Debugging strategies

University of California Riverside

Challenges

@ Is it correct?
@ How do I find the problem?

First steps

e Start simple
e One object
e Square domain
e Zero velocity
e No forces

First steps

e Start simple
e One object
e Square domain
e Zero velocity
e No forces

e Catch simple stuff

o Crashes
e Out of bounds
o NalN

o Assertions

Fail hard

e Easy to track down:

e Compile errors
Segfault
Memory leaks
Assertions

o
o
o
e Out-of-bounds

Fail hard

e Easy to track down:

e Compile errors
e Segfault

e Memory leaks
o Assertions

e Out-of-bounds

e Take advantage of it

Compile errors

e Compiler is your friend
@ Don’t ignore warnings
@ -Wall -Werror

warning: unused variable ’z’ [-Wunused-variable]

warning: ’y’ may be used uninitialized in this function

@ Messy code is buggy code

Don’t let mistakes compile

@ u X U with 4D vectors?
@ A4 with mismatched sizes?
o A~! for non-square?

Type safety

@ int body_index;

e Which array?
e Bad bug: indexing wrong array

Type safety

@ int body_index;

e Which array?
e Bad bug: indexing wrong array

Type safety

@ int body_index;

e Which array?

e Bad bug: indexing wrong array
@ rigid_body* body;

e Type safe

e nullptr

e Harder to misuse

Debugger

@ Debugger quickly tells you where

e Segmentation faults
e Runtime exceptions

Debugger

@ Debugger quickly tells you where
e Segmentation faults
e Runtime exceptions

e Hardware watchpoint
e Who changed that?

Debugger

@ Debugger quickly tells you where

e Segmentation faults
e Runtime exceptions

e Hardware watchpoint
e Who changed that?
e Look around
o array.size() == 0... Oopsl!

Valgrind

Memory errors
Out-of-bounds
Memory leaks

Double free
Uninitialized data

Dangling pointers

Valgrind

Memory errors
Out-of-bounds
Memory leaks
Double free
Uninitialized data
Dangling pointers

Linux only (also Mac?)

Analytic solutions

e Translation

e Rotation

e Couette flow

@ Taylor-Green vortex:

CC BY-SA 3.0

‘‘‘‘‘‘

https://commons.wikimedia.org/wiki/File: Taylor-Green_vortex_vector_plot.png

Using analytic solutions

e Convergence study
o At =0, Az — 0
e Isolating parts

e Advection-only
e Zero viscosity

Discretizations are sometimes exact

@ Linear interpolation exact on ax + b
o Is yours?

Discretizations are sometimes exact

@ Linear interpolation exact on ax + b
o Is yours?

e Constant u,p (translation)

Discretizations are sometimes exact

@ Linear interpolation exact on ax + b
o Is yours?

e Constant u,p (translation)

@ Very easy to track down

e No discretization error
o Know what intermediates should be

Method of manufactured solutions

o Original PDE: &I + (@ - V)4 + Vp =0

Method of manufactured solutions

o Original PDE: &I + (@ - V)4 + Vp =0

e O - e _
o Add forcing: & + (@ - V)i + Vp = f
e Must discretize the f
e More “general” but easier to debug

Method of manufactured solutions

@ Choose arbitrary functions {7,]5

Method of manufactured solutions

@ Choose arbitrary functions {7,]5
o Calculate forcing term:
fe %4 (@ V)i+Vp

Method of manufactured solutions

@ Choose arbitrary functions {7,]5
o Calculate forcing term:
fe %4 (@ V)i+Vp

A
— —

@ Solve numerically: %—f +(W-VYu+Vp=f

Method of manufactured solutions

@ Choose arbitrary functions {7,]5
e Calculate forcing term:

Fe 2t (@-V)a+ Vp
o Solve numerically: % + (@ - V)i + Vp = f

e Compare numercial o, p with analytic ﬁ, D

Avoiding boundary conditions

@ Periodic boundary conditions
@ Analytic solution that is zero at boundary

Dimensional analysis

@ Physical quantities have units
o BEg., kgms?2

Dimensional analysis

@ Physical quantities have units
o BEg., kgms?2

@ Which of these is right? (¢ has units m/s)

n+1 n n n
G Uilg — Uy
+c =0
At At
n+1 n n n
Uy = U Uiy — Uy
+c =0
At Az
n+1 n n n
U, — Y Ui — Uy
+c =0
Az At
n+1 n n n
wu: T —ul U — U
7 1 + C Z+ (3 — 0

Ax Az

Software engineering practices

@ Version control

Software engineering practices

e Version control
e Testing suite
e [thought that was working last week?

Software engineering practices

e Version control
e Testing suite
e [thought that was working last week?

@ Design before you code

Software engineering practices

e Version control
e Testing suite
e [thought that was working last week?

@ Design before you code
e Plan ahead for debugging

Software engineering practices

Version control
Testing suite
e [thought that was working last week?

Design before you code

Plan ahead for debugging

If you cannot debug it, don’t write it

Avoid misusing indices

template<int d>
struct index_type

int value;

explicit index_type(int i) {value=i;}

Bs

int value(int i){return i;}
template<int d> int value(index-type<d> i){return 1i;}

template<class T, class I>
struct array
{
private:
std :: vector<I> data;

public:
T& operator [[(I i){return data|[value(i)];}
const T& operator [](I i) const {return data[value(i)];}
void resize (I n);
I size(){return I(data.size())}

Avoid misusing indices - usage

typedef index_type<0> triangle_id;
typedef index_type<l> vertex_id;
typedef index_type<2> rigid-body-id;

array<rigid_body *,rigid_body-id > rigid_-bodies;
array<vec3 ,vertex_id> vertices;
array<ivec3 ,triangle_id > triangles;

// Are these per—triangle or per—vertex colors?
array<vec3 ,vertex_id > colors;

// Need operator++, operator <, ...
for (rigid_-body-id i(0); i<rigid_-bodies.size (); i++)
rigid_bodies [i]—>update ();

