
CS130 - LAB - Bresenham’s line algorithm / midpoint
algorithm

Name: SID:

Part 1: Bresenham’s line algorithm / midpoint algo-

rithm

References: https://en.wikipedia.org/wiki/Bresenham%27s line algorithm

This Lab consists of implementing the midpoint algorithm to draw continuous lines using
only integer operations. Recall the line equation is y = mx + n, where m is the slope and n
is the y intercept. Given two points p0 = (x0, y0) and p1 = (x1, y1), the slope is calculated as
m = y1−y0

x1−x0
= dy

dx . Consider 0 ≤ m ≤ 1 (line in angle between 0 and 45 degrees). The idea is to
determine which of the two pixels (a or b) we should draw. Complete the missing coordinates
of the points below.

(x, y) (x + , y)

(x + , y + )

(x + , y + )
midpoint

pixel b

pixel a

1

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm


In particular, we can evaluate the midpoint between a and b using a function f(x, y) that
returns a positive number if the line is above the midpoint and negative if the line is below
the midpoint. The function f(x, y) should be zero if the midpoint lies on the line

f(x, y) = 0 =mx + n − y (1)

Rewrite the right-hand-side (RHS) of Equation (1) in the form Ax +By + C, where A, B,
and C depends on dx, dy and n only. Remove any denominator by multiplying f(x, y) by
dx to ensure we have an integer solution.

f(x, y) = (2)

where A = ,B = ,C =
We want to make a decision on whether to draw pixel a or b using f(x, y) on a sequence of
points from p0 to p1. Define variables da and db to hold the difference of f(x, y) from a and
b to the previous midpoint (x + 1, y + 1/2). Use Equation (2) to rewrite Equations (3) and
(4) as function of A and B (you won’t need C).

da = f(x + 2, y + 3/2) − f(x + 1, y + 1/2) = (3)

db = f(x + 2, y + 1/2) − f(x + 1, y + 1/2) = (4)

Final detail, we need to calculate the difference between the second and first point in order
to use Equations (3) and (4) in a loop.

dinit = f(x0 + 1, y0 + 1/2) − f(x0, y0) = (5)

We only care whether d is positive or negative, hence, we can multiply dinit, da and db by
2 to get equations containing only integers.

Using Equations (2) to (5), complete the midpoint algorithm below:

MPA( x0 , y0 , x1 , y1 ) :
dx = x1 − x0
dy = y1 − y0
D = ( ) // i n i t i a l i z e D us ing d i n i t
y = y0
f o r x = x0 to x1 :

s e t p i x e l (x , y )
i f D > 0 :

y = y + 1
D = ( ) // D i s p o s i t i v e , use da

D = ( ) // D i s negat ive , use db

2



Part 2: Implementing the midpoint algorithm

We considered 0 ≤ m ≤ 1 (line in angle between 0 and 45 degrees) to write the code in the
previous part. How can we manage other angles? Feel free to think a little bit about it and
to look at the Wikipedia page (link on Part 1). Here is a free blank space and a diagram.

0 <m < 1

m > 1
1st quadrant
x0 < x1, y0 < y1

2nd quadrant
x0 < x1, y0 < y1

Download the skeleton code on the website and write the midpoint algorithm in the func-
tion draw line MPA in application.cpp. To draw a pixel, you can use set pixel(x, y,

linecolor), where linecolor is given to you as argument of draw line MPA. The following
commands are available:

� Click and hold to draw lines.

� Type “c”to clear old lines.

� Type “a”to generate 1K random lines.

� Type “A”to generate 1M random lines.

� Type “m”to toggle between the MPA and the DDA algorithms.

� Type “[”or “]”to change point-size.

Make sure your code runs faster than the DDA algorithm. Why is the DDA algorithm
slower? Feel free to take a look at draw line DDA code.

3



Run your MPA algorithm 3 times with 1K and 1M lines without increasing the point-size.
Run the DDA algorithm 3 times with 1K and 1M lines without increasing the point-size.
Fill the table below with the running time.

DDA (1K / 1M): Run 1 = / ; Run 2 = / ; Run 3 = /
MPA (1K / 1M): Run 1 = / ; Run 2 = / ; Run 3 = /

4


