Math Review

CS 130

1. Points

- Locations: P, Q, R

2. Vectors

- Direction, magnitude
- No location
- Used to indicate quantities like change in position, velocity, force, etc.
- $\mathbf{u}, \mathbf{v}, \mathbf{w}$ or $\vec{u}, \vec{v}, \vec{w}$
- Note that positions are very often represented with vectors (displacement from the origin).
- Vector operations

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)+\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
a_{3}+b_{3}
\end{array}\right) \quad\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)-\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{1}-b_{1} \\
a_{2}-b_{2} \\
a_{3}-b_{3}
\end{array}\right) \quad k\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{l}
k a_{1} \\
k a_{2} \\
k a_{3}
\end{array}\right)
$$

- Coordinates; a_{1}, a_{2}, a_{3} are coordinates, $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are a basis

$$
\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
$$

- In practice, the basis is normally understood (usually the standard one above), and only the coordinates are written explicitly.

3. Linear operator

- Special type of function $f(x)$
- Defining property: $a f(x)+b f(y)=f(a x+b y)$
- Typical form $f(x)=a x$, though not always. (Differentiation is a linear operator.)
- For example, if x, y are vectors, then the linear operators are matrices. That is, $f(\mathbf{u})=\mathbf{M u}$.
- Note that $f(0)=0$.

4. Affine operator

- Typical form: $f(x)=a x+b$.
- Note that $f(0)$ is not necessarily 0 .
- The definition is fairly general. x and b could be vectors; a could be a matrix.

5. Lines

- $L(t)=P+t \mathbf{u}$.
- Point on the line: P
- Direction of the line: \mathbf{u}
- t is a parameter that tells where a point is along the line.

6. Line segment

- Straight line connecting endpoints P, Q.
- $L(t)=(1-t) P+t Q ; t \in[0,1]$.
- Note: $L(t)=(1-t) P+t Q=P+t(Q-P), \mathbf{u}=Q-P$.

7. Dot product

- $\mathbf{u} \cdot \mathbf{v}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \cdot\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
- Well defined for any size of vector (any number of components), but both vectors must have the same size.
$\bullet \mathbf{u} \cdot \mathbf{u}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \cdot\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)=a_{1} a_{1}+a_{2} a_{2}+a_{3} a_{3}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=\|\mathbf{u}\|^{2} ;\|\mathbf{u}\|$ is the length of the vector.
- $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta ; \theta$ is the angle between the vectors.
- Sign tells you how "aligned" two vectors are:
$u \cdot v>0$
$\mathbf{u} \cdot \mathbf{v}=0$

$\mathbf{u} \cdot \mathbf{v}<0$

8. Cross Product

- Defined in 3D only.

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right) \\
& =\underbrace{\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|}_{\text {(notation abuse) }}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{aligned}
$$

- Note that $\mathbf{w}=\mathbf{u} \times \mathbf{v}$ is a vector.
- Length: $\|\mathbf{w}\|=\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$.
- Direction: \mathbf{w} is orthogonal to \mathbf{u} and $\mathbf{v}: \mathbf{u} \cdot \mathbf{w}=\mathbf{v} \cdot \mathbf{w}=0$.
- Note that both \mathbf{w} and $-\mathbf{w}$ have these properties; need a convention to disambiguate direction.
- How I remember it: $\mathbf{i} \times \mathbf{j}=\mathbf{k}$.
- Others use "right hand rule" and similar devices.
- Note that $\mathbf{u} \times \mathbf{u}=\mathbf{0}$, since $\theta=0$ and $\|\mathbf{u} \times \mathbf{u}\|=\|\mathbf{u}\|\|\mathbf{u}\| \sin \theta=\mathbf{0}$

9. Dot product and cross product have lots of useful properties, which are straightforward to check:

$$
\begin{array}{rlrl}
\mathbf{u} \cdot \mathbf{v} & =\mathbf{v} \cdot \mathbf{u} & (a \mathbf{u}) \cdot \mathbf{v} & =\mathbf{u} \cdot(a \mathbf{v})=a(\mathbf{u} \cdot \mathbf{v}) \\
\mathbf{u} \times \mathbf{v} & =-\mathbf{v} \times \mathbf{u} & (a \mathbf{u}) \times \mathbf{v} & =\mathbf{u} \times(a \mathbf{v})=a(\mathbf{u} \times \mathbf{v}) \\
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}) & =(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{u}+\mathbf{v}+\mathbf{w} \cdot \mathbf{v} \\
\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} & =(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{v})^{2}+\|\mathbf{u} \times \mathbf{v}\|^{2} & &
\end{array}
$$

10. Matrices

- Table of numbers

$$
\mathbf{M}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \quad \mathbf{N}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32} \\
b_{41} & b_{42}
\end{array}\right)
$$

- Entries are indexed $a_{i j}$; row is i, column is j.
- Matrices have dimensions that indicate their size and shape: \mathbf{M} is $3 \times 3, \mathbf{N}$ is 4×2.
- Matrix-vector multiply:

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{11} u_{1}+a_{12} u_{2}+a_{13} u_{3} \\
a_{21} u_{1}+a_{22} u_{2}+a_{23} u_{3} \\
a_{31} u_{1}+a_{32} u_{2}+a_{33} u_{3}
\end{array}\right)
$$

- Pattern: $\mathbf{v}=\mathbf{M u}$ is calculated as $v_{i}=\sum_{j} m_{i j} u_{j}$
- Can be thought of as a linear operator: $\mathbf{v}=f(\mathbf{u})=\mathbf{M u}$.
- Composition: $f(\mathbf{u})=\mathbf{M u}, g(\mathbf{u})=\mathbf{P} \mathbf{u}, h(\mathbf{u})=f(g(\mathbf{u}))$ or $h=f \circ g$.

$$
\begin{aligned}
& \mathbf{w}=f(g(\mathbf{u}))=f(\mathbf{P u})=\mathbf{M}(\mathbf{P u})=(\mathbf{M P}) \mathbf{u}=\mathbf{Q} \mathbf{u} \\
& w_{i}=\sum_{j} m_{i j}\left(\sum_{k} p_{j k} u_{k}\right)=\sum_{k}^{\left(\sum_{j} m_{i j} p_{j k}\right)} u_{k} \\
& \mathbf{Q}=\mathbf{M P} \Leftrightarrow q_{i k}=\sum_{q_{i k}} m_{i j} p_{j k}
\end{aligned}
$$

- This is the rule for matrix multiplication.
- Transpose: $\mathbf{N}=\mathbf{M}^{T}$ is defined by $n_{i j}=m_{j i}$

