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Abstract

We present an efficient discrete Hodge decomposition for velocity fields defined over irregular domains in two and
three dimensions using a virtual node framework. The method is designed for use in the exact projection discretization
of incompressible flow. We leverage the Poisson framework initially developed in [1] and [2]. This approach uses
a signed distance function to represent the irregular domain embedded in a Cartesian grid and uses a variational
approach to create a symmetric positive definite linear system. We present a novel modification to the previous
approach that yields a 5-point stencil (7-point in 3D) across the entire computational domain. The original algorithm
required a 9-point stencil (27-point in 3D) near the embedded irregular boundary. We show that this new condensed
stencil enables a decomposition of the form A = GT M−1G, where M is a diagonal weighting matrix and G and
D = −GT are diagonal scalings of the standard central-difference gradient and divergence operators. We use this
factored form as the basis of our discrete Hodge decomposition and show that this can be readily used for exact
projection in incompressible flow. Numerical experiments suggest our method is second-order in L∞ for pressures and
first-order in L∞, second-order in L1 for velocities.
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1. Introduction

Exact projection methods for incompressible flow are very effective because of their accuracy, stability, and rel-
ative ease of implementation [3]. The temporary introduction of artificial compressibility in the advection stage of
these algorithms simplifies the interaction of the velocity and pressure. This intermediate compressible velocity field
must then be projected to its nearest incompressible counterpart via Hodge decomposition. Projection is ultimately
done with the solution of a Poisson equation for the pressure, and it is often stabilized with a MAC-style staggering
of velocity and pressure variables [4]. This staggering naturally leads to second-order, discrete central difference
gradient and divergence operators. The composition of these operators yields the standard 5-point Laplacian (7-point
in 3D) for cell-centered pressures. Unfortunately, optimal accuracy is difficult to achieve for problems defined over
irregular domains because the MAC staggering is designed for Cartesian grids. Many researchers have developed
approaches that generalize the Cartesian MAC-based projection for regular domains to the irregular case, however
it is very difficult to maintain the simplicity of the original approach without sacrificing accuracy or efficiency. For
example, the immersed boundary method [5, 6] can be used to enforce boundary conditions on an irregular domain
without any modification to the Cartesian case other than a change in the forcing terms. However, the regularized
delta function conception of the right hand side terms degrades the convergence to first-order. The immersed interface
method [7, 8] can be used to preserve optimal accuracy, however the associated discrete systems are generally no
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longer symmetric. This deviation from the standard Laplacian discretization prevents the use of fast solvers, leading
to considerable computational expense.

Methods that utilize a level set representation of the irregular domain can be used to define embedded Cartesian
discretizations that balance efficiency with improved accuracy by leveraging sub-cell geometric detail [9, 10, 11, 1, 2].
In a recent related work, we showed that optimal velocity accuracy can be achieved for Stokes flow with a virtual node
approach [12] which uses such a level set representation. However, using a variational approach yields linear systems
that are typically of symmetric KKT type, (see e.g. [13]) so fast solvers like those used for the standard Laplacian
discretization are not available. Notably, Gibou et al. have recently shown that level set approaches are very effective
for exact projection discretization of incompressible flow [14, 15]. In the present work, we take a virtual node approach
(developed in [1] and [2]) to factor the Poisson equation in a manner similar to that presented in [14].

Although there are many methods capable of achieving second-order accurate velocities, these methods tend to
either require expensive remeshing, such as with finite elements, or yield linear systems which are indefinite (for
example [12]) or even asymmetric (such as [8]). By contrast, accurate and positive definite methods for solving
the Poisson equation are relatively easy to construct, but these discretizations generally do not carry forward to the
problem of exact projection. We demonstrate a method that is capable of condensing a 9-point stencil (27-point in
3d) into a 5-point stencil (7-point in 3d) in a manner that admits a factorization of the Poisson operator and leads
immediately to an exact projection discretization. This alteration to the Poisson stencil retains the second-order
convergence of the original Poisson operator, but it only leads to first-order velocities. While this method does not
present an improvement in the order of accuracy presented by [14], it opens up a promising and unexplored avenue
for discretizing the exact projection problem.

2. Exact projection and Hodge decomposition

Since our focus is the Hodge decomposition aspect of an exact projection discretization, we will ignore viscous
terms and focus on the inviscid Euler equations
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with Dirichlet normal velocity boundary conditions u ·n =UBC on ∂Ω. A simple splitting of these equations give rise
to the following temporal discretization
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If we take the divergence of the second equation and note that ∇ ·un+1 = 0, we can equivalently define this step as

∇ ·
(

∆t
ρn ∇pn+1

)
= ∇ ·u∗

un+1 = u∗− ∆t
ρn ∇pn+1,

(3)

where the boundary conditions for the Poisson equation are then of Neumann type ∆t
ρn ∇pn+1 ·n = u∗ ·n−UBC.
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In order to create an exact projection discretization we come up with a discrete volume-weighted approximation
to ∇, and denote it by G. The Poisson equation for the pressure is then

∆tDM−1Gpn+1 = Du∗, (4)

where D = −GT is the associated discrete approximation to the divergence and M is a diagonal scaling that approx-
imates ρn scaled by volume. In the sections that follow, we will show that the virtual node Poisson discretizations
developed in [1] and [2] can be rewritten in a form that admits a scaled version of the standard MAC grid-based
approximation of ∇ for G. This modification to the original algorithm is the key step needed to apply it in Hodge
decomposition-based exact projection. That is, with this decomposition we can see algebraically that Dun+1 = 0 if
we define un+1 = u∗−∆tM−1Gpn+1.

3. Discretization

Our extension of [1] to approximate the Poisson problem (3) reduces the 9-point stencil of the previous work to
a 5-point stencil. This is necessary to allow a decomposition of the Poisson matrix A = DM−1G with a diagonal M
and the previously described D and G. For simplicity, we present our extension in two dimensions, describing how it
differs from [1], and how we treat the right-hand side to enforce the boundary condition on the projected velocity un+1.
Finally, we briefly mention the slight modifications to [2] necessary to implement our method in three dimensions.

3.1. Condensed Stencil Approach

The energy-based discretization used in [1, 2] results in a 9-point stencil near the boundary in two dimensions.
Away from the boundary, a novel quadrature rule was used to condense the stencil to the standard 5-point discretiza-
tion. We present a novel modification of the stencil coefficients in [1, 2] that admits a 5-point stencil over the entire
domain without sacrificing the second-order accuracy in L∞ achieved in the original work.

As in [1, 2], we embed the domain Ω in a regular Cartesian grid G h
p with equal grid spacing ∆x = ∆y = h. In

our case, this grid is the subset of a standard MAC grid that has pressure degrees of freedom at its vertices, as shown
in Figure 1(a). We include in the discretization all cells in G h

p that intersect Ω, and refer to this subset of G h
p as

C h
p = {ck ∈ G h

p , ck∩Ω , /0} ⊂ G h
p , as shown in Figure 1(b). For convenience let Ωk = ck∩Ω, and let Ω0

k be the same
region transformed into coordinates [0,1]× [0,1]. Since Ω and its boundary ∂Ω typically will not align with elements
of the Cartesian grid, our discretization will include many pressure cells that only partially intersect with the domain
Ω. Some nodes of those cells will lie outside the domain. We refer to pressure nodes lying outside the domain as
“virtual” nodes and their corresponding degrees of freedom as virtual degrees of freedom.

Also as in [1, 2], our discretization is designed by first assuming that our pressure field is piecewise bilinear
over the cells in C h

p . p(x) = ∑
np
i=1 piNi(x) for p = (p1, . . . , pnp)

t ∈ Rnp . Here Ni(x) is the standard piecewise bilinear
interpolation basis function associated with pressure grid vertex i; and np denotes the number of degrees of freedom in
the discretization, equal to the number of grid vertices that compose the cells of C h. Occasionally we will refer to the
basis functions as Nl,m, where l and m represent the position of vertex i on the Cartesian grid. With this assumption,
we start our approximation from the quadratic terms in the variational form of the Poisson equation

ψ(p) := ∑
ck∈C h

p

1
2ρ

∑
r,s,r′,s′∈{0,1}

(∫
Ωk

∇Nl+r,m+s ·∇Nl+r′,m+s′ dx
)

pl+r,m+s pl+r′,m+s′ (5)

where l and m are the two-dimensional indices of the lower left node in pressure cell ck. As in [1, 2], we perform
the integration over cut cells using the divergence theorem to express each entry as a boundary integral. The cut cell
boundary geometry is discretized from the level set representation of Ω. The Hessian of this energy gives rise to the
matrix in our variational approximation to the Poisson equation: Ei j := ∂ 2

∂ pi∂ p j
ψ(p). We will now detail our approach

for condensing the E ∈Rnp×np stencil from up to 9 non-zero entries per row to at most 5 non-zero entries per row. We
will refer to the condensed stencil matrix is A.

The condensing procedure for a generic 9-point stencil, ignoring whether cells are cut or interior, is shown in
Figure 2. The change of stencil coefficients can be thought of in terms of ‘pushing’ coefficients from the top and
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(a) MAC grid (solid) layout superimposed with G (dashed)
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(b) Degrees of freedom for G cut by Ω

Figure 1: Grid notation for our method. Our pressure grid has pressure nodes at the vertices, in contrast with the
standard MAC grid (a) with pressures at cell centers. The computational domain (b) consists of all cells ck ⊂ G h

p that
intersect Ω, and introduces virtual degrees of freedom for p, which lie outside of Ω.
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(a) 2nd order−∆p =−pxx− pyy
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(b) 2nd order −pxx

0 −1 0

0 2 0

0 −1 0

0 a+b+ c 0

0 d+ e+ f 0

0 g+h+ i 0

(c) 2nd order −pyy

0 −1 0

−1 4 −1

0 −1 0

0 a+b+ c 0

a+d+g
b+d+2e
+ f +h c+ f + i

0 g+h+ i 0

(d) 2nd order−∆p=−pxx− pyy

Figure 2: An illustration of our ‘condensed stencil’ modification at a generic point in the domain. For a cell away from
the boundary ∂Ω, the 9-point second-order accurate stencil above (derived from bilinear finite elements) is condensed
by our modification to the standard 5-point stencil.

4



bottom of the stencil into the middle approximating the −pxx portion of the Laplacian (Figure 2(b)), and from the
left and right sides of the stencil into the center to approximate the −pyy portion of the Laplacian (Figure 2(c)). The
‘condensing’ of the coefficients in this case leads to a 5-point stencil—the standard 5-point stencil if the center point
is not incident on any cut cells.

At each node, the corresponding contributions to the stencil come from the four pressure cells incident to that node.
For each pressure cell ck in the discretization, we define Eck to be the 4×4 matrix containing the contributions of ck to
the matrix E. We call Eck the element stiffness matrix corresponding to ck: (Eck)i j =

∫
Ω0

k
ai j dx0 =

∫
Ω0

k
∇N0

i ·∇N0
j dx0,

where Ω0
k is the corresponding scaling of ck ∩Ω to the unit square and we denote the four basis functions supported

over ck as in Figure 4(b), written in a scaled coordinate frame local to the element:

N0
0 = (1− x)(1− y) N0

1 = x(1− y) N0
2 = (1− x)y N0

3 = xy. (6)

The element stiffness matrix can be written as

Eck =
∫

Ω0
k


∇N0

0
∇N0

1
∇N0

2
∇N0

3




∇N0
0

∇N0
1

∇N0
2

∇N0
3


T

dx0.

Substituting in (6) yields

Eck =
∫

Ω0
k


(x−1)2 +(y−1)2 −(y−1)2− x(x−1) −(x−1)2− y(y−1) x(x−1)+ y(y−1)
−(y−1)2− x(x−1) (y−1)2 + x2 x(x−1)+ y(y−1) −x2− y(y−1)
−(x−1)2− y(y−1) x(x−1)+ y(y−1) (x−1)2 + y2 −y2− x(x−1)
x(x−1)+ y(y−1) −x2− y(y−1) −y2− x(x−1) x2 + y2

 dx0 (7)

We give these polynomials labels to make the condensation operation easier to follow.

Eck =
∫

Ω0
k


a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 dx0. (8)

We rearrange the elements of Eck in the manner illustrated in Figure 3 for a single row to create a modified element
stiffness matrix Ack . This process maintains a stencil consistent with our Poisson problem while moving all nonzero
terms of the cellwise stiffness matrix to entries of A where the row and column correspond to equal or adjacent nodes.
This condensing process for the four cells incident to a node produces a 5-point stencil for that node, similar to Figure
2, and results in the modified matrix

Ack =
∫

Ω0
k


2a00 +a01 +a02 a01 +a03 a02 +a03 0

a10 +a12 2a11 +a10 +a13 0 a12 +a13
a20 +a21 0 2a22 +a20 +a23 a21 +a23

0 a31 +a30 a32 +a30 2a33 +a31 +a32

 dx0, (9)

which combined with (7) and (8) simplifies to

Ack =
∫

Ω0
k


2− y− x −1+ y −1+ x 0
−1+ y 1− y+ x 0 −x
−1+ x 0 1− x+ y −y

0 −x −y x+ y

 dx0. (10)

3.2. Factorization
Let Pck be the matrix that relates the pressure indices for pressure cell ck to indices in the full grid. That is, the

matrix Pck has four columns and as many rows as pressure nodes. It will have a single 1 per column with 0 everywhere
5
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(a) original stencil

a
a00+ a02 a01+ a03

a02 a03

(b) condensing in y direction
−pxx

aa00 + a01 a01
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(c) condensing in x direction
−pyy

a
2a00+ a01+ a02 a01+ a03

a02+ a03 a03

(d) Cellwise constribution to con-
densed stencil

Figure 3: We examine the changes made to the first row (corresponding to node 0) of the element stiffness matrix Eck
from [1] by the condensing procedure illustrated in Figure 2 to yield our element stiffness matrix (9). Condensing the
coefficients as shown ensures that the nonzero terms in each row of A correspond only to adjacent nodes on the same
row or column, and allows for a 5-point stencil.
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(c) Sck diagonals

Figure 4: The naming conventions used in referring to pressures and velocities (a) and pressure degrees of freedom
on a grid cell (b). Additionally, (c) shows, at each velocity node, the basis functions contributing to that term of the
cellwise weight matrix S.
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else. Similarly, let Qck be the matrix that relates the MAC velocity indices incident on pressure cell ck to indices in the
full grid. Qck has four columns and as many rows as MAC faces, again with a single 1 per column. These operators
will allow us to build the individual pressure cell contributions onto the full system in a rather convenient form later.
Figure 4 shows the indexing convention we use in this work for the degrees of freedom associated with a pressure
cell, and by extension, the columns of Pck and Qck .

If Ĝ is the standard central difference operator defined over the entire domain, then we can define a pressure
cellwise Ĝck by restricting Ĝ to the pressure cell as

Ĝck = QT
ck

ĜPck =
1

∆x


−1 1 0 0
0 0 −1 1
−1 0 1 0
0 −1 0 1

 (11)

With this, we can factor Ack as

Ack =
∫

Ω0
k


2− y− x −1+ y −1+ x 0
−1+ y 1− y+ x 0 −x
−1+ x 0 1− x+ y −y

0 −x −y x+ y

 dx0

=
∫

Ω0
k


−1 1 0 0
0 0 −1 1
−1 0 1 0
0 −1 0 1


T 

1− y 0 0 0
0 y 0 0
0 0 1− x 0
0 0 0 x



−1 1 0 0
0 0 −1 1
−1 0 1 0
0 −1 0 1

 dx0

= ĜT
ck

Sck Ĝck ,

where we have made the definition

Sck = ∆x2
∫

Ω0
k


1− y 0 0 0

0 y 0 0
0 0 1− x 0
0 0 0 x

 dx0 =
∫

Ωk


Nl,m +Nl+1,m 0 0 0

0 Nl,m+1 +Nl+1,m+1 0 0
0 0 Nl,m +Nl,m+1 0
0 0 0 Nl+1,m +Nl+1,m+1

 dx.

(12)
The matrix Sck is just a diagonal matrix formed by integrating basis functions over the pressure cell.

Observe that pressure gradients are naturally computed at the MAC faces, which lie on edges of the pressure
cells. Mathematically, we can say that QT

ck
Ĝ = QT

ck
ĜPck PT

ck
. Put another way, we can look solely at the MAC faces

associated with a particular pressure cell, then ignore all pressures not associated with the cell. With this observation,
it is possible to construct the full Poisson matrix from the individual pressure cell contributions Ack .

A = ∑
k

Pck Ack PT
ck

= ∑
k

Pck ĜT
ck

Sck Ĝck PT
ck

= ∑
k

Pck(Q
T
ck

ĜPck)
T Sck(Q

T
ck

ĜPck)P
T
ck

= ∑
k

ĜT Qck Sck QT
ck

Ĝ

= ĜT

(
∑
k

Qck Sck QT
ck

)
Ĝ

= ĜT SĜ,

where
S := ∑

k
Qck Sck QT

ck
.
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This is a diagonal matrix since it is the sum of diagonal matrices. Each diagonal entry lives at an edge of the pressure
grid and is formed by adding the pressure basis functions at the endpoints and integrating the result over the two
pressure cells incident to the edge. The matrix ĜT SĜ is very easy to construct and apply since it is composed of
standard central difference gradient and divergence operators, with a simple diagonal scaling in between.

The discussion so far has assumed constant density, omitting it from the discretization. If R is a diagonal ma-
trix defined over MAC faces whose diagonal entries are the density at MAC faces, then the appropriate system is
A = ĜT R−1 S Ĝ, noting that R and S are diagonal and commute. With this factorization complete, we are ready to
define G and M, which we do as

G = SĜ M = SR.

Now, A = ĜT R−1SĜ = GT M−1G, which is the desired form.

3.3. Right-Hand Side

As noted in Section 2, the Poisson equation in (3) has Neumann boundary conditions

∆t
ρn ∇pn+1 ·n = u∗ ·n−UBC (13)

so we want the right-hand side of our discretized system to approximate the right-hand side of the corresponding weak
form for p: ∫

Ω

∇q ·∇pdx−
∫

Ω

(∇ ·u∗) q dx+
∫

∂Ω

(u∗ ·n−UBC) q dS(x) (14)

where q = ∑i qiNi is a test function. Near the embedded boundary, the operator (GT u∗)i approximates not
−∫

Ω
(∇ · u∗) Ni dx but −∫

Ω
(∇ · u∗) Ni dx+

∫
∂Ω

u∗ · n Ni dS(x), which we can understand by recalling the weak
form used in constructing the original stiffness matrix E. Therefore, to satisfy the Neumann boundary condition (13)
we need to approximate the rest of the boundary condition

−
∫

∂Ω

UBC Ni dS(x)

We approximate UBC with a linear interpolant uBC and solve

∆tGT M−1Gpn+1 = GT u∗−uBC; (uBC)i =
∫

∂Ω

uBCNi dS(x). (15)

Our projection step then entails solving

∆tGT M−1Gpn+1 = GT u∗−uBC;

un+1 = u∗−∆tM−1Gpn+1.
(16)

3.4. Modifications for Three Dimensions

Implementation of our condensed stencil method in three dimensions is also a straightforward extension of the
existing virtual node approach for Poisson problems and has the effect of condensing a 27-point stencil into a 7-point
stencil which is equivalent to the standard 7-point stencil away from the boundary. As the stencil in Figure 2 was cre-
ated by ‘pushing’ terms along the x direction to approximate −pyy, and similarly along the y direction to approximate
−pxx, in three dimensions we push terms of the 27-point stencil along the x and y directions to approximate−pzz, and
a similar approach generates approximations to −pxx and −pyy.

Each pressure grid cell in 3D has eight adjacent pressure nodes and four each of x,y, and z velocities (see Figure
5), Therefore, the sizes of the cellwise matrices Gck , Ĝck , Sck , and Ack differ from the 2D case, as do the matrices Pck

and Qck described in Section 3.2 relating indices for a pressure cell to indices in the full grid. For example, Ĝ is a
12-by-8 matrix defined in a straightforward manner like in (11).
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Figure 5: Naming conventions used in referring to pressures and velocities on a grid cell in three dimensions. Note
that velocities are located at cell edges in our grid, rather than at cell faces as with a MAC grid.

The virtual node cellwise stiffness matrix Eck is an 8-by-8 matrix containing contributions of the cell ck to the
stiffness matrix: In three dimensions (Eck)i j =

∫
Ω0

k
ai j dx0 = dx

∫
Ω0

k
∇N0

i ·∇N0
j dx0. The dx scaling appears in the 3D

case because the cell volume scales as dx3 and the gradient functions each scale as 1/dx. The condensed element
stiffness matrix Ack is derived in a manner analogous to the 2D case, condensing all coefficients to matrix entries
where the row node and column node are adjacet. This leads to four nonzero entries per row: the diagonal entry and
the columns corresponding to the three adjacent nodes. Pck has eight rows, Qck has twelve rows, and the cellwise
scaling matrix Sck is a 12-by-12 diagonal matrix similar in form to the right-hand side of (12). The diagonal entry of
Sck for each velocity node comes from the integrals of the basis functions corresponding to the two adjacent pressure
nodes. The diagonal entries of S are created by summing the contributions of the four pressure cells adjacent to each
velocity.

Two nontrivial differences in the 3D implementation of the virtual node algorithm are detailed in [2]. First, the
domain is initialized from the signed distance function φ over a grid cell divided into tetrahedra to create a polyhedral
approximation to the domain. Second, the method for evaluating integrals over the pressure cells also differs slightly,
combining use of the divergence theorem with a quadrature-based approach to evaluating integrals over triangles.

3.5. Related Discretizations

The discretization we have proposed is closely related to the discretization from [14]. Their discretization also
factors nicely, as was demonstrated in [16]. Expressed in our notation, their discretization is identical except with a
different S, which we refer to as Sng. The value of Sng at a MAC face is proportional to the length of that face that
is in the interior. Since S scales as area (in 2D), we find that Sng = `×∆x corresponds to the rectangular portion of
the MAC face’s associated pressure cell intersecting the face at the same point where the interface intersects the MAC
face. This is illustrated in Figure 6(a).

While our pressure basis {Ni} is multilinear, an alternative definition of S with a piecewise constant pressure basis
would result in a different scaling matrix which we will call Spw. The entries of Spw correspond to the area of the MAC
face pressure cell that is in the interior as shown in Figure 6(b). If the interface is well-resolved and does not slice out
a corner from this pressure cell, the entries in Sng and Spw will be very close. The entries in S are computed similarly
to those in Spw, except that a weighted area is computed over a wider region as shown in Figure 6(c), effectively
smoothing out the entries in S.

Note that we use GT un+1 = ĜT Sun+1 = 0 as our incompressibility condition rather than the perhaps more intuitive
central differenced condition ĜT un+1 = 0. This is in line with the condition used by [14], where the incompressibility
condition takes on an intuitive flux-based interpretation.
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Figure 6: Illustration of different constructions of the scaling matrix S: Sng from [14], an alternative formulation Spw
as described in Section 3.5, and the S resulting from our condensed stencil factorization explained in Section 3.2.

4. Examples

For each example, we take a vector field (u∗,v∗) or (u∗,v∗,w∗) to be the sum of an incompressible, divergence-free
component and the gradient of a pressure. We apply our projection method to the vector field and compare the solution
with the exact solution of the incompressible component. Each 2D example was discretized on a variety of N×N
grids for resolutions up to 5622. Our 3D example was discretized on a series of N×N×N grids where N ranged up
to 320. With each example we provide a graphic depicting the embedded domain, a plot of the computed pressure,
and error plots for pressure and for the x-component of the incompressible velocity. In each case we perform linear
regression analysis on the error data to obtain estimates of the order of accuracy for the pressure in the L∞ norm and
for velocities in the L1, L2, and L∞ norms. (Although we only present data for the x-component of velocities, the other
velocities yield equivalent results.) Generally, our method produces pressures which are second-order accurate in L∞

and velocities which are first-order in L∞ but second in L1; however, projection of velocities with zero incompressible
component is accurate to second-order in L∞.

4.1. Two-Dimensional Projection Example 1
In our first two-dimensional example we project a gradient field velocity used in [14]:

u∗ =(x2−πx)(πy2/2− y3/3)

v∗ =(y2−πy)(πx2/2− x3/3)

The embedded Neumann boundary ∂Ωn of the domain is bounded by the curve defined by:

t0 =.00132

r0 =.02
√

5
r(t) =.5+ .2sin(5t)

X(θ) =r0 + r(θ + t0)cos(θ + t0)

Y (θ) =r0 + r(θ + t0)sin(θ + t0).
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This curve is used in [1]. The domain is shown in Figure 7. The computed order of accuracy for pressure in the
maximum norm is 1.990 and for velocity in the maximum norm is 1.876, see Figure 7. We computed second-order
accurate velocities in L∞ whenever projecting a fully irrotational, gradient velocity field.

(a) (b)

(c) (d)

Figure 7: Figures for Example 4.1: (a) geometry of ∂Ω at N = 80, (b) convergence plot of the errors, and error plots
of the pressure (c) and x-velocity (d) at N = 80.

4.2. Two-Dimensional Projection Example 2

We next project the velocity field given by

u∗ =x+2π cos(2πx)sin(2πy)

v∗ =− y+2π sin(2πx)cos(2πy)

The embedded Neumann boundary ∂Ωn of the domain is bounded by the curve defined by:
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t0 =.45234
θ(t) =t + sin(4t)

r(t) =.60125+ .24012cos(4t +π/2)
X(θ) =r(t + t0)cos(θ(t + t0))

Y (θ) =r(t + t0)sin(θ(t + t0)),

also used in [1], and the domain is shown in Figure 8. We computed the orders of accuracy to be 2.000 for pressure in
L∞ and .947 and 1.955 for velocity in L∞ and L1 respectively.

(a) (b)

(c) (d)

Figure 8: Figures for Example 4.2: (a) geometry of ∂Ω at N = 80, (b) convergence plot of the errors, and error plots
of the pressure (c) and x-velocity (d) at N = 80.

4.3. Two-Dimensional Projection Example 3
In this example our projected velocity is given as
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u∗ =sin(πx)cos(πy)+(x+1)/((x+1)2 +(y+4)2)

v∗ =−cos(πx)sin(πy)+(y+4)/((x+1)2 +(y+4)2)

The domain Ω is defined to be the square [−1,1]× [−1,1] with a circle removed of radius .7 and centered at the
origin. Grid-aligned Neumann boundary conditions are defined at the edges of the square, while embedded Neumann
boundary conditions are used at the circle boundary. See Figure 9. We estimated an order of accuracy of 1.988 for
pressure in L∞, and .819 and 1.972 for velocity in L∞ and L1 respectively.

(a) (b)

(c) (d)

Figure 9: Figures for Example 4.3: (a) geometry of ∂Ω at N = 80, (b) convergence plot of the errors, and error plots
of the pressure (c) and x-velocity (d) at N = 80.

4.4. Three-Dimensional Projection Example

Finally, we present an application of our decomposition method in three dimensions. Here our projected velocity
is given by
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u∗ =.5− y− sin(π(x+ y+ z))

v∗ =.5− z− sin(π(x+ y+ z))

w∗ =.5− x− sin(π(x+ y+ z))

and the domain, shown in Figure 10, is a sphere of radius .35 centered at (x,y,z) = (.4, .5, .5). As in the two-
dimensional case, we observe second-order accuracy (1.974) in L∞ for the computed pressure, and order .993 in
L∞ and 1.986 in L1 for velocity.

(a) (b)

(c) (d)

Figure 10: Figures for Example 4.4: (a) geometry of ∂Ω at N = 32, (b) convergence plot of the errors, and z-slices of
the x-velocity error (c) and x-velocity (d) at N = 32.
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