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Abstract—In this paper, we propose a method designed to allow creatures to actively respond to a fluid environment. We explore
various objective functions in order to determine ways to direct the behavior of our creatures. Our proposed method works in conjunction
with generalized body forces as well as both one-way and two-way coupled fluid forces. As one might imagine, interesting behaviors
can be derived from minimizing and maximizing both drag and lift as well as minimizing the effort that a creature’s internal actuators
exert. A major application for our work is the automatic specification of secondary motions, for example, certain joints can be animated
while others are automatically solved for in order to satisfy the objective function.
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1 INTRODUCTION

ANumber of graphics researchers have created com-
puter generated creatures. [1] simulated snakes and

worms, [2] used genetic algorithms to create creatures
that interact with their environment, [3] simulated fish
using a simple hydrodynamics propulsion model (see
also [4]), and [5] simulated a bird in flight with a
simplified aerodynamics model. We also make note of
the layered rigid deformable creatures simulated by [6]
and [7].

One creature that many researchers have dealt with is
the human being. Various authors have researched the
interactions of humans with their environments, with the
seminal motivating work being [8], which illustrated the
need to mix animations of humans with environmental
constraints in the context of sporting events. Whereas
earlier work [9] had shown that minimizing a creature’s
internal effort gives viable animation, this space-time
optimization was too expensive to be applied to humans,
and so [10], [11] devised ways to use reduced models.

There are numerous ways of intermixing the ideas of
animation and simulation. For example, many authors
have considered hybridizing an animation cycle or state
controller with the secondary passive effects a character
should exhibit when hit by an object, another character
or by an external force [12]–[17]. Different types of inter-
actions between animation and a physical environment
are illustrated by carrying a briefcase [18], pushing a
heavy object on the ground [19], moving or shaking
the ground underneath the character [20], etc. [21], [22]
worked to separate the forces a character needs to apply
to interact with the environment from those the character
would use to obtain a goal or express a sense of style.

Whereas most authors treat forces as a sequence of
simple contacts or collisions, our focus is on the interac-
tions that occur when a creature is immersed in a fluid
environment. This is motivated by swimming fish [3],
flying birds [5], swimming humans [23], etc. These pa-
pers all use simplified models of the fluid to calculate lift
drag propulsion and other properties. Our goal is to in-

stead use the full Navier-Stokes equations and simulate
the creature in a fully two-way coupled manner with its
environment. [24] recently showed key benefits to using
the full Navier-Stokes equations over simplified fluid
models. However, they do not implement a controller
that is able to react to the environment and instead use
a predefined motion to drive the character joints. This
means that if the fluid flow changes, the character is not
able to react.

Using the full Navier-Stokes equations permits our
technique to be used in interesting complex fluid flows
(consider highly turbulent smoke, ocean waves, etc). If
one tries to simulate or animate a creature without in-
corporating these flows and then place it into a complex,
fully dynamic fluid environment, the result is a creature
whose relative joint motions seem wildly out of place
with the surrounding fluid. There are essentially two
ways to handle this. The first is to have the creature
kinematically one-way coupled to the fluid, which is
unrealistic as it assumes the creature has infinite strength
and ability to control its environment – for example, a
swimmer would swim the same way in giant waves
as it would in a still ocean. The alternative is to allow
the fluid to somehow affect the animation, which can
arbitrarily modify joint angles and motion in a way
that removes a creature’s ability to obtain its goals –
for example, a bird tipped sideways by the flow has no
way of recovering its balance. One could try to build an
animation that is robust to the subsequent situation by
using simplified and approximate fluid models. Unfortu-
nately, the Navier-Stokes equations are so complex that
one cannot predict all nonlinearities and even a simple
vortex shedding upstream in the flow can produce forces
that are impossible to predict using simplified fluid
models. Note that one can use hand animation to achieve
visibly pleasing results, but this takes a large amount
of resources and can be done much more quickly if
automated.

Several complications arise as a result of coupling
together dynamic simulation of the Navier-Stokes fluid
flow, PD control, rigid bodies, articulated bodies, de-
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Fig. 1. A flow chart of our system. In a typical solid-fluid coupling system, only steps (a) and (c) are executed each
time step. Our system adds step (b) (which applies (d-g) on each joint). Note that these steps can be handled in
parallel for each joint.

formable bodies, contact and collisions. For example, PD
controllers do not typically account for forces resulting
from physical phenomena such as solid/fluid coupling
or external forces. We address this by extending the
post-stabilization projections of [7] and [22] to properly
account for these phenomena. In addition, the implicit
system of [25] does not produce velocities compatible
with contact constraints, which we address by introduc-
ing projections that properly constrain the solid veloc-
ities. We also extend this coupled solve to account for
kinematic (i.e. infinite mass) bodies.

We specify objective functions which can be used to
minimize or maximize quantities such as drag and lift,
as well as more complex functions such as the ability
of a character to minimize the internal actuator force
needed to fight the external environment, and we actuate
the character’s internal degrees of freedom based on a
gradient descent on this objective function. Once this
controller decides what the internal actuation should be,
we evolve the full system forward in time, solving for
all relevant forces and degrees of freedom. These include
fluid dynamics forces arising from the Navier-Stokes
equations; the rigid, articulated, and deformable degrees
of freedom of the creature; internal actuations (torques);
and coupling forces. This evolves the creature one step
forward in time, and the process repeats, allowing the
creature to locally optimize towards its objective.

Our paper is organized as follows: we propose a
simple scalable methodology and show that the method
provides reasonable results for simple problems with
known solutions. Next we extend this method to take
into account dynamic fluid forces and again demonstrate
the viability of our method. In order to demonstrate the
scalability of the method we then apply it to multiple
joints of a human skeleton. Finally we apply our method
to more complex fully two-way coupled dynamic exam-
ples and show that this gives visually pleasing results.

2 CREATURE CONTROLLER

Real creatures adapt their locomotion to best suit the
environment in which they live. For creatures that must

support their own weight, it is quite beneficial to move in
ways that minimize the total energy or force required to
remain upright. With this in mind, we treat the problem
of motion control as an optimization problem where
creatures move by seeking (locally) optimal solutions to
objective functions.

The problem of nonlinear optimization has received
significant attention (see for example [26]). Because our
objective function depends on the current state of the
creature and the environment with which it interacts,
the optimum changes with time. Further, it is not appro-
priate to make large changes to the system in a single
time step (due to limits on a creatures strength), which is
what might happen if the local or global optimum of the
objective function were simply computed and achieved
at each step. For this reason, we choose to make small
local changes based on the environment at the current
time, and we use gradient descent. We illustrate our
algorithm in Figure 1.

Our method locally optimizes a given objective func-
tion, with the intention that these objective functions,
when constrained by the physical strength of the
creature, give reasonable behaviors. Our simple, two-
dimensional block examples demonstrate that when
nothing else is happening in the vicinity of the block,
an optimum solution is obtained; however, in general
we do not expect (and do not desire) to reach an opti-
mal solution. Even in the block example, it is creature
strength which determines how quickly the optimum
solution is reached. This is shown in Figure 2. Note that
if we assume the creature has infinite strength we can

Simulation Converged Frame
Navier-Stokes - Max Drag 56
Navier-Stokes - Min Drag 50
Navier-Stokes - Min Effort 30
Simple Fluid - Max Drag 42
Simple Fluid - Min Drag 68
Simple Fluid - Min Effort 51

Fig. 2. First frame at which a converged solution is
reached.
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perform multiple iterations of gradient descent to obtain
the (locally) optimal configuration (with a static flow
field) in one step.

2.1 Computing Derivatives
For a complex, dynamic, fully coupled system, deriva-
tives with respect to a given degree of freedom are
quite difficult if not impossible to compute analytically.
This is a result of coupling with a fluid, as a local
change in one degree of freedom changes the solution
globally in a nonlinear way. This is further complicated
by discontinuous, non-differentiable phenomena such as
collisions and contacts. It is therefore desirable to com-
pute the partial derivatives numerically, as this approach
works regardless of complexity of the system. Note
that if one does not use a Navier-Stokes fluid model,
collisions, etc, it would be much simpler to analytically
compute these derivatives. For robustness and accuracy,
we choose a central differencing scheme to compute
these derivatives, and our objective functions are differ-
entiated with respect to the degrees of freedom at the
controlled joints. For each degree of freedom, we first
make a change in one direction, evaluate the objective
function, then make the same change in the opposite
direction and re-evaluate the objective function. The
approximation for the partial derivative in that degree
of freedom is taken to be the difference of the objective
function evaluations divided by twice the magnitude of
the change from the initial configuration in that degree
of freedom. This process is illustrated in Figure 3 for
a single degree of freedom. This process is inherently
parallelizable as one can evaluate each partial derivative
independently. Furthermore, if one wanted to reduce the
cost of computing these partial derivatives, one could
use a one sided differencing scheme, effectively reducing
the computational expense by approximately a factor
of two. However, the bias that this introduces made
this approach impractical, and thus we used central
differencing in our examples.

(a) (b) (c)

Fig. 3. (a) A single controlled joint connecting a static
square to a block. (b) The resulting configuration of the
block after taking a step to the left during our derivative
calculation. (c) The analogous configuration to the right.

We use the partial derivatives to compute a search
direction as defined by steepest decent in the objective
function, but we still need to choose a distance to travel
in that direction. There are many ways of doing this,
one of the more robust being golden section search. For
simple examples, this yields favorable results. However,
the repeated evaluations of the objective function make it
less suitable for more complex examples and we instead
choose a fixed step size that reflects the strength of
the creature. That is, the controller must decide what
it will do in the next time step of the simulated creature,
and the strength of the creature limits what it should
accomplish in a unit of time equal to the size of the
next time step. We note that this method achieves con-
vergence over time if there is a steady state solution,
as demonstrated in Figure 4. In the case where there is
no steady state solution, we obtain convincing dynamic
results as shown in Section 7. In order to speed up the
examples, a creature can search even less frequently than
it’s strength allows. In these cases we only redetermine
the direction once in a given number of time steps.
Although this does work fine for some examples, it
can result in the creature reacting rather slowly to the
external environment.

Although this is a fairly simple way of computing
the gradient, because of the complexity and dynamical
nature of our system, we found this to be the most
effictive way of computing the derivatives. One could
apply machine learning to accelerate the process over
time. We experimented with this and found that al-
though this does improve the speed of some examples,
the dynamical nature of the system quickly creates new
configurations not covered by the space of the training
set.

2.2 Proportional Derivative Control
Computing the numerical central difference approxima-
tions for our gradient descent optimization requires us
to apply positional changes to our controlled degrees

(a) (b)

Fig. 4. (a) A single controlled joint connecting a static
square to a block minimizing effort with gravity and a wind
force to the right. (b) The same block minimizing effort
with a weaker wind force.
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Fig. 5. A human undergoing both gravity and constant wind forces with kinematic legs and three controlled joints:
one on each arm, and one on the lower back. (a) All joints minimize effort on the lower back. (b) The lower back joint
minimizes its own effort while the arm joints minimize a weighted average of the effort on the lower back and their own
effort. (c) The lower back joint minimizes its own effort while the arm joints minimize drag.

of freedom. There are many approaches that could be
taken to achieve this. Many authors have addressed
this problem with proportional derivative (PD) control.
PD control has been shown to produce very desirable
results, but it is known to have shortcomings in the
presence of external forces. These retard the rate of
progress towards the target and can even prevent the
controller from achieving its target. For our application,
this needs to be addressed so that we can achieve the
desired perturbations in the position to compute gradi-
ents that are not subject to significant noise. We address
issues related to outboard inertia tensors, gravity, fluid
dynamics forces, and the resistant forces due to wrap-
ping rigid bodies in deformable meshes, by utilizing the
post-stabilization projections of [22] (in order to obtain
the desired displacements when calculating our partial
derivatives). This framework allows us to guarantee that
the joint degree of freedom undergoes a position change
irrespective of all external forces.

2.3 Optimizing Effort

The proportional derivative controller is used to evolve
the system to a new configuration, and then we evaluate
our objective function in this new configuration. Since
[9], many researches have viewed effort minimization
as a viable metric for determining realistic animation.
Animation controllers apply the least effort when a
configuration is reached where net external forces are
as orthogonal as possible to these degrees of freedom.
For example, Figure 4 shows the global minimum effort
solution in a simple configuration, which our controller
was able to find. Note that this shifts the external load off
of the actuated degrees of freedom (which are weaker,
for example supported by muscles) and onto dimensions
that are not degrees of freedom (such as those that are
bound, for example by compression of the joints). In
particular, in Figure 4 at steady state the net force lies
in the direction of the skinny block which is completely

orthogonal to the actual degrees of freedom, and thus is
resisted by the joint attachment itself.

We compute the minimum effort by finding the force
to maintain our current velocities, thus canceling the
acceleration and the net force. We again utilize the
method of [22], solving the combined equations with
the aim of using PD control to cancel all external forces
in order to maintain the current velocities. The actuator
forces that PD applies can then be interpreted as effort.
In other words we calculate our objective function, the
effort as

Fe = jτ (1)

where jτ are the angular impulses that PD applies to a
joint.

3 SIMPLIFIED FLUID FORCES

As an initial step towards adding real fluid forces to our
simulations, we begin with simplified fluid forces similar
to those found in [3], [5], [23].

3.1 Simple Wind Forces
Given a velocity field, one can loosely approximate fluid
pressure along the solid surface with a force that scales
like the square of the relative velocity. Since we define
the velocity on the entire grid, we can interpolate the
fluid velocities to the center of a triangle. We then
calculate the force acting on this triangle as

Fdi = sign
(
uT

reln
)
Aρ

(
uT

reln
)2

n, (2)

where A is the triangle surface area, ρ is the fluid
density, urel is the relative fluid velocity, and n is the
inward-facing normal. Fdi is then equally distributed to
each of the triangle’s nodes.

This simple force yields interesting results in simple
examples, but cannot be used with a real fluid velocity
field, as any consistent flow field requires that the fluid
velocity won’t flow through the solid (i.e. uT

reln = 0 at
the surface of the solid).
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3.2 Optimizing Simplified Drag

In a fluid environment, creatures worry less about sup-
porting their own weight (thanks to buoyancy forces)
and more about controlling how they are pushed around
by the environment. Therefore, the creature should know
about the lift and drag forces acting on it, giving it the
opportunity to maximize or minimize drag.

Using simplified fluid forces, we can compute the
wind drag as

Fd =
∑

i

Fdi (3)

for all triangles i in the mesh and treat it as a body force.
To illustrate how our optimization framework deals with
this force, we submerge our single degree-of-freedom
example into a constant rightward-moving velocity field,
and compute the solution one obtains when minimizing
and maximizing drag. According to the objective func-
tion, the controller maximizes and minimizes drag by
increasing and decreasing the relative velocity. Thus, the
controller will attempt to actuate the joints as fast as the
creature’s strength allows to push in a way that resists
the flow direction when maximizing drag, and to move
with the flow as best as possible when minimizing drag.
Many creatures actually behave in a more complex way
than this and optimize fluid forces in a given direction,
for example up and down motion is extremely important
when flying or when a creature is making its way
towards the surface of a fluid, while lateral directions
are important when attempting to achieve a locomotion
target such as one that takes the creature closer to a food
source. Thus, we can reformulate the objective function
as

Fd =
∑

i

wi · Fdi (4)

such that the goal is to maximize or minimize drag
in a given set of directions w. As an example of this,
suppose we had one direction we wished to maximize
or minimize drag in, say left to right (i.e. w = {1, 0}). The
joint then actuates as fast as it can to the left to maximize
drag, and as fast as it can to the right to minimize drag.

3.3 Relative Joint Velocities

The creature might also desire to achieve a steady state,
such as a parachute-like shape for falling. Thus, another
interesting formulation of the objective function projects
out the relative velocities induced by joint actuation. We
accomplish this by perturbing the object to the desired
position for the partial derivative calculations and then
setting the object velocities to zero before calculating Fd

using equation (2). The results of this objective function
are shown in Figure 6, where the drag is increased by
maximizing the exposed surface area and decreased by
minimizing the exposed surface area.

In our single degree of freedom example, the joint is
rooted in a stationary object, and therefore the steady
state calculation comes when all velocities and angular

velocities of rigid bodies are zero. For a freely moving
creature which is two-way coupled with its environment,
setting all joint velocities to zero is nonsensical. Instead,
the steady state calculation is obtained when the relative
joint velocities are set to zero, thus freezing the shape of
creature while still allowing it to be pushed around as
it interacts with its environment. This is readily accom-
plished by treating the entire creature, or component of
a creature (in the case that there are different dynamic
components connected to a kinematic component) as a
unified rigid body. That is, a number of rigid bodies that
used to be moving relative to each are now treated as
a single rigid body in a way that conserves both linear
and angular momentum. We would like to stress that in
our examples, we only used the steady state calculation
in the simple two-dimensional cases, in order to verify
the results of our technique.

4 NAVIER-STOKES FLUID FORCES
There are many complex behaviors that arise in fluid
flows, such as vortex shedding, viscosity, and turbulence.
The simplifying assumptions made when deriving the
forces discussed in the previous section ignore or discard
these effects for the sake of computational efficiency.
These effects however lead to the rise of more physically
plausible motion as well as interesting secondary visual
effects which greatly enhance the believability of a scene.
With that in mind we implement a full fluid solver
incorporating state-of-the art methods to capture realistic
fluid effects and phenomena and pair the fluid with our
creatures in a fully-coupled fashion, allowing them to
respond to fluid forces.

4.1 Navier-Stokes Equations
We simulate fluid on a uniform grid using the invis-
cid, incompressible form of the Navier-Stokes equations,
given by

ut + u · ∇u = −1
ρ
∇p + f (5)

∇ · u = 0, (6)

(a) (b)

Fig. 6. (a) A single controlled joint connecting a static
square to a block minimizing drag with a wind force to the
right. (b) The same block maximizing drag.
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Fig. 7. A swimmer with five joints wrapped in flesh that propels itself through a fluid environment while alternating the
minimization and maximization of drag.

where u is the velocity field of the fluid, ρ is the density
of the fluid, f are any external forces (such as gravity),
and p is the fluid pressure. We solve these equations by
first calculating an intermediate velocity field u? using

u? − un

∆t
+ un · ∇un = f

and subsequently adding in the pressure forces via

un+1 − u?

∆t
= −1

ρ
∇p, (7)

where the pressure is calculated by solving a Poisson
equation of the form

∇ · 1
ρ
∇p̂ = ∇ · u?, (8)

where p̂ = p∆t.

4.2 Two-way Coupling
The traditional method for coupling solids to fluids
consists of prescribing fluid velocities to be equal to the
solid velocities at the interface and then integrating pres-
sure to get force boundary conditions on the solid. We
use a method similar to [25] for the two-way coupling,
although other methods such as [27]–[29] could also be
applied since the part of this that is important to us
is the ability to determine the coupling forces between
the solid and fluid, and all of these schemes make this
information readily available. As in [25], we solve the
following symmetric indefinite system:(

V GT 1
ρ

G V J

V JT −M̃S + ∆tD

)(
p̂

V
n+1
S

)
=

(
V GT u?

−MSV ?
S
−W T MF u?

)
, (9)

where G is the discretized gradient operator, V is the
volume of a grid cell, VS are the solid velocity degrees of
freedom, MS is the solid mass matrix, D is the damping

matrix, and MF is the fluid mass matrix. This matrix is of
size (m+n)×(m+n), where there are m pressure degrees
of freedom, and n solid velocity degrees of freedom.
Note that the second equation is written as a change
in momentum, meaning that V JT p̂ is an impulse, and
therefore V JT p is the force the fluid applies to the solid
during the two-way coupled solve. Although this is an
indefinite system and can be rather slow, one can speed
up these solves by using a SPD system such as the one
proposed in [30].

4.3 Force Calculations

When we calculate partial derivatives for use in deter-
mining search directions for the controller, we actuate
solid degrees of freedom to new positions and calculate
forces in those new positions. Since the motions of the
solid will affect the fluid, and vice versa, it is necessary
to use a stable time integration when changing the
configuration of the solids in order to evaluate these
derivatives. Moreover, avoiding noise in the calculation
typically means non-negligible changes in the configura-
tion which in turn requires a few time steps to achieve
in a stable and robust manner. After achieving this
positional change, we calculate a pseudo-velocity equal
to the difference in position over the difference in time
and use this as the solids’ average velocity for evaluating
forces for the controller. The objective function (drag
force) is then taken to be

Fd =
∫

∂Ω

pw · dA (10)

where w are the directions we want to optimize in and
∂Ω is the surface of the creature.

This produces good results but is difficult to validate
due to the complexities of the resulting fluid. In order to
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(a) (b)

Fig. 8. (a) A single controlled joint connecting a static
square to a block minimizing drag with a fluid force to the
right. (b) The same block maximizing drag.

validate our method, we desire a simple flow field that
has a known solution. In order to achieve this, we want
to damp out the complexities such as vorticity which
can be accomplished by simulating a few time steps
of fluid evolution after we fix the relative orientation,
allowing the flow field to respond to the creature’s new
configuration. This permits the disturbances created by
the new configuration to be swept downstream. The
resulting flow field is simple enough to verify visually, as
shown in Figure 8. Note that although the results here
are not perfectly horizontal or vertical they accurately
minimize drag in the presence of a dynamical fluid flow.
For example, in minimizing drag, it is beneficial to have
a stagnant pocket of fluid below and in front of the
dynamic component, as it reduces the drag felt on the
object. We would also like to stress that we only damp
out the velocity field in these simple cases so that we
can more accurately evaluate our method. For our more
complex examples this is not done.

5 MULTIPLE JOINTS

Many creatures use more than one joint to accomplish
a specific objective or set of objectives, and this needs
to be incorporated into our objective function. Although
one could explore the entire space of motions that can
be achieved by looking at all combinations of joints,
it is much more straightforward and standard to use
independent calculations for each derivative. This makes
our control algorithm linear in the number of degrees
of freedom. Moreover, because these calculations are
independent, they are trivially parallelizable making our
algorithm for multiple degrees of freedom almost as wall
clock time efficient as that for a single degree of freedom
meaning that our algorithm runs almost as quickly when
controlling n degrees of freedom (with ≥ n processors)
as it does with 1 degree of freedom as seen in Figure 10.

We have also found that one can achieve interesting
effects by allowing for a weighted average of objective
functions at each degree of freedom. That is, instead
of each joint attempting to minimize its own stress,

(a) (b)

Fig. 9. A human undergoing gravity forces with kinematic
legs and three controlled joints: one on each arm, and on
the lower back. (a) All joints minimize effort on the lower
back. (b) The lower back joint minimizes its own effort
while the arm joints minimize a weighted average of the
effort on the lower back and their own effort.

certain joints can be actuated to minimize the stress on
others. For example, in the case of a walking human,
it might be more important to minimize the joint stress
on the lower back than it is on the shoulder or elbow.
Figure 9 (a) shows an example of a human walking
under the influence of gravity where the lower back
and arm joints are minimizing effort on the lower back.
Figure 9 (b) shows a similar example except that the
arms are minimizing their own effort while also working
to minimize the effort of the lower back. Note that
we can combine objectives with differing units such
as an impulse (Fd) and an angular impulse (Fe). This
is because we are taking a weighted average and can
incorporate unit conversions into the weights.

When dealing with multiple joints, we have found that
a straightforward calculation of partial derivatives via
actuating a particular joint to its new position can lead
to erroneous results. For example, consider the fact that
bending the elbow while leaving the wrist loose will
cause the hand to flex backward. This is undesirable,
and instead we compute positional changes where the
wrist joint is instead kept stiff. We accomplish this by
rigidifying all bodies outward from the joint whose
partial derivative is being calculated. This is calculated
in the usual fashion by clustering these rigid bodies into
a single rigid body with a unified mass, center of mass,
velocity, and angular velocity.

Number of Joints Time (Serial) Time (Parallel)
1 14s 14s
2 29s 15s
3 43s 15s
4 58s 15s

Fig. 10. Timing information for a variation of our simple
2D block example using the full Navier-Stokes equations.
All timings are given in seconds per frame. The parallel
case used four processors.
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6 EVOLUTION

In order to accurately model a realistic environment
we must model rigid bodies, deformable objects, and
fluids in the presence of constrains such as PD targets
and contacts. Our method evolves the solids forward
in time using a modified Newmark method similar to
the one proposed in [7] which allows us to accurately
handle contact, collisions, and friction. For PD control,
we integrate this with [22] and for solid-fluid coupling,
we combine this with the scheme proposed in [25] (that
provides the major high level steps which our evolution
follows). We must also of course integrate our controller
into the time integration scheme. The resulting full
time integration scheme used for evolution proceeds as
follows:

1: Calculate controller direction and magnitude as
discussed in Section 2 and set PD targets from the
results.

2: Use all non-pressure based and non-advection
based fluid forces (i.e. external forces and viscosity)
to advance the fluid velocity to time tn+1/2,
un+1/2

F = un
F + (∆t/2)(f + ν∆un+1/2

F ).

3: Evolve the solid positions forward in time. We
do this by first integrating all explicit solid forces to
time tn+1/2. We then solve the coupled system to get
vn+1/2. We then modify the resulting velocity with
collisions. Next we apply post-stabilization to the
velocity field followed by applying PD impulses to the
velocity field. Note that the PD targets can either come
from our controller or can be pre-specified without
using our controller. Using this resulting velocity field
we then update positions as xn+1 = xn + ∆tvn+1/2.
Finally we resolve the resulting contacts using vn+1/2

and xn+1. To prevent competition between our PD
controller and external fluid and deformable forces,
we extend the post-stabilization projections of [7] to
include our actuated degrees of freedom and apply the
PD of [22] as boundary conditions for those degrees of
freedom. Because projections are removed during the
force application following the second CG solve in [7],
we store and reapply PD boundary conditions after that
step.

4: We prevent leaking by forcing the fluid to move with
the solid effective velocity, calculated as (xn+1−xn)/∆t.
A standard fluid Poisson equation is solved using the
solid effective velocity mapped onto the Eulerian grid
by W as Neumann boundary conditions to project
un

F . The resulting projected velocity is our leak-proof
advection velocity uADV .

5: We calculate the intermediate fluid velocity via
(u?

F−un
F )

∆t + uADV · ∇un
F = f + ν∆u?

F . Note that the
advection velocity uADV is used to formulate the rays

in the typical semi-Lagrangian scheme [31], but the
advected quantity is the actual fluid velocity un

F . uADV

is also used to advect all other fluid scalar quantities to
time tn+1. Since this advection velocity exactly conforms
to the effective velocity of the solid, it prevents leaking.

6: Evolve the solid velocities forward in time. We
do this by first integrating all explicit solid forces to
time tn+1. We then solve the coupled system to obtain
vn+1 and p. We modify the equations of [25], to properly
account for kinematic bodies; we evolve them forward
in time first, compute their solid effective velocity, and
then add this into the right hand side of the coupled
system. We also apply contact projections similar to
those found in [7] during each iteration of the implicit
solve to properly enforce contact constraints. We then
apply post-stabilization using this new velocity and
then update the velocity using PD targets. Following
this, we apply contact using this new velocity field.
To be safe we once again apply post-stabilization to
make sure the joint constraints are not violated after PD
targets and contacts are satisfied. Note that we do not
necessarily need to apply post-stabilization but do so
every time the velocity is changed because it is fairly
cheap to do.

7: Using the fluid pressure from 6, project the
intermediate fluid velocity u?

F to be divergence
free, u?

F → un+1
F .

The resulting velocity field is then used as an initial
condition for the controller, for the next time step.

7 EXAMPLES

We generated a large number of examples with different
numbers of joints, forces, and objective functions. As
discussed earlier, we ran a number of single joint ex-
amples to demonstrate the viability of our algorithm (see
Figures 3, 4, 6, and 8). We also ran a number of examples
of a human with kinematically controlled legs optimiz-
ing various objective functions. The human contains a
skeleton composed of twenty three rigid bodies and the
kinematic motion is specified with motion capture data
that was taken using a standard optical motion capture
system. Figure 9 demonstrates examples that are run
with only a gravity force. The joints in Figure 9 (a)
optimize the effort (Fe) on the back joint by moving in
such a way that makes the center of mass of the upper
half of the body straight above the joint, meaning that
the force gravity exerts on the bodies is cancelled by the
compression force of the joint. In Figure 9 (b), the arms
are also minimizing their own effort resulting in the arms
hanging down, which cancels the gravity force with the
arm joints while still minimizing the effort on the lower
back by keeping the center of mass above that joint. Note
that this example also demonstrates our algorithm in the
presence of hard constraints. The collisions between the
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Fig. 11. A driven flyer with four joints (two on each wing) in a fluid environment. The inner most joints have pre-
specified PD targets while the outer ones are fully controlled.

left leg and the left arm force the arm to go further
forward than it would otherwise have. Our controller
compensates for this by rotating the body to keep the
arms down and the center of mass above the lower back
joint.

This twisting motion minimizes the total effort on the
system as any alternative would require more effort,
such as is required to re-balance the center of mass over
the lower back joint. For example, the human could lift
its left arm to avoid contact with its leg, but this strains
the lower back and shoulder. Other configurations, such
as lifting both arms (in order to minimize effort on the
lower back), also require additional total effort to main-
tain. We would like to stress that the human examples
in our paper do not have the same constraints as a real
human would (for example there is no concept of joint
limits or pain) and are shown for illustrative purposes
only.

Figure 5 shows examples with simplified fluid forces
modeled as a constant wind field. Figure 5 (a) shows a
human minimizing effort (Fe) on the back joint, and as
a result, it leans into the wind force, canceling out the
combined external forces of gravity, wind, and the back
joint. Figure 5 (b) shows a human minimizing effort on
the lower back as well as the arms. As expected, the
human leans into the wind while positioning his arms
in the direction of the combined external forces allowing
for a cancellation of forces. With a wind force we can
also optimize drag (Fd). Figure 5 (c) shows a human

(a) (b)

Fig. 12. The base setup for the driven flyer with no
controlled joints. (a) The furthest down the flyer reaches
and (b) the furthest up the flyer reaches.

minimizing effort on the back joint and drag on the arms.
The result is that it leans into the wind while holding its
arms back. Note that we do not apply smoothing as a
post-process for illustration, but one could easily do so
if it was desired.

We rendered smoke for the purposes of visualization
but stress that the actual fluid used was significantly
heavier (similar to water) making the human lean for-
ward more than visually expected in smoke. Conversely,
we could have used lower density smoke but with a
significantly higher velocity to get the same degree of
lean but this would make the visualization of the flow
field more difficult.

7.1 Driven Flyer

We have also used our algorithm with more complex
and dynamic fluid flows. In Figure 12 we show the con-
figuration for a simple creature with three rigid bodies
whose wings are driven to flap up and down via PD
control, with fluid that is injected from below. In order to
enhance the appearance of this creature, we give it longer
wings and add more joints that are actuated by the
controller, which dynamically determines their optimal
positions with regard to lift and drag. As the kinemati-
cally controlled inner wing joints push down, the outer
joints governed by the controller maximize drag (Fd) on
the body, and when the inner kinematic wing joints are
moving upwards the controller works to minimize drag.
Figure 11 shows the resulting animation for when these
joints are controlled about the twisting axis. In a more
realistic creature, the joints of actuation are more likely
to be bending joints, as shown in Figure 13. We have also
added flesh to the creature in the form of a deformable
mesh that is bound to the rigid body skeleton, using
fully implicit springs similar to those discussed in [32],
[33] for stability. The fluid boundary is open at the
top and closed elsewhere with a source term at the
floor forcing fluid flow upwards. Although the model is
simplistic, our resulting animation closely matches that
of many flying creatures. At the down-stroke, a turbulent
flow field is generated and the optimum lift and drag
configurations vary rapidly with time. As a result of this
turbulent behavior, the flyer’s animation in this phase



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 13. A driven flyer with four joints (two on each wing) wrapped in flesh and submersed in a fluid environment. The
inner-most joints have pre-specified PD targets while the outer ones are fully controlled.

can appear somewhat unnatural, despite satisfying the
objective function. This accurately captures the dynamic
nature of the flow field, even though the flow field may
be atypical.

7.2 Aqueous Swimmer

In Figure 7 we present a fully two-way coupled swim-
ming creature that interacts with its environment in
order to swim upwards. The creature consists of a
central spherical body with five legs (each of which
are dynamically controlled), all of which are wrapped
in flesh. The creature uses a propulsion system similar
to those found in several common underwater species,
expelling water in order to propel itself forward—this
is implemented by enforcing a non-zero flux across the
“mouth” (located on the bottom) of the creature. This
creature alternates pulling and pushing water in three
phases. In the first phase the creature minimizes drag
(Fd) upward while drawing in water. This results in the
creature pushing its arms downward as the water is
drawn in. In the second phase, it propels water outward
while continuing to minimize drag, which results in the
creature maintaining a streamline position. In the third
phase it maximizes drag without propulsion, resulting in
the creature pulling its arms back up to remain steady
in the fluid. The propulsion alone is not enough to move
the creature significantly forward, but when used in
conjunction with our controller we are able to achieve
significant locomotion in a realistic way. Note that the
swimmer would not be able to achieve this motion using
our simplified forces. One could potentially create this
animation using specialized forces but new specialized
forces would then have to be created for every example.
It is also interesting to note that other secondary phe-
nomena arise as a result of the two-way coupling in this

simulation, for example the flesh of the creature deforms
as it moves through the fluid, and the creature sways
through the flow as a result of the vortices it sheds. These
realistic secondary phenomena are completely missed by
methods which do not utilize two-way coupling. The
fluid boundary is open at the top and closed elsewhere.
As with our flyer, the model we use is fairly simple, our
resulting animation again closely match that of a squid-
like creature.

7.3 Timings
Figure 14 shows the timings of each of our simulations.
As mentioned above, the simple examples were in 2

Example Time
Block minimizing effort - Simple Forces 0.03s
Block minimizing drag - Simple Forces 0.03s
Block maximizing drag - Simple Forces 0.03s
Block minimizing effort - Navier-Stokes 15s
Block minimizing drag - Navier-Stokes 14s
Block maximizing drag - Navier-Stokes 14s
Human minimizing effort on back 0.26s
Human minimizing effort on back and arms 0.63s
Human minimizing effort on back 0.44s
Human minimizing effort on back and arms 0.81s
Human minimizing effort on back, drag on arms 0.79s
Driven Flyer without flesh 3.2s
Driven Flyer with flesh 34s
Aqueous swimmer with flesh 83s

Fig. 14. Timing information for our examples. The first
group are the simple 2D examples with one joint. The
second group are the human examples with only gravity.
The third group are the human examples with gravity and
wind. The final group are the more complex creatures.
All Timing information is given in number of seconds per
frame.
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dimensions, the humans and one of the driven flyers
were ran without a deformable mesh (which signifi-
cantly speeds up the simulation) while the other flyer
and the swimmer used a deformable mesh as skin. The
2D Navier-Stokes examples were run with our steady-
state calculation and thus take considerably longer. Note
that all these examples were run without our parallelized
controller.

8 DISCUSSION

Unlike previous creature controllers which have focused
on generating animations in a simple environment either
with no external forces or with only simple ones, we
have explored using a controller that can function well
in a complex fluid environment. We employ a local
optimization method using gradient descent, using a
modified form of proportional derivative control and a
clustering system resulting in a more accurate solution
and a more natural looking animation. This framework
allows us to easily integrate with both simple fluid
forces and Navier-Stokes fluids in order to generate high
quality animations. We also explored various objective
functions that can be optimized to give realistic anima-
tions for a variety of creatures.

Although our creature controller is both versatile and
robust, there are some limitations. Due to our gradient
descent approach and the complex fluid environment,
we must numerically calculate our derivatives requiring
a large number of evaluations of our objective function.
This can become costly, especially with many controller
degrees of freedom, but can be mitigated by parallelizing
each degree of freedom. We could also reduce this by
placing the solid in the new position instead of taking
a full time step. This, however, makes the resulting
calculations of our derivatives less accurate. We can also
simplify our system by using lower resolution meshes
and fluid grids, or fast approximations to physical phe-
nomena such as the fluid environment found in [34].
These techniques would increase the speed of our algo-
rithms at the cost of visual fidelity.

Our method can have difficulty finding an optimal
solution if there are too many unspecified directly con-
nected degrees of freedom. This is because each degree
of freedom finds a local solution without any knowl-
edge of the actions of other degrees of freedom. This
can be addressed by performing a global optimization,
however, this is prohibitively expensive in the presence
of a complex fluid environment. An alternative approach
is to use an iterative method such as the one found in
[35] which would be significantly faster than solving a
global optimization but would still greatly increase the
cost.

As we demonstrated in our examples, we can easily
integrate our technique with other motions such as a
specified animation or a motion capture sequence. This
allows animators to specify a vague overview of an
animation as well as a reasonable objective function and

generate a realistic looking animation that both adheres
to the input motion and appropriately reacts to the
environment. One interesting avenue of future work is
to take this further and use our controller to modify the
input animation with an objective function that balances
staying close to the input with trying to accomplish a
separate task. Similarly, our technique can take as input
an animation specified by another controller such as [11]
which specifies a global, low dimensional approxima-
tion. This will give both the benefits of the global overall
behavior and the local corrections under the influence of
a complex environment. However, this can only be used
for creatures where such input can be provided (e.g. a
human). We can also use our own controller to specify
the animation in a multi-pass approach. This avoids the
need for solving many joints simultaneously, and allows
certain joints to be specified as constraints while others
are solved for via a controller.

We explored different objective functions including
minimizing effort, minimizing and maximizing drag,
and minimizing and maximizing lift. Although these
objective functions worked well for our examples, they
are by no means the only objective functions that can be
used. In particular, we found that some objective func-
tions were wholly inappropriate for a given scenario;
minimizing effort for a human with no initial motion,
for example, gives a human which stands still. A penalty
function could be added to force the human to move
forward. An interesting direction for future work would
be to determine other objective functions that creatures
use when performing locomotion.

Although it is quite easy to add an objective function
to our framework, there are certain problems that are
difficult to quantify with an objective function. For ex-
ample, human location is a complex dynamical behavior.
One way to specify an objective function is to use a much
more complex human model that models elements such
as muscle strain. This would allow for the use of an ob-
jective function that minimizes the effort exerted by the
muscles. Another option is to simply use motion capture
data and specify an objective function that stays close
to the input motion capture data. This is an interesting
avenue for future work.

9 CONCLUSION

In summary, our technique addresses a difficult problem
that has not yet been addressed by the computer graph-
ics community. When exploring a very hard problem,
it is often best to begin with a simple, yet promising,
approach. We do this by first combining many complex
physical systems including, rigid body simulation, de-
formable object simulation, collisions, contact, articula-
tion, PD control, and fluid simulation. We believe that
this paper describes a simple, scalable (to large numbers
of degrees of freedom that are not directly connected)
methodology and we show that the method provides
reasonable results for simple problems whose analytical
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results are easy to verify. This paper also explores more
complex scenarios, for example our largest example has
15 degrees of freedom. However, this paper is not meant
to be the ultimate solution to this difficult problem and
we encourage others to expand on our work by creating
more complex models and controllers that can provide
difficult, realistic results such as convincing human lo-
comotion.
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