
CS 130, Homework 7

Solutions

Problem 1

In each of the three examples below, control points are shown for one or two cubic Bezier
curves. (Two curves share the middle point, so there are 7 points rather than 8.) Sketch out
approximately what these curves will look like. Be sure to draw your sketch over a grid with
control points labeled.

0 1 2 3
0

1

2

3

b b

b

b

bb

b

1 2

3

4

56

7

0 1 2 3
0

1

2

3

b

bb

b

bb

b

1

23

4

56

7 0 1 2 3
0

1

2

3

b

b bb

1

2 34

Problem 2

For each cubic Bezier curve below, estimate the locations of the control points. The dots show
the endpoints of the Bezier.

0 1 2 3
0

1

2

3

b

b b

b

0 1 2 3
0

1

2

3

b b

b

b

0 1 2 3
0

1

2

3

b

b

b

b

1

2

3

4

Problem 3

Geometrically construct the location of P (t) for the Bezier curve P (t) below. Note that P (0)
is at the bottom left in each case.

1

P (1

3
)

0 1 2 3
0

1

2

3

b b

b

b

b

b

b

b

b

bb

P (2

3
)

0 1 2 3
0

1

2

3

b b

b

b

b

b

b

b

b

bb

Problem 4

Subdivide the Bezier at the points chosen. Label the control points of the subdivided curves
(1-7), with 1 at P (0) at the bottom left.

P (1

3
)

0 1 2 3
0

1

2

3

b b

b

b

b

b

b

b

b

bb

1 2

3

4

5

6

7

P (2

3
)

0 1 2 3
0

1

2

3

b b

b

b

b

b

b

b

b

bb

1 2

3

4

56

7

Problem 5

The half-edge structure has lots of invariants (things that should always be true). An im-
plementation should test these invariants when it creates or modifies the structure to catch
mistakes early. Assume e is a coedge, v is a vertex, and f is a face. Fill in the missing attribute
names to make each assertion true (there may be more than one correct answer). You may
find these useful for the problems that follow.
(a) assert(e==e->pair->);

(b) assert(e==e->next->);

(c) assert(e==e->prev->);

(d) assert(e->face==e->next->);

(e) assert(e->head==e->pair->);

(f) assert(e->head==e->next->);

(g) assert(v==v->edge->);

(h) assert(f==f->edge->);

(a) assert(e==e->pair->pair);
(b) assert(e==e->next->prev);
(c) assert(e==e->prev->next);
(d) assert(e->face==e->next->face);
(e) assert(e->head==e->pair->tail);

(f) assert(e->head==e->next->tail);
(g) assert(v==v->edge->tail);

(h) assert(f==f->edge->face);

2

Problem 6

Below is a half-edge structure for a tetrahedron, viewed from above. (D is the bottom face.)
Fill in the pointers in the tables below. Follow the coedge labeling convention from class (e.g.,
the face of AB is A) and the convention of choosing outgoing edges for vertices.

1

2

3

4

A

B

C D

Coedge pair next prev head tail face
AB
AC
AD
BA
BC
BD
CA
CB
CD
DA
DB
DC

vertex coedge
1
2
3
4

face coedge
A
B
C
D

Coedge pair next prev head tail face
AB BA AC AD 1 4 A
AC CA AD AB 2 1 A
AD DA AB AC 4 2 A
BA AB BD BC 4 1 B
BC CB BA BD 1 3 B
BD DB BC BA 3 4 B
CA AC CB CD 1 2 C
CB BC CD CA 3 1 C
CD DC CA CB 2 3 C
DA AD DC DB 2 4 D
DB BD DA DC 4 3 D
DC CD DB DA 3 2 D

vertex coedge
1 AC
2 CA
3 BC
4 AB

face coedge
A AB
B BC
C CA
D DA

Note that the coedge choices for the vertex and face tables are somewhat arbitrary. The coedge table
must be exactly as above.

Problem 7

Write the routine void Get Ring(std::vector<face*>& ring, const face* f);. Given a face f,
it should fill ring with a list of all faces that share a vertex with f. The faces in ring should be
listed in counterclockwise order, but it does not matter which face is listed first. For example,
if f=A in the diagram below, then ring=(B,C,D,E,F,G) would be an acceptable output. Note
that the faces need not be triangles. This is not the same algorithm as presented in class;
that algorithm only returns faces that share an edge and would return (B,D,E,F,G). Your
routine should be written in something close to C++ syntax. Although it is not required, you

are encouraged to implement this. It will help you understand the structure and its traversal

better. It will also help you debug your algorithm. You will be asked to devise an algorithm

3

to perform a task on this structure on the final. It will be a task you have not seen before in

this class. Be ready for it.

1

2 3

45

6

7

89

10 11

A B

CD

E

F
G

void Get Ring (std : : vector<f a c e∗>& ring , const f a c e ∗ f)
{

coedge ∗ e = f−>edge−>pa i r ;
whi l e (e != f−>edge−>pair−>next)
{

r i ng . push back (e−>c e l l) ;
e = e−>prev−>pa i r ;
i f (e−>c e l l == f) e = e−>pair−>prev−>pa i r ;

}
}

To get an idea of how this is being done, lets trace the coedges. Coedges held in e at the beginning of
the body of the while loop are shown green. Coedges held in e when the if condition is true are shown blue.
The coedge being tested for in the while condition is shown red. The value of f->edge is shown orange.

The loop is essentially just walking around a vertex. When it stumbles on f it triggers the if to fix the
mistake, taking it to the next vertex.

4

1

2 3

45

6

7

89

10 11

A B

CD

E

F
G

5

