
Debugging strategies

University of California Riverside

Challenges

Is it correct?

How do I find the problem?

First steps

Start simple
One object
Square domain
Zero velocity
No forces

Catch simple stuff
Crashes
Out of bounds
NaN
Assertions

First steps

Start simple
One object
Square domain
Zero velocity
No forces

Catch simple stuff
Crashes
Out of bounds
NaN
Assertions

Fail hard

Easy to track down:
Compile errors
Segfault
Memory leaks
Assertions
Out-of-bounds

Take advantage of it

Fail hard

Easy to track down:
Compile errors
Segfault
Memory leaks
Assertions
Out-of-bounds

Take advantage of it

Compile errors

Compiler is your friend

Don’t ignore warnings

-Wall -Werror

warning: unused variable ’z’ [-Wunused-variable]

warning: ’y’ may be used uninitialized in this function

Messy code is buggy code

Don’t let mistakes compile

~u× ~v with 4D vectors?

A~u with mismatched sizes?

A−1 for non-square?

Type safety

int body index;
Which array?
Bad bug: indexing wrong array

rigid body* body;
Type safe
nullptr

Harder to misuse

Type safety

int body index;
Which array?
Bad bug: indexing wrong array

rigid body* body;
Type safe
nullptr

Harder to misuse

Type safety

int body index;
Which array?
Bad bug: indexing wrong array

rigid body* body;
Type safe
nullptr

Harder to misuse

Debugger

Debugger quickly tells you where
Segmentation faults
Runtime exceptions

Hardware watchpoint
Who changed that?

Look around
array.size() == 0. . . Oops!

Debugger

Debugger quickly tells you where
Segmentation faults
Runtime exceptions

Hardware watchpoint
Who changed that?

Look around
array.size() == 0. . . Oops!

Debugger

Debugger quickly tells you where
Segmentation faults
Runtime exceptions

Hardware watchpoint
Who changed that?

Look around
array.size() == 0. . . Oops!

Valgrind

Memory errors

Out-of-bounds

Memory leaks

Double free

Uninitialized data

Dangling pointers

Linux only (also Mac?)

Valgrind

Memory errors

Out-of-bounds

Memory leaks

Double free

Uninitialized data

Dangling pointers

Linux only (also Mac?)

Analytic solutions

Translation

Rotation

Couette flow

Taylor-Green vortex

CC BY-SA 3.0
https://commons.wikimedia.org/wiki/File:Taylor-Green vortex vector plot.png

Using analytic solutions

Convergence study
∆t→ 0, ∆x→ 0

Isolating parts
Advection-only
Zero viscosity

Discretizations are sometimes exact

Linear interpolation exact on ax + b
Is yours?

Constant ~u, p (translation)
Very easy to track down

No discretization error
Know what intermediates should be

Discretizations are sometimes exact

Linear interpolation exact on ax + b
Is yours?

Constant ~u, p (translation)

Very easy to track down
No discretization error
Know what intermediates should be

Discretizations are sometimes exact

Linear interpolation exact on ax + b
Is yours?

Constant ~u, p (translation)
Very easy to track down

No discretization error
Know what intermediates should be

Method of manufactured solutions

Original PDE: ∂~u
∂t + (~u · ∇)~u +∇p = 0

Add forcing: ∂~u
∂t + (~u · ∇)~u +∇p = f

Must discretize the f
More “general” but easier to debug

Method of manufactured solutions

Original PDE: ∂~u
∂t + (~u · ∇)~u +∇p = 0

Add forcing: ∂~u
∂t + (~u · ∇)~u +∇p = f

Must discretize the f
More “general” but easier to debug

Method of manufactured solutions

Choose arbitrary functions ~̂u, p̂

Calculate forcing term:

f̂ ← ∂~̂u
∂t + (~̂u · ∇)~̂u +∇p̂

Solve numerically: ∂~u
∂t + (~u · ∇)~u +∇p = f̂

Compare numercial ~u, p with analytic ~̂u, p̂

Method of manufactured solutions

Choose arbitrary functions ~̂u, p̂

Calculate forcing term:

f̂ ← ∂~̂u
∂t + (~̂u · ∇)~̂u +∇p̂

Solve numerically: ∂~u
∂t + (~u · ∇)~u +∇p = f̂

Compare numercial ~u, p with analytic ~̂u, p̂

Method of manufactured solutions

Choose arbitrary functions ~̂u, p̂

Calculate forcing term:

f̂ ← ∂~̂u
∂t + (~̂u · ∇)~̂u +∇p̂

Solve numerically: ∂~u
∂t + (~u · ∇)~u +∇p = f̂

Compare numercial ~u, p with analytic ~̂u, p̂

Method of manufactured solutions

Choose arbitrary functions ~̂u, p̂

Calculate forcing term:

f̂ ← ∂~̂u
∂t + (~̂u · ∇)~̂u +∇p̂

Solve numerically: ∂~u
∂t + (~u · ∇)~u +∇p = f̂

Compare numercial ~u, p with analytic ~̂u, p̂

Avoiding boundary conditions

Periodic boundary conditions

Analytic solution that is zero at boundary

Visual debugging

Dimensional analysis

Physical quantities have units
E.g., kg ms−2

Which of these is right? (c has units m/s)

un+1
i − uni

∆t
+ c

uni+1 − uni
∆t

= 0

un+1
i − uni

∆t
+ c

uni+1 − uni
∆x

= 0

un+1
i − uni

∆x
+ c

uni+1 − uni
∆t

= 0

un+1
i − uni

∆x
+ c

uni+1 − uni
∆x

= 0

Dimensional analysis

Physical quantities have units
E.g., kg ms−2

Which of these is right? (c has units m/s)

un+1
i − uni

∆t
+ c

uni+1 − uni
∆t

= 0

un+1
i − uni

∆t
+ c

uni+1 − uni
∆x

= 0

un+1
i − uni

∆x
+ c

uni+1 − uni
∆t

= 0

un+1
i − uni

∆x
+ c

uni+1 − uni
∆x

= 0

Software engineering practices

Version control

Testing suite
I thought that was working last week?

Design before you code

Plan ahead for debugging

If you cannot debug it, don’t write it

Software engineering practices

Version control
Testing suite

I thought that was working last week?

Design before you code

Plan ahead for debugging

If you cannot debug it, don’t write it

Software engineering practices

Version control
Testing suite

I thought that was working last week?

Design before you code

Plan ahead for debugging

If you cannot debug it, don’t write it

Software engineering practices

Version control
Testing suite

I thought that was working last week?

Design before you code

Plan ahead for debugging

If you cannot debug it, don’t write it

Software engineering practices

Version control
Testing suite

I thought that was working last week?

Design before you code

Plan ahead for debugging

If you cannot debug it, don’t write it

Avoid misusing indices

template<i n t d>
s t r u c t index type
{

i n t va lue ;

e x p l i c i t index type (i n t i) { value=i ;}
} ;

i n t va lue (i n t i){ r e turn i ;}
template<i n t d> i n t va lue (index type<d> i){ r e turn i ;}

template<c l a s s T, c l a s s I>
s t r u c t array
{
pr i va t e :

s td : : vector<T> data ;

pub l i c :
T& operator [] (I i){ r e turn data [va lue (i)] ; }
const T& operator [] (I i) const { r e turn data [va lue (i)] ; }
void r e s i z e (I n) ;
I s i z e (){ r e turn I (data . s i z e ())}

} ;

Avoid misusing indices - usage

typede f index type<0> t r i a n g l e i d ;
typede f index type<1> v e r t e x i d ;
typede f index type<2> r i g i d b ody i d ;

array<r i g i d body ∗ , r i g i d body id> r i g i d b o d i e s ;
array<vec3 , ve r t ex id> v e r t i c e s ;
array<ivec3 , t r i a n g l e i d> t r i a n g l e s ;

// Are these per−t r i a n g l e or per−ver tex c o l o r s ?
array<vec3 , ve r t ex id> c o l o r s ;

// Need operator++, operator <, . . .
f o r (r i g i d b ody i d i (0) ; i<r i g i d b o d i e s . s i z e () ; i++)

r i g i d b o d i e s [i]−>update () ;

