Barycentric Coordinates

CS 130

1. Want to interpolate vertex data along a segment

- Define $f(\mathbf{x})$ for all points \mathbf{x} on the line
- Value at endpoints: f_{A}, f_{B}.
- Interpolation should get the endpoints right: $f(A)=f_{A}, f(B)=f_{B}$
- $f(P)=\alpha f(A)+(1-\alpha) f(B)$.
- $0 \leq \alpha \leq 1$.
- Symmetry: define $\beta=1-\alpha$.
- $f(P)=\alpha f(A)+\beta f(B)$, with $\alpha+\beta=1$.
- $\alpha=\frac{\operatorname{len}(P B)}{\operatorname{len}(A B)}, \beta=\frac{\operatorname{len}(A P)}{\operatorname{len}(A B)}$

2. Extend this to a triangle

- Define $f(\mathbf{x})$ for all points \mathbf{x} on the triangle
- Value at vertices: f_{A}, f_{B}, f_{C}.
- Interpolation should get the vertices right: $f(A)=f_{A}, f(B)=f_{B}, f(C)=f_{C}$
- $f(P)=\alpha f(A)+\beta f(B)+\gamma f(C)$, with $\alpha+\beta+\gamma=1$.
- Weights form isocontours:

- Note that $\alpha<0$ or $\alpha>1$ lies outside the triangle
- Compute using distance to edge:

- $\alpha=\frac{\operatorname{len}(P F)}{\operatorname{len}(A E)}=\frac{\frac{1}{2} \operatorname{len}(P F) \operatorname{len}(B C)}{\frac{1}{2} \operatorname{len}(A E) \operatorname{len}(B C)}=\frac{\operatorname{area}(P B C)}{\operatorname{area}(A B C)}$
- Similarly: $\beta=\frac{\operatorname{area}(A P C)}{\operatorname{area}(A B C)}, \gamma=\frac{\operatorname{area}(A B P)}{\operatorname{area}(A B C)}$

- Pattern of areas
- Since area $(P B C)+\operatorname{area}(A P C)+\operatorname{area}(A B P)=\operatorname{area}(A B C)$, we have $\alpha+\beta+\gamma=1$
- Barycentric interpolation is okay for z-values
- Barycentric interpolation is okay for colors in orthographic case
- Barycentric interpolation does not work for colors in the projective case

3. Inside/outside tests

- $\alpha<0$ or $\alpha>1$ lies outside the triangle (Same for $\beta<0$ or $\beta>1, \gamma<0$ or $\gamma>1$)
- Inside the triangle if $0 \leq \alpha \leq 1$ and $0 \leq \beta \leq 1$ and $0 \leq \gamma \leq 1$.
- Sufficient to check $\alpha, \beta, \gamma \geq 0$
- For example if $\alpha \geq 0$ and $\beta \geq 0$ then $\gamma=1-\alpha-\beta \leq 1-\beta \leq 1$.
- Since we need the weights to compute the depth values when doing z-buffering, we might as well also use them to determine inside/outside.

