One technique that processors use to compute \(z = \sqrt{a} \) is to first compute \(x = \frac{1}{\sqrt{a}} \) and then multiply \(z = ax \).

Problem 1 (1 Point)

Show that \(f(x) = 0 \).

\[
f(x) = \frac{1}{x^2} - a = \frac{1}{\left(\frac{1}{\sqrt{a}}\right)^2} - a = \frac{1}{a} - a = a - a = 0
\]

Problem 2 (4 Points)

Given an estimate \(\bar{x} \) to \(x \) (so that \(f(\bar{x}) \approx 0 \)), use Newton’s method to derive an update rule to compute a better estimate \(\hat{x} \) from the original estimate \(\bar{x} \).

\[
\hat{x} = \bar{x} + y
\]

\[
0 = f(\hat{x}) = f(\bar{x} + y) \approx f(\bar{x}) + f'(\bar{x})y
\]

\[
y = -\frac{f(\bar{x})}{f'(\bar{x})}
\]

\[
\hat{x} = \bar{x} - \frac{f(\bar{x})}{f'(\bar{x})}
\]

\[
f(x) = \frac{1}{x^2} - a
\]

\[
f'(x) = -\frac{2}{x^3}
\]

\[
\hat{x} = \bar{x} - \frac{1}{\frac{2}{\bar{x}^2}} = \bar{x} + \frac{\bar{x} - a\bar{x}^3}{2} = \frac{1}{2} \bar{x}(3 - a\bar{x}^2)
\]