Since these can never occur at a relative
minimum, the conclusion here is unaffected.

D

Fig. 4. Two spheres fall and collide with one another with Ar = 1/24s: initial
configuration (left), our method (top), and Newton’s method (bottom). Notice the
artifacts caused by Newton not converging. Newton’s method requires six time
steps per frame to converge on this example.

3.1 Unconstrained minimization

Our optimization routine begins with an initial guess, x*). Each
iteration consists of the following steps:

1) * Register active set

2) Compute gradient VE and Hessian H of E at x\!

3) Terminate successfully if | VE| <t

4) Compute Newton step Ax = —H 'VE

5) Make sure Ax is a downhill direction

6) Clamp the magnitude of Ax to ¢ if ||Ax|| > ¢

7) Choose step size o in direction Ax using a line search
8) Take the step: x(*!) = x() + aAx

9) * Project x(*!)

Here, 7 is the termination criterion, which controls how accurately
the system must by solved. The length clamp ¢ guards against the
possibility of the Newton step being enormous (if [|Ax|| = 10'%,
computing ®(x) 4+ Ax) is unlikely to work well). Its value should
be very large. Our line search is capable of choosing o > 1, so
the algorithm is very insensitive with respect to the choice ¢. We
normally use ¢ = 10°. Steps beginning with * are only performed
for constrained optimization and will be discussed later. A few of
the remaining steps require further elaboration here.

Linear solver considerations: Computing the Newton step
requires solving a symmetric linear system. The obvious candidate
solver for this is MINRES that can handle indefinite systems, and
indeed this will work. However, there are many tradeoffs to be
made here. In contrast to a normal Newton solve, an accurate
estimate for Ax is not necessary for convergence. Indeed, we
would still converge with high probability if we chose Ax to be
a random vector. The point of using the Newton direction is that
convergence will typically be much more rapid, particularly when
the superconvergence of Newton’s method kicks in. (Choosing
Ax = —VE leads to gradient descent, for example, which can
display notoriously poor convergence rates.) When the current
estimate is far from the solution, the exact Newton direction tends
to be little better than a very approximate one. Thus, the idea is
to spend little time on computing Ax when ||[VE|| is large and
more time when it is small. We do this by solving the system to

a relative tolerance of min(},0\/max(|[VE[|,t)). The } ensures

that we always reduce the residual by at least a constant factor,
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Fig. 5. Line search showing the gradient descent direction (green), Newton
direction (red), and effective line search path (blue). The constraint is initially
feasible (left), active (middle), and touching but inactive (right). Constraints are
projected if violated or active, but only inactive constraints may separate.

which guarantees convergence. The scale ¢ adjusts for the fact
that VE is not unitless (we usually use ¢ = 1). If our initial guess
is naive, we must make sure we take at least one minimization
iteration, even if VE is very small. Using T here ensures that we
do not waste time solving to a tiny tolerance in this case.

Conjugate gradient: One further optimization is to use
conjugate gradient as the solver with a zero initial guess. If
indefiniteness is encountered during the conjugate gradient solve,
return the last iterate computed. If this occurs on the first step,
return the right hand side. If this is done, Ax is guaranteed
to be a downhill direction, though it might not be sufficiently
downhill for our purposes. In practice, indefiniteness will only
occur if far from converged, in which case little time is wasted
in computing an accurate Ax that is unlikely to be very useful
anyway. Indeed, if the system is detectably indefinite and Ax
is computed exactly, it might not even point downhill. Since
we are searching for a minimum of E (even a local one), the
Hessian of E will be symmetric and positive definite near this
solution. (Technically, it need only be positive semidefinite, but
in practice this is of little consequence.) Thus, when we are close
enough to the solution for an accurate Newton step to be useful,
conjugate gradient will suffice to compute it. This is very different
from the normal situation, where a solver like MINRES or an
indefiniteness correction are employed to deal with the possibility
of indefiniteness. In the case of our solver, neither strategy is
necessary, and both make the algorithm slower.

Downhill direction: Making sure Ax points downhill is fairly
straightforward. If Ax- VE < —x||Ax||||VE]|, then we consider
Ax to be suitable. Otherwise, if —Ax is suitable, use it instead. If
neither Ax nor —Ax are suitable, then we use the gradient descent
direction —VE. Note that if the conjugate gradient strategy is
used for computing the Newton direction, then —Ax will never

Fig. 6. Random test with 65 x 65 x 65 particles simulated with Az = 1/24 s for
three stiffnesses: low stiffness recovering over 100 time steps (top), medium
stiffness recovering over 40 time steps (bottom left), and high stiffness recover-
ing in a single time step (bottom right). The red tetrahedra are inverted, while
the green are uninverted.

4

be chosen as the search direction at this stage. We have found
k=102 to work well.

Line search: For our line search procedure, we use an algo-
rithm for computing o such that the strong Wolfe Conditions are
satisfied. See [25] for details. The line search procedure guarantees
that £ never increases from one iteration to the next and that,
provided certain conditions are met, sufficient progress is always
made. One important attribute of this line search algorithm is that
it first checks to see if Ax itself is a suitable step. In this way, the
line search is almost entirely avoided when Newton is converging
properly.

Initial guess: A good initial guess is important for efficient
simulation under normal circumstances. Under low-A¢ or low-
stress conditions, a good initial guess is obtained by replacing
£ by £ resulting in

©) _ x" — Ary"
Mx x" 1%
Ar?

Solving for x"*! yields the initial guess

= f(x").

£ =¥ 4 AV APM T f (2.

This initial guess is particularly effective under free fall, since
here the initial guess is correct and no Newton iterations are
required. On the other hand, this initial guess is the result of
an explicit method, which will be unstable at large time steps
or high stress. Under these conditions, this is unlikely to be a
good initial guess and may in fact be very far from the solution.
Under these situations, a better initial guess is obtained from
x(© = x" 4+ Atv". In practice, we compute both initial guesses and
choose the one which produces the smaller value of E. This way,
we get competitive performance under easy circumstances and
rugged reliability under tough circumstances.

3.2 Constrained minimization

‘We use constrained minimization for some of our collisions, which
may result in a large active set of constraints, such as when an ball
is bouncing on the ground. As the ball rises, constraints become
deactivated. As the ball hits the ground, more constraints become
activated. The change in the number of active constraints from
iteration to iteration may be quite significant. This would render
a traditional active set method impractical, since constraints are
activated or deactivated one at a time. Instead, we use the gradient-
projection method as our starting point, since it allows the number
of active constraints to change quickly. The downside to this
choice is that its reliance on the ability to efficiently project to the
feasible region limits its applicability to simple collision objects.

g g

Fig. 8. Point test with 65 x 65 x 65 particles simulated with Ar = 1/24 s for three
stiffnesses: low stiffness recovering over 120 time steps (top), medium stiffness
recovering in 5 time steps (bottom left), and high stiffness recovering in a single
time step (bottom right).
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Fig. 7. A torus falls on the ground (constraint collisions) and collides with itself (penalty collisions).

Projections: Let P(x) be the projection that applies P, to x,,
for all body-particle pairs (b, p) that are labeled as active or are
violated (¢,(x,) < 0). Note that pairs such that ¢,(x,) =0 (as
would be the case once projected) are considered to be touching
but not violated. The iterates x() obtained at the end of each
Newton step, as well as the initial guess, are projected with P.

Register active set: Let E’ be the objective that would be com-
puted in the unconstrained case. The objective function for con-
strained optimization is E(x) = E’(P(x)). Compute the gradient
VE'. Constraints that are touching and for which VE'- V¢, > 0
are labeled as active for the remainder of the Newton step. All
others are labeled as inactive. No constraint should be violated
at this stage. Note that E'(x()) = E(x(!) is true before and after
every Newton step, since constraints are never violated there.

Curved paths: Note that configurations are always projected
to the feasible region before E is computed. One may interpret
this as performing line searches along curved paths, as illustrated
is Figure 5.

When the unprojected line search curve passes through the
medial axis of an object, it is possible for the search curve to
be disconnected. This causes a discontinuity in the energy as
seen from the line search. If the line search does not stop at
the discontinuity, the discontinuity has no effect. If it does, the
constraint causing the discontinuity will be active (in which case
the discontinuity is projected out) or separating (in which case we
move away from the discontinuity) in the next Newton step. Thus
a disconnected search curve is not a problem for our method.

Discretized level sets: While discontinuities in the curved
paths do not pose a problem when the level set is computed
correctly, the situation can be quite different when the level
set is approximated. This occurs when a grid-based level set
is used to approximate a collision object. As a particle moves
from cell to cell, the level set approximation (and thus projected
location) changes slightly but unpredictably. The resulting kinks or
discontinuities in the search path produce kinks or discontinuities
in the objective function along the search line, which may cause
the integrator to get stuck. For this reason, we restrict our use of
optimization constraints to analytic level sets.

Derivatives: Note also that £ must be differentiated twice,
and that involves differentiating the projection function P twice.
Since P depends on the first derivatives of ¢, the Hessian H of
E would seem to require third derivatives. We note, however, that
the only occurrence of the third derivative of ¢, occurs multiplied
by ¢,. Since H is used only at the beginning of the Newton step
when the configuration is feasible, ¢5(x,) = 0 or P;, is the identity
function. The third derivative term is zero either way, so only the
second derivatives of ¢, are required.

3.3 Practical considerations

There are a few matters of practicality relating to assumption
(A4) that are worth mentioning regarding the effective use of
this method. The most important of these is that the method
does not tolerate discontinuities in E, not even very minute ones,
except under some special circumstances that we mention below.
In practice, what tends to happen is that a line search encounters
a discontinuity in E, where E rises abruptly. The line search
dutifully advances the configuration right up to location of this
discontinuity. If in the next Newton iteration the descent direction
points into the discontinuity, no progress can be made. The solver
is stuck.

Discontinuities in VE can also cause problems and are im-
possible to avoid in general. These are kinks in E, which can be
broken down into two types: valleys and ridges. The classification
is based on whether the kink is ridge-like or valley-like. Ridge-
type kinks are acceptable in practice. Valley-type kinks must be
avoided, since they can also cause the solver to become stuck for
the same reason. A minimum that occurs at a valley-type kink
is also problematic since it does not correspond to a solution of
(1). Thus, the corotated constitutive model, though not completely
unusable with this solver, is ill-advised (the fixed variant has no
such valleys [26] and is fine). Mass-spring systems are also fine.
In practice, we have only encountered problems when evaluating
self-collision models. The self-collision model we propose works
well with the method.

The second practical consideration is that E can be somewhat
noisy. This is particularly true with forces that involve an SVD,
since its computation often involves a balance between speed and
accuracy. If the Newton tolerance T is set too low, the solver will
be forced to optimize an objective E where the actual change in E
is hidden by the noise. Even with our noisy SVD, we found there
is typically at least a three-order-of-magnitude range between the
largest value of T below which no change in output is visually
observed and the smallest value above which E is not too noisy to
optimize reliably. If we make the E computation robust, E can be
optimized down to roundoff level.

Another practical consideration is that occasionally very large
changes in the configuration are considered by the line search.
For most forces, this is of little consequence. For self-collisions,
however, this poses a major performance hazard. We note that
when this occurs, the other components of E become very large,
too. We first compute all contributions to E except self-collisions.
Since our self-collision potential has a global minimum of zero,
the real E will be at least as large as the estimate. If this partial
E is larger than E(x"), we do not compute self-collisions at all.
While this presents a discontinuity in E to the optimizer, it is safe
to do so under these conditions, since the optimizer will avoid the
large value in E by taking a smaller step along the search line.
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Fig. 9. 125 tori are dropped into a bowl at 5 time steps per frame, resulting in significant deformation and tough collisions.

4 FORCES

Our formulation is fairly insensitive to the underlying forces,
provided it has a continuous potential energy function. We use
five forces in our simulations. The simplest of these is gravity,
which we addressed in Section 2.2. We also employ a hyperelastic
constitutive model (Section 4.1), a Rayleigh damping model
(Section 4.2), and two collision penalty force models (Sections 5.2
and 5.3).

4.1 Elastic

A suitable hyperelastic constitutive model must have a few key
properties to be suitable for this integrator. The most important is
that it must have a potential energy function defined everywhere,
and this function must be continuous. The constitutive model must
be well-defined for any configuration, including configurations
that are degenerate or inverted. This is true even if objects do
not invert during the simulation, since the minimization procedure
may still encounter such states. Examples of suitable constitutive
models are those defined by the corotated hyperelasticity energy
[27], [28], [29], [30], [31], [32] (but see Section 3.3), and the fixed
corotated hyperelasticity variant [26]. Stress-based extrapolated
models [33], [34] are unsuitable due to the lack of a potential
energy function in the extrapolated regime, but energy-based
extrapolation models [26] are fine. We use the fixed corotated
variant [26] for all of our simulations for its combination of
simplicity and robustness.

4.2 Damping

At first, one might conclude that requiring a potential energy may
limit our method’s applicability, since damping forces cannot be
defined by a potential energy function. A very simple damping
model is given by f = —kMv"*!. Eliminating the velocity from
the equation yields

xn+1 —x"

nt+ly _
) = kM

(k>0).
The scalar function
k
+1y __ n+1 T +1 _ n
D) = Y (x X M(x" x")

has the necessary property that f = —aa%. Note that this @ looks
very similar to our inertial term in E, and it is similarly bounded
from below. That this @ is not a real potential energy function is
evident from its dependence on x" and At, but it is nevertheless
suitable for use in our integrator. This simple drag force is not
very realistic, though, so we do not use it in our simulations.

A more realistic damping force is Rayleigh damping. Let
Y be an elastic potential energy 2function. The stiffness matrix

corresponding to this force is —gx—a“;, and the Rayleigh damping

force and associated objective are
Py k oy
— —k n+1 n-+1 (DC:f xn-H_ AV iR S )
s (axax(x )>v At <( %) ox v

This candidate @, has at least two serious problems. The first is
that second deriyatives of @, involve third derivatives of y. The
second is that a%'; may be indefinite, in which case the damping
force may not be entirely dissipative. Instead, we approximate
Rayleigh damping with a lagged version. Let D = a%‘; (x™). Since
D does not depend on x"*!, the lagged Rayleigh damping force
and associated objective are
k

Y,
This solves the first problem, since the second derivative of &,
is just %D. Since D is not being differentiated, it is safe to
modify it to eliminate indefiniteness as described in [26], [34].
This addresses the second problem. We did not use the damping
model found in [35], which uses y(x"*!) with x" used as the rest
configuration, because it is not defined when x" is degenerate.

f — _van+l d, (xn+l _xn)TD(xn+l _xn).

5 COLLISIONS

Collisions are a necessary part of any practical computer graphics
simulator. The simplest approach to handling collisions is to
process them as a separate step in the time integration scheme.
This works well for small time steps, but it causes problems when
used with large time steps as seen in Figure 4. Such arrangement
often leads to the collision step flattening objects to remove
penetration and the elastic solver restoring the flattened geometry
by pushing it into the colliding object. To get around this problem,
the backward Euler solver needs to be aware of collisions. A well-
tested strategy for doing this is to use penalty collisions, and we
do this for two of our three collision processing techniques.

5.1 Object collisions as constraints

Our first collision processing technique takes advantage of our
minimization framework to treat collisions with non-simulated
objects as inequality constraints. Treating collisions or contacts
as constraints is not new and in fact forms the basis for LCP for-
mulations such as [36], [37]. Unlike LCP formulations, however,
our formulation does not attempt to be as complete and as a result
can be solved about as efficiently as a simple penalty formulation.

Our constraint collision formulation works reliably when the
level set is known analytically. This limits its applicability to
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Fig. 10. Sphere dropping hard on the ground with Ar = 1/24 s with constraint collisions (top) and collisions as a post-process (bottom). Penalty collisions produce
a result very similar to constraint collisions, though some penetration with the ground occurs. Note that the post-processing approach leads to inversion during

recovery from the collision.

analytic collision objects. While this approach is feasible only
under limited circumstances, these circumstances occur frequently
in practice. When this approach is applicable, it is our method of
choice, since it produces better results (e.g., no interpenetration)
for similar cost. When this formulation is not applicable, we use a
penalty collision formulation instead.

We begin by representing our collision objects (indexed with
b) by a level set, which we denote ¢, to avoid confusion with
potential energy. By convention, ¢,(x) < O for points x in the
interior of the collision object b. Our collision constraint is
simply that ¢, (x;“) > 0 for each simulation particle p and every
constraint collision object b. With such a formulation, we can
project a particle at x,, to the closest point x;, on the constraint
manifold using

x;, = Pyp(xp) = xp — 0p(x,) Vs (x,,).

We show how to solve the resulting minimization problem in
Section 3.2.

We apply friction after the Newton solve. The total collision
force felt by particles is

Atf = VE' (&) = VE(@'™') = VE'(x"*) — VE'(P(x")),

col —
where E’ is the objective in the absence of constraints (See
Section 3.2). Only collision pairs that are active at the end of
the minimization will be applying such forces. We use the level
set’s normal and the collision force to apply Coulomb friction to

colliding particles. In particular, we use the rule (vZ+1 — 9;“)
_ n+1 _ n+1 n+1 _ _n+l n+1
n=V¢ Vi = (n- v, n Vo =V, =V

[JAZ‘('I' col)
9n+1 _ vn+1 -+ max (1 _ A Jpeot) 0 vl’H*I.
’ - mlvp |l )

Our constraint collision formulation is not directly applicable
to grid-based level sets, since we assume that Py, (Py,(x,)) =
Py,(x,) and P,,(x) is continuous. Continuity of P,,(x) can be
achieved, for example, with C! cubic spline level set interpolation.
However, it will not generally be true that Py, (P, (x,)) = Py (%p).
Alternatively, the projection routine can be modified to iterate the
projection to convergence, but then continuity is lost.

5.2 Object penalty collisions

When a collision object is not analytic, as will normally be the
case for characters for instance, we use a penalty formulation
instead. As in the constraint formulation, we assume our collision
object is represented by a level set ¢,. The elastic potential energy
Dy (x,) of our penalty force is @y, (x) = 0 if ¢p(x,) > 0 and
@, (x,) = kiy(x,)* otherwise. Since @y, is a potential energy,
we must differentiate it twice for our solver. It is important
to compute the derivatives of ¢, exactly by differentiating the
interpolation routine rather than approximating them using central
differences. While a C' cubic spline interpolation is probably a
wiser interpolation strategy since it would avoid the energy kinks
that may be caused by a piecewise linear encoding of the level set,
we found linear interpolation to work well, too, and we use linear
interpolation in our examples.

As in the constraint case, we apply friction after the Newton
solve. The total collision force felt by a particle due to object
penalty collisions is obtained by evaluating the penalty force at
x"*1 and using this force as the normal direction. That is,

acbb 1 f Lcol
fwl:_#(x’“' ) fpyn:”f ,col” :ﬁ
= metn v =)
At f,
§71 = 4 max (1 _ HALTpn O> Yl
! m mllvp |7

5.3 Penalty self-collisions

We detect self-collisions by performing point-tetrahedron inclu-
sion tests, which we accelerate with a bounding box hierarchy.
If a point is found to be inside a tetrahedron but not one of the
vertices of that tetrahedron, then we flag the particle as colliding.
Once we know a particle is involved in a self collision, we need
an estimate for how close the particle is to the boundary. If this
particle has collided before, we use the primitive it last collided
with as our estimate. Otherwise, we compute the approximate
closest primitive in the rest configuration using a level set and
use the current distance to this surface element as an estimate.
Given this upper bound estimate of the distance to the bound-
ary, we perform a bounding box search to conservatively return all
surface primitives within that distance. We check these candidates
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Fig. 11. A torus is pushed through a hole (constraint collisions).

to find the closest one. Now we have a point-primitive pair, where
the primitive is the surface triangle, edge, or vertex that is closest
to the point being processed. Let d be the square of the point-
primitive distance. The penalty collision energy for this point is
® = kd+/d +¢, where € is a small number (10™'% in our case)
to prevent the singularities when differentiating. Note that this
penalty function is approximately cubic in the penetration depth.
This final step is the only part that must be differentiated.

As with the other two collision models, we apply friction after
the Newton solve. In the most general case, a point ny collides
with a surface triangle with vertices n;, n,, and ns. As with the
object penalty collision model, collision forces are computed by
evaluating ®(x"*!) and its derivative. The force applied to ng is
denoted f; its direction is taken to be the normal direction n.
The closest point on the triangle to ny has barycentric weights
w1, wa, and ws. Let wy = —1 for convenience. Let Q =1 —nn",
noting than Q* = Q. If we apply a tangential impulse Qj to these
particles, their new velocities and kinetic energy will be

31
it =vit twm, 'Qj  KE=Y Em,,,.(f:;jl)%zj‘.
n=0
We want to minimize this kinetic energy to prevent friction from
causing instability. Since M is positive definite, we see that KE is

N

_ gl Ty

Fig. 12. A stack of deformable boxes of varying stiffness is struck with a rigid
kinematic cube (constraint collisions) with At = 1/24s. The green boxes are 10
times as stiff as the blue boxes.

Fig. 13. An armadillo is squeezed between 32 rigid cubes (constraint collisions)
with Az = 1/24s. When this torture test is run at 1, 2, 4 and 8 steps per frame
the average runtime per frame is 46, 58, 88, and 117 seconds respectively.

minimized when
3 3
— 1 - il ——1 —1
VKE=0v+m Qj=0 v:Zw,-vni m :Zw,-mni w;.
n=0 n=0

If we let j = —mQ@v then VKE =0 and Qj = j. This leads to the
friction application rule

P =y me ! min (,u||f||’ 1>j.
' ’ ’ 141

Note that all three friction algorithms decrease kinetic energy
but do not modify positions, so none of them can add energy
to the system, and thus stability ramifications are unlikely even
though friction is applied explicitly. This approach to friction can
have artifacts, however, since friction will be limited to removing
kinetic energy from colliding particles. This limits the amount of
friction that can be applied at large time steps. An approach similar
to the one in [36] that uses successive Quadratic Programming
solves could possibly be applied to eliminate these artifacts.
However [38] found existing large-scale sparse QP solvers to be
insufficiently robust, and thus we did not use this method.

6 ACCELERATING MATERIAL POINT METHOD

In this section we describe the application of this optimization
approach to the snow simulation from [23]. Their approach to
simulating snow uses the material point method (MPM), a hybrid
Eulerian-Lagrangian formulation that uses unstructured particles
as the primary representation and a background grid for applying
forces. They used an energy-based formulation to facilitate a semi-
implicit treatment of MPM. While this leads to a significant time
step improvement over more standard explicit treatments, it still
requires a small time step in practice to remain stable. We show
how to modify their original formulation so that we are able to take
time steps on the order of the CFL condition. We also provide an
improved treatment of collisions with solid bodies that naturally
handles them as constraints in the optimization. Although the
optimization solve is for grid velocities, we show that a backward
Euler (rather than forward Euler) update of particle positions in
the grid based velocity field automatically guarantees no particles
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Fig. 14. Our approach works naturally with the material point method simulations from [23]. Here we demonstrate with a snowball that drops to the ground and
fractures. Notably, we provide a new treatment of particle position updates that naturally prevents penetration in solid objects like the ground.

penetrate solid bodies. In addition to the significantly improved
stability, we demonstrate in Section 7.1 that in many cases a
worthwhile speedup can be obtained with our new formulation.

6.1 Revised MPM time integration

In Section 4.1 of [23], the original method is broken down into
10 steps. From the original method, steps 3-6 and 9-10 are
modified. We begin by summarizing these steps as they apply
to our optimization-based MPM integrator.

1) Rasterize particle data to the grid. First, mass and
momentum are transferred from particles to the grid using
mi =Y., m,wj, and mivj =}, v,mpwj,. Velocity is then
obtained by division using v} = m}v}/m}. Transferring
velocity in this way conserves momentum.

2) Compute particle volumes. First time step only. Our
force discretization requires a notion of a particle’s vol-
ume in the initial configuration. Since cells have a well-
defined notion of volume and mass, we can estimate a
cell’s density as p? = m{/h* and interpolate it back to
the particle as pg =Y p?w?p. Finally, we can define a
particle’s volume to be V19 =m,/ pg. Though rather indi-
rect, this approach automatically provides an estimate of
the amount of volume that can be attributed to individual
particles.

3) Solve the optimization problem. Minimize the objective
(2) using the methods of Section 3. This produces a new
velocity estimate v?“ on the grid. This step replaces steps
3-6 of the original method.

4) Update deformation gradient. The deformation gra-
dient for each particle is updated as F Z“ =+
AthZ“)F 7, where we have computed VVZ“ =
Y V?H(Vw;’p)T. Note that this involves updates for the
elastic and plastic parts of F. See [23] for details, as they
are unchanged.

5) Update particle velocities. Our new particle velocities
are Vi = (1 — a)vpic, + o fp,. where the PIC part is
Viic, = LiviT'w}, and the FLIP part is Vi, = Vi +
Y (vi T —viwi,. We typically used o = 0.95.

6) Update particle positions. Particle positions are updated
using x;*' = x + Arv(x)™!) as described in Section 6.3.
This step replaces steps 9-10 of the original method.

6.2 Optimization formulation

The primary modification that we propose is to use the opti-
mization framework in place of the original solver. For this, we

must formulate their update in terms of an optimization objective
E. The original formulation defined the potential energy ®(x;)
conceptually in terms of the grid node locations x;. Here we use
the index i to refer to grid node indices. Their grid is a fixed
Cartesian grid and never moves, and they solve for v;’“. We will
follow the same conceptual formulation here. This leads to the
objective

1
E(v;) :Zimi||vi—v?||2+<I>(x§'+Atv,-), )

1

where m; is the mass assigned to grid index i. Our final v;’“
is computed so that E(v!*") is minimized. We solve this mini-
mization problem as in Section 3. Note that we apply plasticity
explicitly as in the original formulation.

Using larger time steps causes our linear systems to become
slower to solve. In the case of MPM, we found it beneficial to use

Figure | Ours? fsr;enﬁi g;;‘fe (s) | # dofs %;’pes
9 Y 5 200 984k 2.2
3 mid Y 1 0.51 18.5k 2.8
31t N 1/3 8.7/1.1 18.5k | 15/0.7
2 top Y 1 0.52 18.5k 2.9
2 bot N 1/5 3.8/1.3 18.5k | 6.6/0.6
4 top Y 1 4.25 28.0k 8.1
4 bot N 1/6 33/7.3 28.0k | 26/0.8
7 Y 5 1.13 7.9k 2.1
6 top Y 1 68.0" 824k 12.3
61t Y 1 1470* 824k 236.8
6rt Y 1 667" 824k 109.6
8 top Y 1 43.1" 824k 10.7
81t Y 1 831+ 824k 155.9
8rt Y 1 444+ 824k 88.8
10 top Y 1 0.42 14.0k 3.8
10 bot N 1* 1.13 14.0k 9.8
11 Y 1 0.45 7.9k 8.6
13 Y 1 46.1 73.8k 34.7
12 Y 1 17.1 138k 6.9

Fig. 15. Time step sizes and average running times for the examples in the
paper. The last column shows the average number of linear solves per time
step. Each of the Newton’s method examples fails to converge at the frame rate.
For fairer comparison, timing information for all but the one marked * is shown
at the frame rate and the stable time step size. The stress tests marked ™ spend
the majority of their time on the first frame or two due to the difficult initial state.
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Fig. 16. The extension of our method to [23] is robust to large deformation and collisions scenarios. Here we demonstrate this for with two snowballs that smash

into each other and fall to the ground.

the diagonal preconditioner

L; =Y diag(m,w;,I + APV H),
p

where
H = (A +up) Vwip, Vi, + 11, V] Vi L.

This preconditioner approximates the diagonal of the stiffness
matrix at the rest configuration. This works well since snow is
unable to deform much without hardening or fracturing. We use
an approximation to the diagonal, rather than the exact diagonal,
because we never explicitly form the matrix. This approximation
suffices for preconditioning and is more efficient.

The original method performed solid body collisions while
computing new grid velocities. We treat body collisions using
constraints in our optimization problem. We assume sticking
collisions and let P(v;) = O for all grid nodes i that lie inside
a collision object. Note that we do not permit separation during
optimization, though separation may occur during other steps in
the algorithm.

6.3 Particle position update

One of the difficulties with running the method of [23] with
larger time steps is the particle-based solid body collisions. They
were needed under the old formulation to prevent settling into the
ground, but at the same time they cause bunching of particles at
collision objects. These problems are exacerbated at larger time
steps, and another approach is required. Instead, we show that
altering the way we update particle positions can avoid the need
for a separate particle collision step.

For each particle position x, we solve the backward Euler
update equation

x;“ :x;—l—Atv(xZ“) v(xZ“) = Zv?“N{'(xp),
1

where v(xZ“) is the interpolated grid velocity at the particle
location x;“. These updates are independent per particle and
so are relatively inexpensive. A solution to this backward Euler
equation always exists nearby provided a suitable CFL condition
is respected (no particle moves more than Ax in a time step). Note
that pure PIC velocities are used in the particle position updates.
While a combination of FLIP/PIC is still stored on particles (to
avoid excessive dissipation in subsequent transfer to grid), PIC
velocities for position updates lead to more stable behavior.

The motivation for our modification can be best understood
in the case of sticking collisions. Inside a collision object, we

will have v?H = 0 due to the collision constraints imposed during
optimization. If we then assume that we will interpolate v(x"!) =
0 here, then we can see from x;™" = x7, + Arv(x; ') that X = X,
Note that if a particle ends up inside the collision object, then it
must have already been there. Thus, it is not possible for particles
to penetrate collision objects. In our implementation, v(xZ“) =0
will only be true if we are slightly inside collision objects, but
in practice this procedure actually stops particles slightly outside
collision objects.

We solve this equation with Newton’s method. Since Newton’s
method need not converge, some care is required, though in
practice nothing as sophisticated as Section 3 is needed. We always
use the Newton direction but repeatedly halve the length of the
Newton step until the objective E = [|x*' —x7 — Arv(x*") || no
longer increases. (If halving the step size 14 times does not suffice,
we take the reduced step anyway.) Typically, only one Newton step
is required for convergence. We have never observed this to fail.

We use a quadratic spline rather than the cubic of the original
formulation to reduce stencil width and improve the effectiveness
of the modified position update. That is, we let

%—xz |x|<%
N = be ey T <]
0 x| > 3.

Using a quadratic stencil also has the advantage of being more
efficient. We do not use a linear spline since it is not smooth
enough for Newton’s method to be effective in the particle position
update.

Since MPM involves a grid, we limit our time step so that
particles do not travel more that one grid spacing per time step.
That is, we choose At so that VX > max,, ||/ || for some v < 1. We
chose v = 0.6 for our examples. Although the time step restriction

is computed based on v), rather than v;’,“ , this suffices in practice.

7 RESULTS

We begin by demonstrating how robust our solver is by consid-
ering the two most difficult constitutive model tests we are aware
of: total randomness and total degeneracy. The attributes that make
them tough constitutive model tests also make them tough solver
tests: high stress, terrible initial guess, tangled configurations, and
the need to dissipate massive amounts of unwanted energy. Fig-
ure 6 shows the recovery of a 65 x 65 X 65 cube (824k dofs) from
a randomized initial configuration for three different stiffnesses
with Ar = 1/24 5. Figure 8 repeats the tests with all points starting
at the origin. The recovery times vary from about 3 s for the softest
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Fig. 17. A snowball smashes into a wall and sticks to it.

to a single time step for the stiffest. We were surprised to find that
a single step of backward Euler could untangle a randomized cube,
even at high resolution.

Figure 7 is a classical torus drop demonstrating that our
self collisions are effective at stopping collisions at the torus’s
hole. Figure 11 uses constraints for all collision body collisions
and demonstrates that our constraint collisions are effective with
concave and convex constraint manifolds. Figure 12 demonstrates
our method with stiffer deformable bodies with sharp corners.
Figure 13 demonstrates our constraint collisions are effective for
objects with sharp corners. Finally, Figure 9 shows a more practi-
cal example which uses all three types of collisions: self collisions,
constraint collisions (with ground) and penalty collisions (against
a bowl defined by a grid-based level set).

7.1 MPM results

We demonstrate the advantages of using our optimization integra-
tor by applying it to the MPM snow formulation from [23]. We
run three examples using both the original formulation and our
modified formulation. We compare with the snowball examples
from the original paper. In each case, for our formulation we
use the CFL v = 0.6. Figure 17 shows a snowball hitting a wall
using sticky collisions, which causes the snow to stick to the wall.
Figure 14 shows a dropped snowball hitting the ground with sticky
collisions. Figure 16 shows two snowballs colliding in mid air with
sticky collisions against the ground. On average, we get a speed up
of 3.5 times over the original method. These results are tabulated
in Table 18. Notably, we are able to take significantly larger time
steps, however some of the potential gains from this are lost to
an increased complexity per time step. Nonetheless, we provide
a significant computational savings with minimal modification to
the original approach.

8 CONCLUSIONS

We have demonstrated that backward Euler solved with Newton’s
method can be made more robust by recasting the resulting system
of nonlinear equations as a nonlinear optimization problem so that
robust optimization techniques can be employed. The resulting
method is extremely robust to large time step sizes, high stress,
and tangled configurations.

Runtimes and other performance-related information for all of
our sims are provided in Figure 15. All Lagrangian simulations
were run single-threaded on a 3.1 — 3.5 GHz Xeon core, the MPM
simulations were run with 10 threads for 16 and 12 threads for 14
and 17 . Our solver’s performance is competitive with a standard

Newton solver for those examples where both were run. In general,
we take more Newton steps but spend less time on each, and
the resulting runtime for typical examples is about the same for
the two solvers, though our solver is faster for all of the difficult
examples in this paper. Taking a large time step size can actually
be slower than taking a smaller one, even with the same solver.
For time integrators (like backward Euler) that have a significant
amount of damping at large time steps, constitutive models are
often tuned to take into account the numerical damping. If the
integrator is forced to simulate a portion of a simulation at a
smaller time step, the dynamic behavior can change noticeably.
Solving with constraints is about the same speed as using penalty
collisions.

Note that Figures 9 and 7 were run with smaller time steps
sizes to avoid collision artifacts. This indicates that a self-collision
scheme that is more tolerant of large time steps is required.
The scheme does not have problems with collisions between
different objects at the frame rate as long as they are not too thin.
Continuous collision detection could perhaps be used. We leave
both of these problems for future work.

The current method has a couple disadvantages compared with
current techniques. It requires a potential energy to exist (which is
how most constitutive models are defined anyway) and is sensitive
to discontinuities in this energy. The method also occasionally
fails to make progress due to valley shaped kinks in our collision
processing. In practice, this only occurs when the system is already
fairly close to a solution, since otherwise any energy kinks are
overwhelmed by the strong gradients in the objective. From a
practical perspective, this means this sort of breakdown can be
dealt with by simply ignoring it. This does, however, prevent the
method from being absolutely robust. We leave this weakness to
be addressed in future work.

Our method was derived and implemented on top of a back-
ward Euler integrator, which is known for being very stable but
quite damped. The nonlinear system of equations for other A-
stable integrators such as trapezoid rule and BDF-2 can also be
readily converted into minimization form and solved similarly.
Being second order schemes, their use would reduce damping
at large time steps, though trapezoid rule’s oscillatory properties
should be taken into account.
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Fig. 18. Performance comparison of our modified MPM snow formulation (“Ours”) with the original formulation (“Orig”).
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