Line Rasterization

University of California Riverside

Raster Image

@ Object oriented

e for each object. ..

e Image oriented
e for each pixel...

What is rasterization?

N

N

Rasterization is the process of determining which
pixels are “covered” by the primitive

Rasterization

e In: 2D primitives (floating point)
e Out: covered pixels (integer)

e Must be fast (called many times)
e Visually pleasing

o lines have constant width
e lines have no gaps

DDA algorithm for lines

e DDA = “digital differential analyzer”

DDA algorithm for lines

e DDA = “digital differential analyzer”
e Plot line y = mx + b

DDA algorithm for lines

e DDA = “digital differential analyzer”

e Plot line y = mx + b
@ For each x:

DDA algorithm for lines

e DDA = “digital differential analyzer”

e Plot line y = mx + b
e For each x:
e y=mzr+0b

DDA algorithm for lines

e DDA = “digital differential analyzer”

e Plot line y = mx + b
e For each x:
e y=mx+b
e turn on pixel (z,round(y))

DDA algorithm for lines

@ Assume |m| <1
@ March from left to right

DDA algorithm for lines

@ Assume |m| <1
@ March from left to right

e xg=start, x;.1 =x; + 1, x, = end

DDA algorithm for lines

@ Assume |m| <1
@ March from left to right
e xg=start, x;.1 =x; + 1, x, = end
Yir1 = mTip +b
=m(z; +1)+b
=y +m

DDA algorithm for lines

@ Assume |m| <1
@ March from left to right
e xg=start, x;.1 =x; + 1, x, = end
Yi+1 = MTiy1 + b
=m(z; +1)+b
=y +m
e Fach time:

DDA algorithm for lines

@ Assume |m| <1
@ March from left to right
e xg=start, x;.1 =x; + 1, x, = end
Yir1 = mTip +b
=m(z; +1)+b
=y +m
e Each time:
e Increment x

DDA algorithm for lines

@ Assume |m| <1
@ March from left to right
e xg=start, x;.1 =x; + 1, x, = end
Yi+1 = MTiy1 + b
=m(z; +1)+b
=y +m
e Fach time:

o Increment z
e Add m to y

DDA algorithm for lines

@ Assume |m| <1
@ March from left to right

e xg=start, x;.1 =x; + 1, x, = end
Yit1 = mTiy1 + b
=m(z; +1)+0b
=y +m

e Fach time:

e Increment x
e Add m to y
e turn on pixel (x;, round(y;))

DDA algorithm for lines

e What if |m| > 17

DDA algorithm for lines

e What if |m| > 17
e Increment y by m

DDA algorithm for lines

e What if |m| > 17
e Increment y by m

e round(y) may skip an integer
e gap in the line

DDA algorithm for lines

e What if |m| > 17
e Increment y by m
e round(y) may skip an integer
e gap in the line
@ Swap the roles of x and y
e Loop over y, compute and round x

DDA algorithm for lines - limitations

@ Must round for each pixel
e very slow

@ Only use ops: +, —, X
e Even better: +, —

Rasterization choices

e Thin, no gaps

e Still have choices —

Midpoint algorithm

@ Assume 0 <m <1
@ Move from left to right
e Choose between (z + 1,y) and (z + 1,y + 1)

Y =10
for v = x¢,...,21 do . —
draw(z, y) e

if (condition) then [

y+—y+1

Check midpoint location -

Check midpoint location

Check midpoint location

Criterion

Implicit line equation:

fx)=n-(x—x%p) =0

Criterion

Implicit line equation:
fx)=n-(x—x%p) =0

Evaluate f at midpoint:

1\ 2
f(x—|—1,y—|—§> <0

Criterion

Implicit line equation:
fx)=n-(x—x%p) =0

Evaluate f at midpoint:

1
f<x+1,y+§> <0

Midpoint algorithm (0 < m < 1)

Y <"
for x = zy,..., 21 do
draw(zx, y)
if f(z+1,y+3) <0 then
y<—y—+1

Efficiency: incremental update

e Compute initial f(z,y)
e Compute next by updating previous
e Update with one addition

f(x,y) = (yo — y1)x + (21 — 20)y + (Toy1 — T1%0)

Efficiency: incremental update

e Compute initial f(z,y)
e Compute next by updating previous
e Update with one addition

f(z,y) = (Yo — y1)z + (21 — T0)y + (Toy1 — T1%0)
f(ilf—l—]-73/) = f(ﬂf,y) + (yO _yl)

Efficiency: incremental update

e Compute initial f(z,y)
e Compute next by updating previous
e Update with one addition

f(z,y) = (Yo — y1)z + (21 — T0)y + (Toy1 — T1%0)
f(ﬂf‘l‘].,y) :f(xoy)+(y0_yl)
fla+1y+1) = f(x,y) + (yo — y1) + (21 — 70)

Efficiency: incremental update

Yy<—"%Y%
d <+ flzo+ 1,50+ 3)
for © = x¢,...,21 do
draw(z, y)
if d <0 then
y<—y+1
d < d+ (yo — y1) + (z1 — o)
else
d < d+ (yo — 1)

Other cases: 0 < m <1

Other cases: —1 <m <0

Other cases: |m| > 1

