Line Rasterization

University of California Riverside
- **Raster Image**

 - **Object oriented**
 - for each object...

 - **Image oriented**
 - for each pixel...
What is rasterization?

Rasterization is the process of determining which pixels are “covered” by the primitive.
Rasterization

- In: 2D primitives (floating point)
- Out: covered pixels (integer)
- Must be fast (called many times)
- Visually pleasing
 - lines have constant width
 - lines have no gaps
DDA algorithm for lines

- **DDA** = “digital differential analyzer”
DDA algorithm for lines

- DDA = “digital differential analyzer”
- Plot line $y = mx + b$
DDA algorithm for lines

- DDA = “digital differential analyzer”
- Plot line $y = mx + b$
- For each x:
DDA algorithm for lines

- DDA = “digital differential analyzer”
- Plot line \(y = mx + b \)
- For each \(x \):
 - \(y = mx + b \)
DDA algorithm for lines

- DDA = “digital differential analyzer”
- Plot line $y = mx + b$
- For each x:
 - $y = mx + b$
 - turn on pixel $(x, \text{round}(y))$
DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
 - $x_0 = \text{start}, \ x_{i+1} = x_i + 1, \ x_n = \text{end}$
Assume $|m| \leq 1$

March from left to right

$x_0 = \text{start}$, $x_{i+1} = x_i + 1$, $x_n = \text{end}$

$$y_{i+1} = mx_{i+1} + b$$

$$= m(x_i + 1) + b$$

$$= y_i + m$$
DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
 - $x_0 = \text{start}, \ x_{i+1} = x_i + 1, \ x_n = \text{end}$
 - $y_{i+1} = mx_{i+1} + b$
 - $= m(x_i + 1) + b$
 - $= y_i + m$

- Each time:
DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
 - $x_0 = \text{start}, \; x_{i+1} = x_i + 1, \; x_n = \text{end}$

 $$y_{i+1} = mx_{i+1} + b$$
 $$= m(x_i + 1) + b$$
 $$= y_i + m$$

- Each time:
 - Increment x
DDA algorithm for lines

- Assume \(|m| \leq 1\)
- March from left to right
 - \(x_0 = \text{start}, \ x_{i+1} = x_i + 1, \ x_n = \text{end}\)
 - \(y_{i+1} = mx_{i+1} + b = m(x_i + 1) + b = y_i + m\)

- Each time:
 - Increment \(x\)
 - Add \(m\) to \(y\)
DDA algorithm for lines

- Assume $|m| \leq 1$
- March from left to right
 - $x_0 = \text{start}$, $x_{i+1} = x_i + 1$, $x_n = \text{end}$
 - $y_{i+1} = mx_{i+1} + b$
 - $= m(x_i + 1) + b$
 - $= y_i + m$

- Each time:
 - Increment x
 - Add m to y
 - turn on pixel $(x_i, \text{round}(y_i))$
DDA algorithm for lines

What if $|m| > 1$?
DDA algorithm for lines

- What if $|m| > 1$?
- Increment y by m
DDA algorithm for lines

- What if $|m| > 1$?
- Increment y by m
- $\text{round}(y)$ may skip an integer
- gap in the line
DDA algorithm for lines

- What if $|m| > 1$?
- Increment y by m
- $\text{round}(y)$ may skip an integer
 - gap in the line
- Swap the roles of x and y
 - Loop over y, compute and round x
DDA algorithm for lines - limitations

- Must round for each pixel
 - very slow
- Only use ops: $+, -, \times$
 - Even better: $+, -$
Rasterization choices

- Thin, no gaps
- Still have choices
Midpoint algorithm

- Assume $0 \leq m \leq 1$
- Move from left to right
- Choose between $(x+1, y)$ and $(x+1, y+1)$

$y = y_0$

for $x = x_0, \ldots, x_1$ do
 draw(x, y)
 if ⟨condition⟩ then
 $y \leftarrow y + 1$
Check midpoint location
Check midpoint location
Check midpoint location
Implicit line equation:

\[f(x) = \mathbf{n} \cdot (x - x_0) = 0 \]
Implicit line equation:

\[f(x) = n \cdot (x - x_0) = 0 \]

Evaluate \(f \) at midpoint:

\[f \left(x + 1, y + \frac{1}{2} \right) < 0 \]
Implicit line equation:

\[f(x) = \mathbf{n} \cdot (x - x_0) = 0 \]

Evaluate \(f \) at midpoint:

\[f\left(x + 1, y + \frac{1}{2}\right) < 0 \]
Midpoint algorithm (0 ≤ m ≤ 1)

\[y \leftarrow y_0 \]
\[\text{for } x = x_0, \ldots, x_1 \text{ do} \]
\[\text{draw}(x, y) \]
\[\text{if } f(x + 1, y + \frac{1}{2}) < 0 \text{ then} \]
\[y \leftarrow y + 1 \]
Efficiency: incremental update

- Compute initial $f(x, y)$
- Compute next by updating previous
- Update with one addition

$$f(x, y) = (y_0 - y_1)x + (x_1 - x_0)y + (x_0y_1 - x_1y_0)$$
Efficiency: incremental update

- Compute initial $f(x, y)$
- Compute next by updating previous
- Update with *one* addition

\[
\begin{align*}
f(x, y) &= (y_0 - y_1)x + (x_1 - x_0)y + (x_0y_1 - x_1y_0) \\
f(x + 1, y) &= f(x, y) + (y_0 - y_1)
\end{align*}
\]
Efficiency: incremental update

- Compute initial $f(x, y)$
- Compute next by updating previous
- Update with *one* addition

\[
f(x, y) = (y_0 - y_1)x + (x_1 - x_0)y + (x_0y_1 - x_1y_0)\]
\[
f(x + 1, y) = f(x, y) + (y_0 - y_1)\]
\[
f(x + 1, y + 1) = f(x, y) + (y_0 - y_1) + (x_1 - x_0)\]
Efficiency: incremental update

\[y \leftarrow y_0 \]
\[d \leftarrow f(x_0 + 1, y_0 + \frac{1}{2}) \]
\[\text{for } x = x_0, \ldots, x_1 \text{ do} \]
\[\text{draw}(x, y) \]
\[\text{if } d < 0 \text{ then} \]
\[y \leftarrow y + 1 \]
\[d \leftarrow d + (y_0 - y_1) + (x_1 - x_0) \]
\[\text{else} \]
\[d \leftarrow d + (y_0 - y_1) \]
Other cases: $0 \leq m \leq 1$
Other cases: \(-1 \leq m \leq 0\)
Other cases: $|m| > 1$