Ray tracing

1. For each pixel, cast a ray
2. Identify first object hit by ray
3. Compute shading of hit object at point ray hit it
 4. For shadows, cast ray to each light
 → If hit object before light, ignore the light's contribution to shading

* If ray hits nothing, use background color
 → Environment mapping, use environment map rather than background color

* Important primitive operations
 → Intersect (ray, object)
 → Shade object
Phong shading needs

\[I = n_0 \cdot L \cdot R_a + LR_d (\hat{n} \cdot \hat{L}) + LR_s (\hat{n} \cdot \hat{V})^e \]

inputs: \(L_0, \hat{L} \) → from lights
\(R_a, R_d, R_s, e \) → from shader (material properties)
\(\hat{L} \) → objects have shaders to describe their appearance

\(\hat{n}, \hat{V}, \hat{r}, \hat{v} \) : geometry

\(\hat{n} \): object can compute this given intersection location
\(\hat{V} \): from camera and intersection locations
\(\hat{l} \): from light and intersection locations
\(\hat{r} \): from \(\hat{n} \) and \(\hat{l} \)
Lights
Note that L, l_a, l are per light.
Compute for each light, sum shading.

Shadows
Is light visible? Cast ray to light and see (reuse existing routine).

Other types of shaders
Flat shader → fixed color (ignore lights).
Good for debugging but little else.
Reflective Shader

Light from one object reflects from another and reaches you → indirect light

* cast a new ray from intersection point in reflection direction

* reflectivity \(\beta \), \(0 \leq \beta \leq 1 \)

* surface shader

\(I \): surface appearance ignoring reflection \(\Rightarrow I_0 \)

* color from reflected ray \(\Rightarrow I_r \)

* effective color \(\Rightarrow I_0 + \beta(I_r - I_0) \)

note: \(\beta = 0 \) \(\Rightarrow I = I_0 \)

\(\beta = 1 \) \(\Rightarrow I = I_r \)
Transmission

* Cast two rays
 → Reflected ray \(\Rightarrow I_r \)
 → Transmitted ray \(I_t \)

* Combine with object-shade \(I_0 \)

\[
I = I_0 + \beta (I_r - I_0) + \gamma (I_t - I_0)
\]

\[
\beta + \gamma \leq 1
\]

* Direction of transmitted ray given by Snell's law

\[
\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_1}{n_2}
\]

\(n_1, n_2 \) index of refraction
air: \(n \approx 1.00 \)
glass: \(n \approx 1.46 \)
water: \(n \approx 1.33 \)
crystal: \(n = 1 \)
diamond: \(n \approx 2.42 \)

\[
\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1
\]

* What if \(\sin \theta_2 > 1 \) ?
 \(\rightarrow \) Complete internal reflection
 \(\gamma = 0 \)
Intersections

Ray intersects object for $t \in [a, b]$ and $t \in [c, d]$

$\Rightarrow (a, b, c, d)$

Semi-infinite plane

$A \rightarrow [a, \infty) \rightarrow (a)$

$B \rightarrow [0, b] \rightarrow (0, b)$

$C \rightarrow \emptyset \rightarrow ()$

$D \rightarrow [0, \infty) \rightarrow (0)$
Why not just store first intersection?

→ booleans

\[\text{first hit on } A = a \]
\[\text{first hit on } B = b \]
\[\text{first hit on } B \cup A = c \]

\(c \) cannot be deduced from \(a \cup b \)