CS 130, Midterm 1

Solutions

Problem 1 (4 points)

For what values of x, y, z is the code fragment
glBegin (GL_POINTS) ;
glVertex $3 \mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$;
glEnd () ;
equivalent to this fragment?
glPushMatrix () ;
glRotatef ($180,0,1,0)$;
glScalef $(1,2,1)$;
glTranslatef ($0,1,1$);
glBegin(GL_POINTS) ;
glVertex $3 \mathrm{f}(1,2,3)$;
glEnd () ;
glPopMatrix () ;

Recall that the operations are specified to OpenGL in reverse order.

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \stackrel{\text { translate }}{\Longrightarrow}\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right) \stackrel{\text { scale }}{\Longrightarrow}\left(\begin{array}{l}
1 \\
6 \\
4
\end{array}\right) \stackrel{\text { rotate }}{\Longrightarrow}\left(\begin{array}{c}
-1 \\
6 \\
-4
\end{array}\right)
$$

Thus, $x=-1, y=6$, and $z=-4$.

Problem 2 (4 points)

Construct an extension of the midpoint algorithm that rasterizes the boundary of the object described by the equation $x^{4}+y^{4}=r^{4}$, sketched at right.

- Your solution should be similar to $\mathrm{C}++$ in syntax.
- The signature of the function you are implementing is void Rasterize_Shape (int r);
- You may call void Set_Pixel (int x,int y) ; to turn on pixels. It is okay to call it with positive or negative values.
- Your code does not need to be incremental, but it should not use floating point (directly or indirectly).
- It is sufficient to rasterize the part shown in blue. $(0 \leq x \leq y)$.


```
void Rasterize_Shape(int r)
{
    int x = 0, y = r;
    while(x <= y)
    {
        Set_Pixel(x,y);
        x++;
        if (16*x*x*x*x+(2*y-1)*(2*y-1)*(2*y-1)*(2*y-1)>16*r*r*r*r )
            y--;
    }
}
```


Problem 3 (4 points)

The triangle at right is to be rasterized. The colors of the vertices are $A=$ red $=(1,0,0)$, $B=$ green $=(0,1,0)$ and, $C=$ blue $=(0,0,1)$. Compute the color of the point P.

To do this, we need to compute the areas of the triangles, which we can then use to compute barycentric weights.

$$
\begin{aligned}
\operatorname{area}(A B C) & =18 \\
\operatorname{area}(P B C) & =8 \\
\operatorname{area}(A P C) & =6 \\
\operatorname{area}(A B P) & =4 \\
\alpha & =\frac{\operatorname{area}(P B C)}{\operatorname{area}(A B C)}=\frac{4}{9} \\
\beta & =\frac{\operatorname{area}(A P C)}{\operatorname{area}(A B C)}=\frac{3}{9} \\
\gamma & =\frac{\operatorname{area}(A B P)}{\operatorname{area}(A B C)}=\frac{2}{9} \\
C_{P} & =\alpha C_{A}+\beta C_{B}+\gamma C_{C}=\left(\frac{4}{9}, \frac{3}{9}, \frac{2}{9}\right)
\end{aligned}
$$

Problem 4 (4 points)

What initial values of x, y, z in barB will make the routines barA and barB equivalent?

```
void barA(float a, float b, float c, int n)
{
    for(int i = 0 ; i < n ; i++)
    {
        float z = a * i * i + b * i + c;
        foo(z);
    }
}
void barB(float a, float b, float c, int n)
{
    float x = ???;
    float y = ???;
    float z = ???;
    for(int i = 0 ; i < n ; i++)
    {
        foo(z);
        z += y;
        y += x;
    }
}
```

Note that in barA, the first three calls to foo are $f \circ \circ(c)$, $f \circ \circ(a+b+c)$, and $f \circ \circ(4 * a+2 * b+c)$. In barB, the first three calls to foo are $f \circ o(z)$, foo $(z+y)$, and $f \circ o(z+2 * y+x)$. Since the first calls are the same, $z=c$. Since the second calls are the same, $y=a+b$. To make the third calls the same, we need $x=2 * a$. This is the simplest way to find the initial values.

```
void barB(float a, float b, float c, int n)
{
    float x = 2* a;
    float y = a + b;
    float z = c;
    for(int i = 0 ; i < n ; i++)
    {
        foo(z);
        z += y;
        y += x;
    }
}
```

Problem 5 (4 points)
Show step by step how OpenGL would clip the triangle below against the square. (Draw a new diagram each time you clip a triangle.)

Here is one way it may occur.

Problem 6 (1 point each part)

Let $f(t)=\langle 4 t,-t+1, t-1, t+1\rangle$ define a curve in homogeneous coordinates for $t \in[0,1]$.
(a) Express $f(t)$ in non-homogeneous 3D coordinates.
(b) Using (a), show that this corresponds to a line. (This is not at all obvious from the homogeneous representation.)
(a)

$$
f(t)=\left(\begin{array}{c}
\frac{4 t}{t+1} \\
\frac{-t+1}{t+1} \\
\frac{t-1}{t+1}
\end{array}\right)
$$

(b) One way to do this is to show that it can be expressed in the form

$$
\begin{aligned}
f(t) & =\left(\begin{array}{c}
\frac{4 t}{t+1} \\
\frac{t+1}{t+1} \\
\frac{t-1}{t+1}
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+s\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right)=g(s) \\
f(0) & =\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \\
f(t) & =\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)+\left(\begin{array}{c}
\frac{4 t}{t+1} \\
\frac{-t+1}{t+1}-1 \\
\frac{t-1}{t+1}+1
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)+\left(\begin{array}{c}
\frac{4 t}{t+1} \\
\frac{t-2 t}{t+1} \\
\frac{t+1}{t+1} \\
t+1
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)+\frac{2 t}{t+1}\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)+s\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

Problem 7 (1 point each part)

Let $f(t)=\langle 4 t,-t+1, t-1, t+1\rangle$ define a curve in homogeneous coordinates for $t \in[0,1]$.
(a) What are the values of $f(t)$ at its endpoints (express your answer in non-homogeneous 3D coordinates)?
(b) Construct (in non-homogeneous 3D coordinates) an equation $g(s)=\vec{u}+\vec{v} s$ for this line by using the endpoints you found in (a). You may assume that the curve is in fact a line, even if you did not show this.
(a)

$$
\begin{aligned}
& f(t)=\left(\begin{array}{c}
4 t \\
-t+1 \\
t-1 \\
t+1
\end{array}\right) \\
& f(0)=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right) \equiv\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \\
& f(1)=\left(\begin{array}{l}
4 \\
0 \\
0 \\
2
\end{array}\right) \equiv\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
g(s) & =\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)+s\left(\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)\right) \\
& =\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)+s\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

Problem 8 (1 point each part)

The clipping region in homogeneous equations (3D) is given by $-w \leq x \leq w,-w \leq y \leq w$, and $-w \leq z \leq w$. Let $f(t)=\langle 4 t,-t+1, t-1, t+1\rangle$ define a curve in homogeneous coordinates for $t \in[0,1]$.
(a) Clip the equation for the line $f(t)$ in homogeneous coordinates against the clipping constraint $-w \leq x \leq w$. (Find the value of t and homogeneous coordinates for the clipping point.)
(b) What is the clipping constraint corresponding to clip the equation $-w \leq x \leq w$ in nonhomogeneous coordinates?
(a)

$$
\begin{aligned}
-w & =x \\
-(t+1) & =4 t \\
-1 & =5 t \\
t & =-\frac{1}{5}
\end{aligned}
$$

This is not an intersection, since $t \notin[0,1]$.

$$
\begin{aligned}
w & =x \\
t+1 & =4 t \\
1 & =3 t \\
t & =\frac{1}{3} \\
f\left(\frac{1}{3}\right) & =\left(\begin{array}{c}
\frac{4}{3} \\
\frac{2}{3} \\
-\frac{2}{3} \\
\frac{4}{3}
\end{array}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
-w & \leq x \leq w \\
-1 & \leq \frac{x}{w} \leq 1 \\
-1 & \leq x^{\prime} \leq 1
\end{aligned}
$$

