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Abstract
We provide a smooth extension of arbitrary isotropic hyperelastic energy density functions to inverted
configurations. This extension is designed to improve robustness for elasticity simulations with ex-
tremely large deformations and is analogous to the extension given to the first Piola-Kirchoff stress
in [ITF04]. We show that our energy-based approach is significantly more robust to large deformations
than the first Piola-Kirchoff fix. Furthermore, we show that the robustness and stability of a hyper-
elastic model can be predicted from a characteristic contour, which we call its primary contour. The
extension to inverted configurations is defined via extrapolation from a convex threshold surface that
lies in the uninverted portion of the principal stretches space. The extended hyperelastic energy den-
sity yields continuous stress and unambiguous stress derivatives in all inverted configurations, unlike
in [TSIF05]. We show that our invertible energy-density-based approach outperforms the popular hy-
perelastic corotated model, and we also show how to use the primary contour methodology to improve
the robustness of this model to large deformations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based modeling

1. Introduction

Large strain deformable object simulation was intro-
duced to computer graphics by [TPBF87]. Simulation
of such phenomena is now an indispensable tool for
creating realistic virtual environments [BZ11, KJ09,
FGBP11]. Unfortunately, the simulation of such large
deformation problems with a Lagrangian mesh is no-
toriously unstable and error-prone. Although many
researchers have shown the effectiveness of adaptive
refinement [SPB00, DDCB01,GKPS02, CGDP04] and
hybrid Lagrangian/Eulerian approaches [BWHT07,
WTGT09, WT08, WRK∗10], computer graphics re-
searchers tend to use purely Lagrangian methods with
a topologically static mesh. The primary problem
for Lagrangian methods is the inversion of mesh el-
ements that poorly approximate highly deformed re-
gions. This motivated the development of models that
are well defined when the deformation mapping has
negative Jacobian. Irving et al. developed the invert-
ible finite element (IFE) framework in [ITF04] and
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[TSIF05] to extend arbitrary elastic constitutive mod-
els to inverted configurations. The “warped stiffness”
[MDM∗02, ST08, ZSTB10, MG04, EKS03] and coro-
tated hyperelasticity [CPSS10, MZS∗11] models are
also meaningfully defined through inversion. Another
notable model defined through inversion was devel-
oped in [THMG04].

We build on the IFE framework in [ITF04] and
[TSIF05] to provide a method for the practical exten-
sion of an arbitrary isotropic hyperelastic energy den-
sity to inverted configurations. Hyperelasticity refers
to constitutive models for which the stress is deter-
mined as the gradient of an underlying scalar energy
density. Our extension matches the original model for
singular values on the uninverted side of a convex ex-
trapolation threshold surface. In fact, we provide a
heuristic that prevents the need for the costly SVD
whenever the material is in this uninverted region.
The smoothly extended energy allows for accurate
and unambiguous definition of the stress and stress
derivatives needed for force computation and implicit
time integration. We show that this extension pro-
vides significantly superior behavior through inversion
than both the original IFE and the corotated models
in [CPSS10] and [MZS∗11]. Lastly, we also show that
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Figure 1: A 2D mattress is stretched by two sides and the evolution of its elements is shown in the principal
stretches space. The arrows (orange) show the downhill direction of the energy gradient. The gray region is invalid
in accordance with the IFE convention [ITF04]. The green curves show singular value trajectories from the unde-
formed configuration (1, 1) (yellow dot) to the final configuration (colored dots) for each element in the mesh as
it is stretched. The trajectories tend to follow the primary contour (yellow). The corotated model primary contour
crosses the axes, leading to nonphysical inversion (red) for sufficiently large stretches.

our new notion of a primary contour provides useful
analysis of a model’s robustness to large deformation.

2. Isotropic hyperelasticity

We limit our discussion of elasticity to the constitutive
stress/strain relationship. We provide enough detail
that any spatial or temporal discretization technique
can be used in practice. Specifically, we will describe
how to compute stress needed for elastic forces and
stress linearizations needed for implicit time stepping.
Note that our energy-based approach works naturally
with variational integrators like those in [KYT∗06].

We assume a continuum description of the defor-
mation φ : Ω0 → R3 that maps initial (or mate-
rial) points X in the initial configuration Ω0 to points
x = φ(X) in world space. The elastic force per unit
volume in the continuum body is ∇X · P , where P
is the first Piola-Kirchoff stress [GS08]. For hypere-
lasticity, the first Piola-Kirchoff stress is determined

σ1

σ2 Increasing timeCorotated

Figure 2: Three triangles are allowed to relax from
different initially deformed configurations. Their tra-
jectories in singular value space are shown with corre-
sponding colors on the left. Note the strong attraction
to the primary contour (yellow) causes the blue trian-
gle to invert (shown in red).

from the energy density Ψ(F ) as P = ∂Ψ
∂F

, where

F = ∂φ
∂X

is the deformation gradient. We limit our
focus to isotropic models for which the energy den-
sity can be written as Ψ(F ) = Ψ̂(σ), where F =
UΣV T and σ = diag(Σ) = (σ1, σ2, σ3). Note that
isotropy is equivalent to defining the energy in terms
of I1 = σ2

1 + σ2
2 + σ2

3 , I2 = σ2
1σ

2
2 + σ2

2σ
2
3 + σ2

1σ
2
3 , and

J = σ1σ2σ3 [GS08]. This implies that the energy is in-
variant under permutations of the singular values. In
this case, it can be shown that the first Piola-Kirchoff
stress has the form P (F ) = UP̂ (σ)V T where

P̂ (σ) =

P̂1(σ)

P̂2(σ)

P̂3(σ)


with P̂i = Ψ̂σi = ∂Ψ̂

∂σi
. Furthermore, the linearization

of the stress around a given F is δP = ∂P
∂F

(F ) : δF
and in the case of isotropy, this can be shown to
satisfy δP = U

(
∂P
∂F

(Σ) :
(
UT δFV

))
V T . Although

the term ∂P
∂F

(Σ) was shown to have a block diag-
onal structure in terms of the invariants of F in
[TSIF05], we prefer to express this block structure
in terms of the principal stretches as in [SZL∗11].
If we reorder the 3 × 3 × 3 × 3 fourth order tensor
∂P
∂F

(Σ) as a 9× 9 matrix using the convention that a
3 × 3 matrix S is reordered as a 9-vector with com-
ponents (s11, s22, s33, s12, s21, s13, s31, s23, s32), then
∂P
∂F

(Σ) can be shown (see supplementary document)
to have the four diagonal blocks A, B12, B13 and B23

with

A =

Ψ̂σ1σ1 Ψ̂σ1σ2 Ψ̂σ1σ3

Ψ̂σ2σ1 Ψ̂σ2σ2 Ψ̂σ2σ3

Ψ̂σ3σ1 Ψ̂σ3σ2 Ψ̂σ3σ3


and

Bij =
1

σ2
i − σ2

j

[
σiΨ̂σi − σjΨ̂σj σjΨ̂σi − σiΨ̂σj

σjΨ̂σi − σiΨ̂σj σiΨ̂σi − σjΨ̂σj

]
.
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Figure 3: We stretch a tetrahedron with its base fixed to a plane. The plots show the corotated energy gradients
in constraint planes of increasing σ1. The equilibrium singular values are shown in blue. The yellow line is the
intersection of the constraint plane with the primary contour. As the tetrahedron is stretched, the line shifts. The
primary contour does not intersect the third slice, but we show in dark gray where it would intersect if it were
extended into the invalid region (gray). The primary contour draws the configuration into a minimum at the
energy kink, leading to nonphysical oscillation. For illustrative purposes we slightly abused the IFE convention on
the constraint plane C to demonstrate how the configuration is driven towards the kink, although in fact it never
can get to the invalid region and keeps “bouncing back.”

As in [SZL∗11], care must be taken to robustly treat
the possibly small denominators in the components of
Bij . These expressions for the stress and stress deriva-
tives are used to compute forces and their lineariza-
tions directly from our extended hyperelastic energy
densities in all configurations (inverted or otherwise).
As in [TSIF05], the one 3 × 3 and three 2 × 2 ma-
trices can be readily projected to their nearest SPD
counterpart to guarantee that conjugate gradient can
reliably be used for solving the discrete systems that
arise with implicit time stepping.

3. Invertible hyperelastic energy densities

We propose the invertible extension of Ψ̂, rather than
the extension of its derivatives P̂ as was originally

Figure 4: We plot the energy surface Ψ̂(c, σ2, σ3) for
the example in Figure 3 for c = 1 (left) and c = 5
(right). The plots on top show the energy profile along
the line σ2 = σ3, which is orthogonal to the kink at
σ2 + σ3 = 0. The blue dots show the quasistatic so-
lutions that would be obtained assuming a smooth en-
ergy profile. In the image at the left, the minimizer is
away from the energy kink. However, as the top vertex
is stretched the minimum approaches the kink which
leads to non-physical oscillations. For illustrative pur-
poses we slightly abused the IFE convention on the
right side as in Figure 3.

advocated in [ITF04]. That is, these functions are ex-
tended to the portion of singular value space where
singular values can be negative. In general, an exten-
sion of P̂ is not guaranteed to be consistent with a
hyperelastic strain energy density, and the procedu-
ral modification complicates the definition of stress
derivatives needed with implicit time stepping. In fact,
[TSIF05] were forced to evaluate stress derivatives in
a nearby uninverted configuration which lead to in-
consistency between the stress and its derivatives. We
will show that an energetic extension of the consti-
tutive model is far more simplistic, robust and stable
than the original stress based extension. However, we
first discuss some fundamental properties of hyperelas-
tic energy densities defined over the inverted portion
of singular value space.

3.1. Energy kinks

As previously mentioned, isotropy implies that the en-
ergy density Ψ̂ is invariant under permutations of the
singular values. Isotropy is only one source of symme-
try in models defined over inverted configurations.

Standard SVD convention dictates that singular val-
ues are always nonnegative. However, in order for the
U and V matrices to correspond to rotations some sin-
gular values might need to be negated. This brings in
non-uniqueness in the sense that we are free to choose
which singular values get the negative sign. We resolve
this with the IFE convention [ITF04] and negate, if
needed, the one with the smallest magnitude. As a re-
sult, the combinations of singular values that do not
obey this convention cannot possibly occur. They form
an invalid region in the principal stretch space, which
we show in gray in Figures 1, 2 and 3. Although such
combinations will never be computed, we can con-
sider the energy density as being defined over these
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Figure 5: In these stress tests we initially perturb the vertices of a cube mesh to a point (left) or randomly
(right) and allow it to recover. Our model resolves itself for a wide range of Lamé coefficients, while a typical IFE
implementation fails to recover for large Poisson’s ratios (ν).

excluded combinations by ensuring that combinations
corresponding to the same deformation gradient are
assigned the same energy densities. This enforces in-
variance under pairs of singular value sign flips and
results in a second form of symmetry.

The aforementioned symmetries can lead to a kink
in the energy density. For example in 2D if we negate
the singular values σ1 and σ2, then we must have

Figure 6: Comparison of our C2 Neo-Hookean-based
model (bottom) with corotational elasticity (top) and
corotational with our fix (middle). The corotational
model is unstable under these stretched configurations,
and many inverted elements arise (shown in red). Our
fix to the corotational model prevents the instability
and inversion but does not look as realistic (the cross
section resembes an X) as our C2 model. Note that
unmodified Neo-Hookean will produce the same result
as our extension, since the extrapolation threshold was
not reached in this example.

Ψ̂(σ1, σ2) = Ψ̂(−σ1,−σ2) since these configurations
correspond to the same deformation gradient. Further-
more, if we then permute these values we must have
Ψ̂(σ1, σ2) = Ψ̂(−σ2,−σ1). Consider the energy along
the line σ1(t) = s + t and σ2(t) = −s + t, where s is
arbitrary, but fixed. Then, ψ(t) = Ψ̂(s + t,−s + t) =
Ψ̂(s − t,−s − t) = ψ(−t). Then, either ψ′(0) = 0 or
ψ(t) has a kink at t = 0.

Note that ψ′(0) is the component of the stress or-
thogonal to the line σ1 + σ2 = 0 at the point (s,−s).
Therefore, any energy density that leads to a nonzero
orthogonal stress contribution at the line σ1 + σ2 = 0
must have a kink there. Since the orthogonal stress
component is required to leave this line, a kink in the
energy density profile is actually desirable. Otherwise,
the model would be inherently compliant to inversion
with a weak restoring force near this line. Note that
energy densities defined in terms of the invariants tend
not to produce such a kink. Indeed, consider an en-
ergy defined in terms of the invariants Ψ̂(σ1, σ2) =
Ψ̃(I1, J) = Ψ̃(σ2

1 + σ2
2 , σ1σ2). The component of the

stress orthogonal to the line σ1 + σ2 = 0 is given as
Ψ̂σ1 + Ψ̂σ2 . We can then see from the invariants that
Ψ̂σ1 + Ψ̂σ2 = (2σ1Ψ̃I1 +σ2Ψ̃I2) + (2σ2Ψ̃I1 +σ1Ψ̃I2) =
(σ1 +σ2)(2Ψ̃I1 +Ψ̃I2) = 0 when σ1 +σ2 = 0, provided
the partials in the invariants remain bounded. The sit-
uation is analogous in 3D with the kink arising along
the plane σ2 + σ3 = 0. See Figures 4 and 8 (right) for
visualizations of the kinks.

We will show that despite the fact that the kink
arises only at the boundary of the valid region, it still
plays a fundamental role in the behavior of the model.

c© The Eurographics Association 2012.
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Figure 7: We randomly scatter the vertices of an armadillo mesh and let it relax to rest. Our energy based approach
robustly handles extremely large deformations with many severely deformed and inverted elements (shown in red).

3.2. Primary contour

Hyperelastic constitutive models are characterized by
a strongly attractive basin which we call the pri-
mary contour of the model. For example, a model
with Poisson’s ratio very close to 1

2
may be more

strongly attracted to the submanifold corresponding
to volume preservation than to the rest configura-
tion. Let v be the eigenvector of the energy Hessian

Hij = ∂2Ψ̂
∂σi∂σj

with the largest-magnitude eigenvalue,

and let gi = ∂Ψ̂
∂σi

be the energy gradient. We define
the primary contour to be the region where v · g = 0.
The Hessian describes how g changes, and v describes
the direction of greatest change of g. Thus, as the
configuration moves from the primary contour, the v
component of g will dominate. This tends to draw the
configuration towards the primary contour. When it
gets close, the v component diminishes, and the con-
figuration moves mostly along the contour. This phe-
nomenon is shown in Figures 1 and 2. Problems arise
when the contour crosses over into the inverted regime
or when it approaches a kink in the energy.

Failure to define a model with an appropriate pri-
mary contour can lead to catastrophic behavior, which
we demonstrate in the following section.

3.3. Corotational hyperelasticity

Models designed to correct the rotational artifacts in-
herent in linear elasticity are very popular in computer
graphics [MDM∗02, ST08, ZSTB10, MG04, EKS03].
The hyperelastic version is detailed in [CPSS10] and
[MZS∗11]. The corotated model takes the form

Ψ̂ = µ
∑
i

(σi − 1)2 +
λ

2

(∑
i

(σi − 1)
)2

.

The gradient is gi = 2µ(σi − 1) + λ
∑
j(σj − 1), and

the Hessian is Hij = 2µδij + λ. Its largest eigenvec-
tor is vi = 1 with eigenvalue 2µ + dλ, where d is the
dimension. The other eigenvalues are 2µ with eigen-
vectors orthogonal to v. Finally, v · g = 0 implies∑
i(σi − 1) = 0 is the equation for the primary con-

tour. Note that this primary contour crosses into the
inverted region.

Consider the 2D examples shown in Figure 2, which
shows material relaxation from three distinct initial
configurations. Note that all three trajectories initially
tend towards the primary contour. Unfortunately, the
trajectory highlighted in blue passes through the in-
verted region on its way to the primary contour. This
behavior is also observed on a macroscopic scale and
under mesh refinement, as shown in Figure 1.

The corotated primary contour is also problematic
because it intersects the kink in the energy density.
Consider the behavior of the single tetrahedron shown
in Figure 3 as it undergoes a stretching deformation.
The intersection of the primary contour and the plane
σ1 = c is shown at different stages. Note that the rel-
evant slice of the primary contour eventually drives
the configuration towards the invalid state that vio-
lates the sign convention. This ultimately leads to an
energy minimum that lies on a kink, as shown in Fig-
ure 4. The discontinuity of the stress at this minimum
causes nonphysical oscillations, the problematic con-
sequences of which are shown on a macroscopic scale
in Figure 6.

3.4. Corotational correction

Note that the corotated primary contour is determined
primarily by the λ term. Further, the corrective behav-
ior of the corotated model can largely be attributed to
its µ term. This suggests that a more suitable model
can be constructed by replacing the λ term with one
that leads to a more favorable primary contour. One
such model is

Ψ̂ = µ
∑
i

(σi − 1)2 +
λ

2
(J − 1)2.

Similar λ terms were used in [Ogd98,THMG04]. This
model has the primary contour J = 1, which does
not intersect the inverted region. While the model still
has limitations, it fixes the stretching problems of the
corotated model (see Figure 6).

c© The Eurographics Association 2012.
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Figure 8: The leftmost images show the relevant re-
gions in the 2D C1 and C2 extensions respectively.
The C1 Ψ̂ext is shown at the right. Note the kink dis-
cussed in Section 3.1 along the line σ1 + σ2 = 0. The
C2 Ψ̂ext looks similar.

4. Energy extrapolation

We provide both C1 and C2 extensions to arbitrary
isotropic energy densities Ψ̂. We show that these ex-
tensions can produce models with well-behaved pri-
mary contours. The C1 extension is easier to imple-
ment and results in continuous stresses but discontin-
uous stress derivatives. The C2 extension has contin-
uous stress and stress derivatives and provides added
robustness in some scenarios. Our extension to Ψ̂ is
accomplished by polynomial extrapolation from a con-
vex contour in the uninverted portion of singular value
space that increases the energy density as the config-
uration inverts. We present only the energy densities
below; see the supplementary document for derivatives
and more details.

4.1. C1 extension

We define the C1 extended energy density Ψ̂ext to
coincide with the original Ψ̂ whenever the singular
values are all above a threshold ε. This region is il-
lustrated in blue in the left image of Figure 8 for
a 2D problem. If one singular value σi is less than
this threshold (region shown in red), then we ex-
tend the energy quadratically in the direction σi from
the closest point in the blue region. Consider the
point (σ̂1, σ̂2) in Figure 8. In this case, only σ̂1 is be-
low ε, and the extension is given as Ψ̂ext (σ̂1, σ̂2) =
Ψ̂ (ε, σ̂2) + Ψ̂σ1 (ε, σ̂2) [σ̂1 − ε] + k

2
[σ̂1 − ε]2. This ex-

tension will be C1 as we transition from the blue re-
gion to the red region for all values of the param-
eter k. This parameter is used to add extra resis-
tance to inversion but does not degrade the C1 regu-
larity of the extension. For points (σ̃1, σ̃2) with both
principal stretches below the threshold we define an-
other region (shown in green) and quadratically ex-
tend the energy from the nearest point in the red
region. It does not matter which red region we ex-
tend from, since in both cases we have Ψ̂ext (σ̃1, σ̃2) =
Ψ̂ (ε, ε) + Ψ̂σ1 (ε, ε) [σ̂1 − ε] + Ψ̂σ2 (ε, ε) [σ̂2 − ε] +
Ψ̂σ1σ2 (ε, ε) [σ̂1 − ε] [σ̂2 − ε] + k

2

(
[σ̂1 − ε]2 + [σ̂2 − ε]2

)
.

The 3D extension is analogous but with an additional
type of region. Note that we can avoid the SVD if

Figure 9: “Ouch.” An armadillo is hit with a ball.

I1/J
2 ≥ ε (2D) or I2/J

2 ≥ ε (3D), since these imply
that σi > ε.

4.2. C2 extension

We use a different extrapolation surface for our C2

model, since the one used in C1 leads to an unfa-
vorable primary contour when extended to C2. We
define the C2 extension whenever the determinant of
the deformation gradient (or product of singular val-
ues) is below a threshold ε. The base energy density Ψ̂
is extended to the extrapolated Ψ̂ext at a given point
σ = (σ1, σ2, σ3) by extrapolating along the line to the
rest configuration point r = (1, 1, 1). Extrapolation
begins at the intersection of the line and the contour
surface σ1σ2σ3 = ε and is chosen so that all first and
second derivatives of the extended energy match those
of Ψ̂ at the intersection point (see Figure 8). This Ψ̂ext

gives continuous stress and stress derivatives, but it is
complicated by the need for the value and derivative
of the intersection point between the line connecting
σ and the extrapolation contour σ1σ2σ3 = ε.

Let u = r−σ
|r−σ| be the direction from the point σ

to the rest configuration point r. Denote the inter-
section between the line and the threshold surface as
q = r + s (σ − r), where the scalar s is given by the
roots of the cubic equation q1q2q3 = ε. If we denote the
distance from σ to q by h, then the extended energy
has the form where we assume summation on repeated
indices. The derivatives of the scalar s needed for
stress and stress derivatives can be determined implic-
itly by differentiating the cubic equation q1q2q3 = ε.

Ψ̂ext(σ) = Ψ̂(q) + huiΨ̂σi(q) +
h2

2
uiΨ̂σiσj (q)uj

5. Examples

We demonstrate our extension methodology with a
Neo-Hookean hyperelastic energy density

Ψ̂ =
µ

2

(∑
i

σ2
i − d

)
− µ ln J +

λ

2
(ln J)2.

c© The Eurographics Association 2012.
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Figure 10: “Ouch again.” An armadillo is passed
through gears.

In Figures 9, 11, 12 and 13 we show examples run
with the C1 extension using an inversion threshold
ε = 0.4 and k = 20× E where E is the Young’s mod-
ulus. In general, smaller values of ε and larger values
of k will increase resistance to extreme compression.
In Figures 6, 7 and 10 we show examples run with
our C2 extension with threshold surface J = ε with
ε = 0.9. As with C1, smaller values of ε increase re-
sistance to extreme compression. Although ε = 0.9 is
somewhat large, smaller values of ε resulted in unnec-
essarily stiff response to compression due to the high
energy barrier of the underlying Neo-Hookean consti-
tutive model. Simulation statistics are shown below.

Fig ∆tave(s) ∆xmin(m) Fig ∆tave(s) ∆xmin(m)

7 0.00043 0.0042 11 0.0015 0.010

9 0.00060 0.0042 12 0.00087 0.041

10 0.00036 0.0031 13 0.00011 0.0010

5.1. Comparison with IFE

Figure 5 shows a comparison of our C2 model with
IFE using implicit time integration on two common
stress tests. In each case, our model performed signif-
icantly better with the same Lamé parameters. The
IFE extension of the first Piola-Kirchoff stress used
the same threshold contour with linear stress extrapo-
lation and derivative clamping as in [ITF04,TSIF05].
Figure 1 (right) shows the primary contour for the
2D equivalent of our C2 model. Note that the contour
never extends into the inverted region. Furthermore
the figure shows that the curve is a good predictor
of the average trajectory of an element in the mesh.
Because IFE lacks an energy in the extrapolated re-
gion, its primary contour cannot be used to predict
its behavior there. These results suggest that our hy-
perelastic extension methodology allows us to readily
design constitutive models that are more robust to ex-
tremely large deformation.

5.2. Comparison with corotated

The primary contours for our model and for corota-
tional elasticity are shown in Figure 1. Notice that the

Figure 11: “Tight spaces.” A fish passing through
a thin tube.

corotational elasticity primary contour intersects the
inverted region and ours does not. This feature pre-
vents the tendency towards inverted equilibrium con-
figurations and it also prevents instabilities that arise
when the model drives the configuration towards the
energy kink. Figure 6 illustrates the consequences of
this behavior in a large scale example in 3D. The coro-
tated model is driven towards the inverted region and
to unstable minima at the energy kink. This leads to
non-physical oscillation and inversion (shown in red).
This behavior is prevented with our fix to the λ term
in the corotational mode, however it still does not look
as realistic as our Neo-Hookean-based extension.
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Figure 13: “Yummy.” 25 gelatin cubes falling in a
bowl.
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