
CS130 - LAB - Marching Squares

Name: SID:

In this lab we will generate contours in a 2-dimensional field using a method called marching
squares. The input is a matrix with positive and negative numbers and we want to draw
a isoline where the value in the field is zero. In marching squares, we slide a 2 × 2 window
across the grid, compute a 4-bit index for each element in the window (1 if the element is
positive, 0 otherwise), and use the index to lookup the line to be draw on a precomputed
table. In the figure below, green is inside and red is outside. The shaded square corresponds
to case 1, and our approximation of the surface in this square is the blue segment. Notice
that the endpoints of this segment lie on the edges of the shaded square.

We will use the ordering of nodes and edges shown below.

0

3

2

1

0 1

2 3

1. Complete the drawing below with all the segments you need to insert in the table. Fill
in the blanks with the endpoints of the segments, which are located on the edges of

1



the square (the edges of the square are numbered above). If you need fewer than two
segments, use {0,0} to indicate that the segment is not required.

case 0

{ , }

{ , }

case 1

{0,1}
{0,0}

case 2

{ , }

{ , }

case 3

{ , }

{ , }

case 4

{ , }

{ , }

case 5

{ , }

{ , }

case 6

{ , }

{ , }

case 7

{ , }

{ , }

case 8

{ , }

{ , }

case 9

{ , }

{ , }

case 10

{ , }

{ , }

case 11

{ , }

{ , }

case 12

{ , }

{ , }

case 13

{ , }

{ , }

case 14

{ , }

{ , }

case 15

{ , }

{ , }

2. Fill out the lookup table called case table.

3. Implement the case computation in compute case.

4. Implement the TODO section of marching squares. You can place the endpoints of
your segments at the midpoints of the edges of the square at first.

5. Run your code in tests 00.txt through 04.txt to test your code. For example,
“./squares 00.txt” will run the first test case. This will generate the file output.eps,
which contains an visualization of the surface you generated in blue. The first four test
cases should produce diamonds or circles. The last test is a stress test that exercises all
of the cases. The blue segments should form closed loops (or curves whose endpoints
lie on the sides of the the image). The blue curves should separate the green dots from
the red dots.

6. Interpolate along the edges of the square using the scalar values stored at the vertices
to get a more accurate placement of the endpoints of the segment. If done correctly,

2



test 03.txt should produce a smooth circle. Let φ0 and φ1 be the scalars at the
endpoints (you may assume they differ in sign). We want to compute a 0 ≤ λ ≤ 1 from
φ0 and φ1 so that we can interpolate the locations of the endpoints: x = λx0+(1−λ)x1.
We will assume the form λ =

aφ0+bφ1
cφ0+dφ1

for some a, b, c, d. The interpolation should have
the properties that (1) x = x0 when φ0 = 0 and φ1 ≠ 0, (2) x = x1 when φ1 = 0 and
φ0 ≠ 0, and (3) if φ0 = −φ1 then x =

x0+x1

2 . Fill in your interpolation formula here:

λ =
φ0 + φ1

φ0 + φ1

.

3


