CS130 - LAB - Debugging

Name: SID:

Today’s lab will be about debugging programs using GDB and valgrind. If you are using
Linux/MacOS, GDB should be already installed. You can install valgrind on Ubuntu using
$ sudo apt get install valgrind and on MacOS using brew install valgrind. If you are using
a Windows machine, you will need to use of the machines with Linux in the department to
finish this lab. You can connect remotely to the machines in the lab if you want to test this
at home. There is also some possibility of valgrind working under WSL.

1 GDB

GDB helps you understand the execution of the program by allowing you to run a code
line by line and check variable values on-the-fly. Say we have the following program called
factorial in a file factorial.cpp:

float factorial (int n)

{

float 1 = n;

for(n-—-; n>= 0; ——n)
i %= n;

return i;

}

To run GDB or valgrind, we need to compile factorial with debug symbols and we can do this
by passing -g to the GCC compiler. To run factorial with GDB, we type gdb factorial.
This will start GDB and load the debug symbols. We can run the program by typing run.
If the program crashes, it will stop at the part of the code where the problem happened. To
see the code where the problem happened, you can type list. We can also see what the
value of the variables are by typing print <variable>. For instance, if we want to see the
value of n in line 4 of factorial, we can type print n.

Before you run the program (while in gdb), you can also add breakpoints that will make
the program stop at a specific line of code before continuing. To do this, you can type

breakpoint <filename>:<line of code>. For instance, if we want to check the values n
in factorial.cpp, we can type breakpoint factorial.cpp:4.

A quick guide to GDB can be found at:
https://web.eecs.umich.edu/"sugih/pointers/summary.html

Valgrind

Valgrind helps us understand if there are memory violations in our program (among other
things). For instance, the following program may not crash but we know it is wrong because
we should not be accessing a memory position at index 2 of the array.

int main ()

{

int xarray = new int [2];
array [0] = 0;
array [1] = 0;
array [2] = 0;

return array [2];

}

We can run valgrind by typing valgrind <program call>. Assuming the above code binary
is called test, then we can do valgrind test. Here is the output of valgrind when we run
test:

==16319== Memcheck, a memory error detector

==16319== Copyright (C) 2002-2017, and GNU GPL’d, by Julian Seward et al.
==16319== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==16319== Command: ./test

==16319==

==16319== Invalid write of size 4

==16319== at 0x1086B0: main (main.cpp:5)

==16319== Address 0x5b82c88 is 0 bytes after a block of size 8 alloc’d
==16319== at 0x4C3089F: operator new[] (unsigned long) (in
/usr/lib/valgrind/vgpreload_memcheck-amd64-1linux.so)

==16319== by 0x10868B: main (main.cpp:2)

==16319==

==16319== Invalid read of size 4

==16319== at 0x1086BA: main (main.cpp:6)

==16319== Address 0x5b82c¢88 is 0 bytes after a block of size 8 alloc’d
==16319== at 0x4C3089F: operator new[] (unsigned long) (in
/usr/lib/valgrind/vgpreload_memcheck-amd64-1linux.so)

==16319== by 0x10868B: main (main.cpp:2)

2

==16319==
==16319==
==16319== HEAP SUMMARY:

==16319== in use at exit:
==16319== total heap usage:
==16319==

==16319== LEAK SUMMARY:
==16319== definitely lost:
==16319== indirectly lost:
==16319== possibly lost:
==16319== still reachable:
==16319== suppressed:

N

O O O

0

bytes in 1 blocks
allocs, 1 frees, 72,712 bytes allocated

bytes
bytes
bytes
bytes
bytes

in
in
in
in
in

1 blocks
0 blocks
0 blocks
0 blocks
0 blocks

==16319== Rerun with --leak-check=full to see details of leaked memory

==16319==

==16319== For counts of detected and suppressed errors, rerun with: -v
==16319== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

The first problem is an invalid write of size 4 (bytes) on line 5. The second is a read of the
same memory address. Note also the “definitely lost” line which is saying that we allocated 8
bytes but we never freed that memory, which is also a problem. The code we will be working

with can be found on ilLearn.

1. Run valgrind on prog-1.

(a) What type of error do we get and why?

(b) How can prog-1 be changed so we don’t get this error anymore?

Continue these two steps and update the appropriate section until there are no more

errors found.

2. Run valgrind on prog-2.

(a) What type of error do we get and why?

(b) How prog-2 can be changed so we don’t get this error anymore?

3. Run gdb on prog-3.

(a) The program should stop with segmentation fault exception. Type list to see the
region where the program stopped. In which line of code is the program crashing?

(b) Use the command print <statement> with the variables that are being accessed
on the line where the program is crashing. You can use the up command to go

back a line if needed. Why does the program crash in this case and how we can
fix it?

4. Run valgrind on prog-4.

(a) What type of error do we get and why?

(b) How can prog-4 be changed so we don’t get this error anymore?

[]
5. Run gdb on prog-5 and follow the steps below.

(a) The program should stop with a segmentation fault exception. In which line of
code is the program crashing?

(b) Why does the program crash in this case and how we can fix it? (you may want
to see the list and node structures in the source code for this)

(c) Compile and run the program again using gdb. The program should crash again.
Try using list and print to figure out why the program is crashing and briefly
explain your reasoning. What changes need to be made in the code to fix this
problem?

(d) Compile and run the program again using valgrind. The program should display
an error. Why do we get this error and how we can fix it?

6. Using gdb and valgrind (use the best for each situation), briefly describe all problems
in prog-6 and propose fixes for each one of the problems.

	GDB

