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Challenges

Is it correct?

How do I find the problem?



First steps

Start simple
One object
Square domain
Zero velocity
No forces

Catch simple stuff
Crashes
Out of bounds
NaN
Assertions
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Compile errors

Compiler is your friend

Don’t ignore warnings

-Wall -Werror

warning: unused variable ’z’ [-Wunused-variable]

warning: ’y’ may be used uninitialized in this function

Messy code is buggy code



Don’t let mistakes compile

~u× ~v with 4D vectors?

A~u with mismatched sizes?

A−1 for non-square?



Type safety

int body index;
Which array?
Bad bug: indexing wrong array

rigid body* body;
Type safe
nullptr

Harder to misuse
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Debugger

Debugger quickly tells you where
Segmentation faults
Runtime exceptions

Hardware watchpoint
Who changed that?

Look around
array.size() == 0. . . Oops!
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Valgrind

Memory errors

Out-of-bounds

Memory leaks

Double free

Uninitialized data

Dangling pointers

Linux only (also Mac?)
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Analytic solutions

Translation

Rotation

Couette flow

Taylor-Green vortex

CC BY-SA 3.0
https://commons.wikimedia.org/wiki/File:Taylor-Green vortex vector plot.png



Using analytic solutions

Convergence study
∆t→ 0, ∆x→ 0

Isolating parts
Advection-only
Zero viscosity



Discretizations are sometimes exact

Linear interpolation exact on ax + b
Is yours?

Constant ~u, p (translation)
Very easy to track down

No discretization error
Know what intermediates should be
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Method of manufactured solutions

Original PDE: ∂~u
∂t + (~u · ∇)~u +∇p = 0

Add forcing: ∂~u
∂t + (~u · ∇)~u +∇p = f

Must discretize the f
More “general” but easier to debug
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Method of manufactured solutions

Choose arbitrary functions ~̂u, p̂

Calculate forcing term:

f̂ ← ∂~̂u
∂t + (~̂u · ∇)~̂u +∇p̂

Solve numerically: ∂~u
∂t + (~u · ∇)~u +∇p = f̂

Compare numercial ~u, p with analytic ~̂u, p̂
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Avoiding boundary conditions

Periodic boundary conditions

Analytic solution that is zero at boundary



Visual debugging



Dimensional analysis

Physical quantities have units
E.g., kg ms−2

Which of these is right? (c has units m/s)
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Software engineering practices

Version control

Testing suite
I thought that was working last week?

Design before you code

Plan ahead for debugging

If you cannot debug it, don’t write it
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Avoid misusing indices

template<i n t d>
s t r u c t index type
{

i n t va lue ;

e x p l i c i t index type ( i n t i ) { value=i ;}
} ;

i n t va lue ( i n t i ){ r e turn i ;}
template<i n t d> i n t va lue ( index type<d> i ){ r e turn i ;}

template<c l a s s T, c l a s s I>
s t r u c t array
{
pr i va t e :

s td : : vector<T> data ;

pub l i c :
T& operator [ ] ( I i ){ r e turn data [ va lue ( i ) ] ; }
const T& operator [ ] ( I i ) const { r e turn data [ va lue ( i ) ] ; }
void r e s i z e ( I n ) ;
I s i z e ( ){ r e turn I ( data . s i z e ( ) )}

} ;



Avoid misusing indices - usage

typede f index type<0> t r i a n g l e i d ;
typede f index type<1> v e r t e x i d ;
typede f index type<2> r i g i d b ody i d ;

array<r i g i d body ∗ , r i g i d body id> r i g i d b o d i e s ;
array<vec3 , ve r t ex id> v e r t i c e s ;
array<ivec3 , t r i a n g l e i d> t r i a n g l e s ;

// Are these per−t r i a n g l e or per−ver tex c o l o r s ?
array<vec3 , ve r t ex id> c o l o r s ;

// Need operator++, operator <, . . .
f o r ( r i g i d b ody i d i ( 0 ) ; i<r i g i d b o d i e s . s i z e ( ) ; i++)

r i g i d b o d i e s [ i ]−>update ( ) ;


