
CS130 - LAB - Getting Started with Project 2

Name: SID:

Project 2 consists of implementing a simplified rendering pipeline.

For this lab, you’ll need to get the first test working (test 00.txt), which includes (1)
allocating memory for the image to be rendered, (2) assigning values to vertices and (3)
rendering triangles. Let’s get started by checking in which file you will need to implement
the first steps and implementing (1), (2) and (3) on each step of this tutorial.

There are 5 cpp files in the project, you will need to implement your code only in driver state.cpp.
(You should not modify any of the other cpp files.) In driver state.cpp, there are four
functions with TODOs in them. What are these functions and what should they do?

Name 1:
Description: ∎

Name 2:
Description: ∎

Name 3:
Description: ∎

Name 4:
Description: ∎

1 Part 1

We will only work in 3 of these functions in this lab. Let’s start with initialize render.
We need to allocate the memory space for the image color and for the image depth. Note
that image color is a pointer. Look at driver state.h and in common.h, you will notice
that image color is a typedef for another type.

What is the typedef name of image color?

1

What is the actual type of image color?

Look at make pixel in common.h. In which order is the RGB color information stored in a
single pixel in image color?

How many bytes for each channel (red, green, blue) are used in a single pixel?

How can we set a pixel with the color white?

Implement initialize render in driver state.cpp by allocating memory for image color.
Initialize all the pixels in image color to black. We will not be using image depth until
we implement the z-buffer, so you can ignore it for now. Make sure your code compiles and
runs without issues in valgrind. You can compile the code using scons, and you can run
test 00.txt using ./driver -i 00.txt.

2 Part 2

For the next step, we need to implement a few things in render. There are two parameters
here, what these two parameters do?

driver state &state description: ∎

render type type description: ∎

We will need to locate the vertex data and understand how it is being stored in memory. Look
at driver state.h and try to find where the data for each vertex is stored. There should
be 3 relevant variables. What are they? (, , and

).

Consider we have the following triangle:

(0,0), color blue

(3,1), color green

(1,3), color red

2

What are the values in the three variables for this triangle? (The data layout is up to the
user. For now, choose a reasonable layout. This is just to help us understand what the input
looks like.)

Variable 1:
Value 1:

Variable 2:
Value 2:

Variable 3:
Value 3:

We will be using two new structures: data vertex and data geometry. These are defined
in common.h. What are the two fields in data geometry object?

Field 1:
Description: ∎

Field 2:
Description: ∎

What is the only field in data vertex?

Field 1:
Description: ∎

We will implement this function in two steps. In the first step, we will allocate an array
of data geometry objects (one for each vertex). Note that each of these objects has a
data member, which you will also need to allocate. These pointers need to point to freshly
allocated space. Leaving these pointers uninitialized is a common bug. Initializing these
pointers to other arrays that already exist is also a common bug. (General piece of program-
ming advice. If you see a pointer and don’t know what to do with it, the two worst things that
you can do are (1) leave it uninitialized and (2) point it at something you see lying around.
Option (1) makes your code segfault. Option (2) leads to perplexing bugs that take several
hours of time and a trip to office hours to track down. Reading the comments helps a lot
with this. The comments are there to help you. Spending some time at the beginning reading
and digesting the comments can save you many hours of frustration later on.)

3

Once all of the the space is fully allocated and the pointers set to valid data, we need to fill
in the contents of the objects. This is done by calling the vertex shader. Do not attempt
to do this yourself. You do not have enough information available to you do do this; the
vertex shader must do it for you. Note that the input for the vertex shader is a data vertex

structure, which also contains a data pointer. This pointer should point at the vertex data
for that vertex. It should not make a copy of that data. Once this has been done, we will
have one data geometry object for each vertex.

The next step is to group the vertices into triangles and pass the triangles to the next stage
of the pipeline. Start by creating a switch for the render type. There four four render types.
Let’s focus only on triangle for now and leave the other 3 cases empty. Each set of three
data geometry objects corresponds to a triangle. Pass these on to the next stage of the
pipeline, which for now will be rasterization.

If there are 9 vertices, how many triangles will be rendered?

If there are 8 vertices, how many triangles will be rendered?

3 Part 3

The final step (for today) is to rasterize the triangles from part (2) in the rasterize triangle

function.

� Before you call the rasterize triangle function, make sure that the data geometry

objects have been prepared using the vertex shader (see the function description in
driver state.h).

� In the rasterize triangle function, recall that we are using homogeneous coordi-
nates, so you will need to divide the position in the data geometry by the w coordi-
nate.

� Calculate the pixel coordinates of the resulting data geometry position. The x and y
positions in data geometry are in Normalized Device Coordinates (NDC) with each
dimension going from -1 to +1. Pixels on the other hand are indexed from 0 to
image width-1 for x or from 0 to image height-1 for y. You will also need to ac-
count for the fact that the NDC (−1,−1) corresponds to the bottom left corner of the
screen but pixel index (0,0) corresponds to the center of the bottom left pixel. Given
(x, y) in NDC, what equation gives you (i, j) in pixel space (use image width and
image height).

i =

j =

4

� Draw the vertices in the image (recall you can access the image color in driver state).
Make sure they fall very close to the vertices of the 00.png image. You will have the
(i, j) position of the pixel but you need to set a specific pixel in the array image color

of size image width*image height in driver state. How do you calculate the corre-
sponding index in image color using (i, j)? index = .
Note that we are drawing the vertices only for debugging to test earlier pipeline stages
as well as your transformations. Once these things have been fixed, this should be
removed.

� To rasterize the triangle, you can iterate over all pixels of the image. Say you are in
the pixel with indices (i, j). You can use the barycentric coordinates of this pixel (i, j)
to test if this pixel falls inside the triangle or not.

C B

A

P = (i, j)

Barycentric coordinates can be calculated using triangle areas. Fill out the equations
for the barycentric coordinates below.
α = AREA()/AREA()

β = AREA()/AREA()

γ = AREA()/AREA()

You can calculate the area of the triangle using the formula:
AREA(ABC) = 0.5((BxCy −CxBy) + (CxAy −AxCy) + (AxBy −BxAy))

� If all barycentric coordinates are non-negative, then make the pixel color white (for
now). You should be passing test 00.txt now. Make sure you don’t have any errors
on valgrind. This simple step can save you many hours of frustration later.

Other things to do later:

� Rather than visiting all the pixels of the image for every triangle, visit only the pixels
in the square that contains the triangle.

5

� Use the fragment shader to calculate the pixel color rather than setting to white. See
data output in common.h and the fragment shader function in driver state.h.

� Implement color interpolation by checking interp rules in driver state before send-
ing the color to the fragment shader. You have one interp rule for each float in
data geometry.data. If the rule type is noperspective (see interpolation types in
common.h), then interpolate the float from the 3 vertices using the barycentric coordi-
nates.

6

	Part 1
	Part 2
	Part 3

