Triangle rasterization
Which pixels should be used to approximate a triangle?
Triangle rasterization issues
Who should fill in shared edge?

Which pixels should be used to approximate a triangle?
Which pixels should be used to approximate a triangle?

Who should fill in shared edge?
Which pixels should be used to approximate a triangle?

Use Midpoint Algorithm for edges and fill in?
Which pixels should be used to approximate a triangle?

Use an approach based on barycentric coordinates.
We can interpolate attributes using barycentric coordinates

\[\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2 \]

Gouraud shading

(Gouraud, 1971)

http://jtibble.dyndns.org/graphics/eecs487/eecs487.html
Triangle rasterization algorithm

for all \(x \) do
 for all \(y \) do
 compute \((\alpha, \beta, \gamma)\) for \((x,y)\)
 if \((\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])\) then
 \[c = \alpha c_0 + \beta c_1 + \gamma c_2 \]
 drawpixel\((x,y)\) with color \(c \)
Triangle rasterization algorithm

for all x do
 for all y do
 compute (α, β, γ) for (x, y)
 if $(\alpha \in [0, 1]$ and $\beta \in [0, 1]$ and $\gamma \in [0, 1])$ then
 $c = \alpha c_0 + \beta c_1 + \gamma c_2$
 drawpixel(x, y) with color c
Triangle rasterization algorithm

use a bounding rectangle

for \(x \) in \([x_{\text{min}}, x_{\text{max}}]\)
for \(y \) in \([y_{\text{min}}, y_{\text{max}}]\)
 compute \((\alpha, \beta, \gamma)\) for \((x, y)\)
 if \((\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])\) then
 \(c = \alpha c_0 + \beta c_1 + \gamma c_2\)
 drawpixel\((x, y)\) with color \(c\)
Triangle rasterization algorithm

for \(x \) in \([x_{\text{min}}, x_{\text{max}}]\)
 for \(y \) in \([y_{\text{min}}, y_{\text{max}}]\)
 \[
 \begin{align*}
 \alpha &= \frac{f_{bc}(x, y)}{f_{bc}(x_a, y_a)} \\
 \beta &= \frac{f_{ca}(x, y)}{f_{ca}(x_b, y_b)} \\
 \gamma &= \frac{f_{ab}(x, y)}{f_{ab}(x_c, y_c)}
 \end{align*}
 \]
 if \((\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1])\) then
 \[
 c = \alpha c_0 + \beta c_1 + \gamma c_2
 \]
 drawpixel(x, y) with color \(c \)
Triangle rasterization algorithm

Optimizations?

\[
\begin{align*}
\text{for } x \text{ in } [x_{\text{min}}, x_{\text{max}}] \\
&\quad \text{for } y \text{ in } [y_{\text{min}}, y_{\text{max}}] \\
&\quad \quad \alpha = \frac{f_{bc}(x, y)}{f_{bc}(x_a, y_a)} \\
&\quad \quad \beta = \frac{f_{ca}(x, y)}{f_{ca}(x_b, y_b)} \\
&\quad \quad \gamma = \frac{f_{ab}(x, y)}{f_{ab}(x_c, y_c)} \\
&\quad \quad \text{if } (\alpha \in [0, 1] \text{ and } \beta \in [0, 1] \text{ and } \gamma \in [0, 1]) \text{ then} \\
&\quad \quad \quad c = \alpha c_0 + \beta c_1 + \gamma c_2 \\
&\quad \quad \text{drawpixel}(x,y) \text{ with color } c
\end{align*}
\]
Triangle rasterization algorithm

Optimizations?

\[
\begin{aligned}
&\text{for } x \text{ in } [x_{\text{min}}, x_{\text{max}}] \\
&\quad \text{for } y \text{ in } [y_{\text{min}}, y_{\text{max}}] \\
&\quad \quad \alpha = f_{bc}(x, y) / f_{bc}(x_a, y_a) \\
&\quad \quad \beta = f_{ca}(x, y) / f_{ca}(x_b, y_b) \\
&\quad \quad \gamma = f_{ab}(x, y) / f_{ab}(x_c, y_c) \\
&\quad \text{if } (\alpha \geq 0 \text{ and } \beta \geq 0 \text{ and } \gamma \geq 0) \text{then} \\
&\quad \quad c = \alpha c_0 + \beta c_1 + \gamma c_2 \\
&\quad \quad \text{drawpixel}(x, y) \text{ with color } c \\
\end{aligned}
\]

make computation of bary. coords. incremental
color can also be computed incrementally
don’t need to check upper bound
Triangle rasterization algorithm

dealing with shared triangle edges

\[
\begin{align*}
\text{for } x \text{ in } [x_{\text{min}}, x_{\text{max}}] \\
\text{for } y \text{ in } [y_{\text{min}}, y_{\text{max}}] \\
\alpha &= f_{bc}(x, y)/f_{bc}(x_a, y_a) \\
\beta &= f_{ac}(x, y)/f_{ac}(x_b, y_b) \\
\gamma &= f_{ab}(x, y)/f_{ab}(x_c, y_c) \\
\text{if } (\alpha \geq 0 \text{ and } \beta \geq 0 \text{ and } \gamma \geq 0) \text{ then} \\
\text{if } (\alpha > 0 \text{ or } f_{bc}(a)f_{bc}(r) > 0) \text{ and } \\
(\beta > 0 \text{ or } f_{ca}(b)f_{ca}(r) > 0) \text{ and } \\
(\gamma > 0 \text{ or } f_{ab}(c)f_{ab}(r) > 0) \text{ then} \\
c &= \alpha c_0 + \beta c_1 + \gamma c_2 \\
\text{drawpixel}(x,y) \text{ with color c}
\end{align*}
\]