CS130 - LAB - Texture Mapping

Name: SID:

Introduction

Texture mapping in GLSL consists of 3 parts

1. Uploading a texture: Handled in the OpenGL program (C/C++) part. In a typical
OpenGL program, textures are read from an image file (.png,. tga etc.) and loaded
in to OpenGL. The parameters of the texture (such as interpolation methods) are also
set in the program.

2. Computing the texture coordinate of a vertex: In GLSL, the texture coordinate glTexCoord [i]

for a texture ¢ and a vertex is determined in the vertex shader. This is the coordinate
of the vertices’ corresponding texture positions in the image data of texture i, where i
is the index of a texture (in case of multiple textures, ¢ = 0 for a single texture).

3. Getting the texture color for a fragment: The texture coordinate, glTexCoord[i],
of texture i is readily interpolated to the fragment location by OpenGL. A lookup
function such as texture2D is used to get the color from the texture.

Part I: Uploading a Texture
Read the tutorials about uploading a texture file in these links and answer the questions.

1. https://www.gamedev.net /articles/programming/graphics/opengl-texture-mapping-an-
introduction-r947

2. http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube /#how-
to-load-texture-with-glfw| (Until section “How to load texture with GLFW?”)

https://www.gamedev.net/articles/programming/graphics/opengl-texture-mapping-an-introduction-r947/
https://www.gamedev.net/articles/programming/graphics/opengl-texture-mapping-an-introduction-r947/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/#how-to-load-texture-with-glfw
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/#how-to-load-texture-with-glfw

Question 1: Describe briefly with your own words each one of the following functions. Look at
the OpenGL documentation for reference. Link: https://www.khronos.org/registry/OpenGL-
Refpages/gld/

Google: “OpenGL 4 references”

glGenTextures:

Inputs:

glBindTexture:

Inputs:

glTexParameter:

Inputs:

glTexImage2D:

Inputs:

Question 2: Answer the question below, briefly. Hint: see glTexParameter’s reference page.

1. What do minifying and magnifying mean?
|

2. What parameter name should be used in glTexParameter function in order to specify
minifying function?

3. What parameter name should be used in glTexParameter function in order to specify
magnifying function?

|
4. What are the possible minifying and magnifying functions defined by OpenGL?

Answer: GL_LINEAR,

https://www.khronos.org/registry/OpenGL-Refpages/gl4/
https://www.khronos.org/registry/OpenGL-Refpages/gl4/

Question 3: Read the comments and fill out the code accordingly.

//

// Inputs:

// data: a variable that stores the image data in ‘‘unsigned charx’’
// GL.UNSIGNEDBYTE type

// height: an integer storing the height of the image data

// width: an integer storing the height of the image data

Description:
I
// A piece of code that uploads the image ‘‘data’’ to OpenGL

//

//

GLuint texture_id = 0;
// generate an OpenGL texture and store in texture_id variable

// set/‘‘bind’’ the active texture to texture_id

// Set the magnifying filter parameter of the active texture to linear
// Set the minifying filter parameter of the active texture to linear
// Set the wrap parameter of ”S” coordinate to GLREPEAT

// Set the wrap parameter of "T” coordinate to GLREPEAT

// Upload the texture data, stored in variable ‘‘data’’ in RGBA format

Part II: Shading with Textures in GLSL

Read the tutorials below and answer the following questions
https://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/texturing. php

Introduction section only

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial /simple-texture/

1. Fill out the blanks in the vertex and fragment shaders below to compute the gl _TexCoord [0]

https://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/texturing.php
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/simple-texture/

using gl _TextureMatrix[0] and glMultiTexCoord.
vertex.glsl:

varying vec3 N;
varying vec4 position;

// Create a uniform 2D texture sampler variable, with name "tex”;

void main ()

{
// compute gl TexCoord[0] using gl TextureMatrix[0] and glMultiTexCoord
gl_TexCoord [0] = ();
N = gl_NormalMatrix * gl_Normal;
gl _Position = gl_ProjectionMatrix * gl _ModelViewMatrix * gl_Vertex;
position = gl_ModelViewMatrix * gl_Vertex;

}

fragment.glsl:

// create a uniform 2D texture sampler variable, with name ”"tex”, so that
// it will be forwarded from the vertex shader
void main ()

// get the texture color from ”tex”, using a texture lookup function

// and the s,t coordinates of gl TexCoord|[0].

vecd tex_color = ()3

// set gl FragColor to tex_color
gl _FragColor = tex_color;

Part III: Texture mapping coding practice

In this part of the lab you will be practicing texture mapping with GLSL with a skeleton
code.

The skeleton code has texture files (.tga images) monkey.tga and monkey_occlusion.tga,
as well as the base code for creating an OpenGL window, loading a monkey model and
drawing it. Follow the steps below and implement texture mapping in the skeleton.

Step 0. Download the skeleton code from the lab webpage to your environment of choice
(the ti-05 server works best for this) and unzip/untar it. Open the image files and observe
their content.

Step 1. Uploading monkey.tga to OpenGL:

e Locate the TODO section towards the end of the loadTarga function in application.cpp

e Use the code in the answer to Part I Question 3, to upload “data” to OpenGL.

Note 1: the code at the beginning of the function reads the image file in “filename” to the
“data” variable.

Note 2: monkey.tga is in RGBA format, and the data is a pointer to UNSIGNED BYTE array.

Step 2. Computing texture coordinates

e Locate vertex.glsl and compare the code with the vertex shader code in Part II
Question 2.

e Note that the code that computes the texture coordinate of the vertex is already
computed, and so you have nothing to do and may go to step 3.

Step 3. Computing the color of the fragment using texture color.

e Locate fragment.glsl and compare the code with the phong shader you implemented
in a previous lab. This is a phong shader without a specular component.

e Now compute the texture color just like in the fragment shader in Part 1T Question 3
and store it in a tex_color variable. But, do not assign it to gl FragColor.

e Here we would like to use the texture color instead of the material color
(glFrontMaterial.diffuse.rgb), while keeping the rest of the computation.

e Rewrite the line that computes the gl _FragColor to do this.

