Line Rasterization

University of California Riverside

Raster Image

|

@ Object oriented

e for each object. ..

e Image oriented
e for each pixel...

\ What is rasterization?

NG

N
V

Rasterization is the process of determining which
pixels are “covered” by the primitive

Rasterization

l

e In: 2D primitives (floating point)
e Out: covered pixels (integer)

@ Must be fast (called many times)
e Visually pleasing

o lines have constant width
e lines have no gaps

DDA algorithm for lines

e DDA = “digital differential analyzer”

DDA algorithm for lines

e DDA = “digital differential analyzer”
e Plot line y = mx + b

DDA algorithm for lines

e DDA = “digital differential analyzer”

e Plot line y = mx + b
e For each z:

DDA algorithm for lines

e DDA = “digital differential analyzer”

e Plot line y = mx + b
@ For each z:
e y=mx+5b

DDA algorithm for lines

e DDA = “digital differential analyzer”

e Plot line y = mx + b
e For each z:
e y=mx+5b
e turn on pixel (z,round(y))

DDA algorithm for lines

@ Assume |m| <1
e March from left to right

DDA algorithm for lines

@ Assume |m| <1
e March from left to right

e 1y = start, ;. =; + 1, x,, = end

DDA algorithm for lines

@ Assume |m| <1
e March from left to right
e 1y = start, ;. =; + 1, x,, = end
Yi+l = MTip1 + b
=m(x; +1)+0b
=Y +tm

DDA algorithm for lines

@ Assume |m| <1
e March from left to right
e 1y = start, ;. =; + 1, x,, = end
Yi+l = MTip1 + b
=m(z; +1)+b
=Y +tm
e Each time:

DDA algorithm for lines

@ Assume |m| <1
e March from left to right
e 1y = start, ;. =; + 1, x,, = end
Yi+l = MTip1 + b
=m(x; +1)+0b
=Y +m
e Each time:
e Increment z

DDA algorithm for lines

@ Assume |m| <1
e March from left to right
e 1y = start, ;. =; + 1, x,, = end
Yi+l = MTip1 + b
=m(z; +1)+b
=Y +tm
e Each time:

o Increment z
e Add mtoy

DDA algorithm for lines

@ Assume |m| <1
e March from left to right
e 1y = start, ;. =; + 1, x,, = end
Yi+l = MTip1 + b
=m(z; +1)+b
=Y +tm
e Each time:

e Increment x
e Add mtoy
e turn on pixel (z;, round(y;))

DDA algorithm for lines

|

o What if [m| > 17

DDA algorithm for lines

|

e What if |m| > 17

@ Increment y by m

DDA algorithm for lines

|

e What if |m| > 17
@ Increment y by m

e round(y) may skip an integer
e gap in the line

DDA algorithm for lines

|

e What if |m| > 17
@ Increment y by m
e round(y) may skip an integer
e gap in the line
@ Swap the roles of x and y
e Loop over y, compute and round x

DDA algorithm for lines - limitations

@ Must round for each pixel
e very slow

@ Only use ops: +, —, X
e Even better: +, —

Rasterization choices

|

e Thin, no gaps

e Still have choices —

Midpoint algorithm

@ Assume 0 < m <1
e Move from left to right
@ Choose between (z + 1,y) and (x + 1,y + 1)

Y=Y
for x = x¢,...,2; do e —
draw(zx, y) "o

if (condition) then [

y<—y—+1

\ Check midpoint location

\ Check midpoint location -

\ Check midpoint location -

Criterion
\

Implicit line equation:

fx)=n-(x—x9) =0

Criterion

|

Implicit line equation:
fx)=n-(x—x%p) =0

Evaluate f at midpoint:

1\ 2
f<x+1,y+§) <0

Criterion

Implicit line equation:
fx)=mn-(x—x0) =0

Evaluate f at midpoint:

1
f<x+1,y+§> <0

Midpoint algorithm (0 < m < 1)

|

Y < Yo
for r = x¢,...,2; do
draw(x,y)
if f(x+1,y+3) <0 then
y<—y—+1

Efficiency: incremental update

e Compute initial f(z,y)
e Compute next by updating previous
e Update with one addition

flx,y) = (o — 1)z + (21 — z0)y + (X1 — T1Y0)

Efficiency: incremental update

e Compute initial f(z,y)
e Compute next by updating previous
e Update with one addition

flx,y) = (yo —y1)x + (x1 — 20)y + (oy1 — 21Y0)
flz+1,y) = f(z,y) + (Yo — 1)

Efficiency: incremental update

e Compute initial f(z,y)
e Compute next by updating previous
e Update with one addition

flx,y) = (yo —y1)x + (x1 — 20)y + (oy1 — 21Y0)
flz+1,y) = flz,y) + (Yo — 1)
flz+1,y+1) = f(z,y) + (Yo — 1) + (21 — 20

Efficiency: incremental update

Y < Yo
d < f(xo+ 1,90+ 3)
for x = x¢,...,21 do
draw(x,y)
if d <0 then
y<—y—+1
d<+d+ (yo— 1) + (x1 — x0)
else
d+d+ (Yo — 1)

Other cases: 0 < m <1

|

Other cases: —1 <m <0

|

Other cases: |m| > 1

|

