IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 8, AUGUST 2000

Design and Evaluation of a Switch Cache
Architecture for CC-NUMA Multiprocessors

Ravishankar R. lyer, Member, IEEE, and Laxmi N. Bhuyan, Fellow, IEEE

Abstract—Cache coherent nonuniform memory access (CC-NUMA) multiprocessors provide a scalable design for shared memory.
But, they continue to suffer from large remote memory access latencies due to comparatively slow memory technology and large data
transfer latencies in the interconnection network. In this paper, we propose a novel hardware caching technique, called switch cache,
to improve the remote memory access performance of CC-NUMA multiprocessors. The main idea is to implement small fast caches in
crossbar switches of the interconnect medium to capture and store shared data as they flow from the memory module to the requesting
processor. This stored data acts as a cache for subsequent requests, thus reducing the need for remote memory accesses
tremendously. The implementation of a cache in a crossbar switch needs to be efficient and robust, yet flexible for changes in the
caching protocol. The design and implementation details of a CAche Embedded Switch ARchitecture, CAESAR, using wormhole
routing with virtual channels is presented. We explore the design space of switch caches by modeling CAESAR in a detailed execution
driven simulator and analyze the performance benefits. Our results show that the CAESAR switch cache is capable of improving the
performance of CC-NUMA multiprocessors by up to 45 percent reduction in remote memory accesses for some applications. By
serving remote read requests at various stages in the interconnect, we observe improvements in execution time as high as 20 percent
for these applications. We conclude that switch caches provide a cost-effective solution for designing high performance CC-NUMA
multiprocessors.

Index Terms—Crossbar switches, cache architectures, scalable interconnects, wormhole routing, shared memory multiprocessors,
execution-driven simulation.

<+

INTRODUCTION

779

TO alleviate the problem of high memory access latencies,
shared memory multiprocessors employ processors
with small fast on-chip caches and additionally larger off-
chip caches. Symmetric multiprocessor (SMP) systems are
usually built using a shared global bus. However, the
contention on the bus and memory heavily constrains the
number of processors that can be connected to the bus. To
build high performance systems that are scalable, several
current systems [1], [12], [14], [15] employ the cache
coherent nonuniform memory access (CC-NUMA) archi-
tecture. In such a system, the shared memory is distributed
among all the nodes in the system to provide a closer local
memory and several remote memories. While local memory
access latencies can be tolerated, the remote memory
accesses generated during the execution can bring down
the performance of applications drastically.

To reduce the impact of remote memory access latencies,
researchers have proposed improved caching strategies
[16], [20], [29] within each cluster of the multiprocessor.
These caching techniques are primarily based on data
sharing among multiple processors within the same cluster.
Nayfeh et al. [20] explore the use of shared L2 caches to
benefit from the shared working set between the processors

e RR. Iyer is with Intel Corporation, 15220 NW Greenbrier Pkwy.,
Beaverton, OR 97006. E-mail: ravishankar.iyer@intel.com.

e L.N. Bhuyan is with the Department of Computer Science, Texas A&M
University, College Station, TX 77843-3112.
E-mail: bhuyan@cs.tamu.edu.

Manuscript received 26 Apr. 1999; accepted 17 Dec. 1999.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 109690.

within a cluster. Another alternative is the use of network
caches or remote data caches [16], [29]. Network caches can
be considered to be shared L3 caches to processors within a
cluster. They take advantage of shared working set effects
and reduce the remote access penalty by serving capacity
misses of L2 caches. The HP Exemplar [1] implements the
network cache as a configurable partition of the local
memory. Sequent’s NUMA-Q [15] dedicates a 32MB DRAM
memory for the network cache. The DASH multiprocessor
[14] has provision for a network cache called the remote
access cache. A recent proposal by Moga and Dubois [16]
explores the use of small SRAM (instead of DRAM)
network caches integrated with a page cache. The use of
32KB SRAM chips reduces the access latency of network
caches tremendously.

Our goal is to reduce remote memory access latencies by
implementing a global shared cache abstraction central to
all processors in the CC-NUMA system. We observe that
network caches provide such an abstraction limited only to
the processors within a cluster. We explore the implemen-
tation issues and performance benefits of a multilevel
caching scheme that can be incorporated into current
CC-NUMA systems. By embedding a small fast SRAM
cache within each switch in the interconnection network,
called switch cache, we capture shared data as it flows
through the interconnect and provide it to future accesses
from processors that reuse this data. Such a scheme can
be considered as a multilevel caching scheme, but
without inclusion property. Our studies on application
behavior indicate that there is enough spatial and
temporal locality between requests from processors to
benefit from small switch caches. Previous studies [17]

0018-9340/00/$10.00 © 2000 IEEE

780
P Local
Memory
Node X
(Network D

Fig. 1. CC-NUMA system and memory hierarchy.

used synthetic workloads and showed that increasing the
buffer size in a crossbar switch beyond a certain value
does not have much impact on network performance. Our
application-based study [5] confirms that this observation
holds true for the CC-NUMA environment running several
scientific applications. Thus, we think that the large amount
of buffers in current switches, such as SPIDER [8], is
overkill. A better utilization of these buffers can be
accomplished by organizing them as a switch cache.

There are several issues to be considered while designing
such a caching technique. These include cache design issues
such as technology and organization, cache coherence
issues, switch design issues such as arbitration, and
message flow control issues such as appropriate routing
strategy, message layout, etc. The first issue is to design and
analyze a cache organization that is large enough to hold
the reusable data, yet fast enough to operate during the time
a request passes through the switch. The second issue
involves modifying the directory-based cache protocol to
handle an additional caching layer at the switching
elements so that all the cache blocks in the system are
properly invalidated on a write. The third issue is to
design buffers and arbitration in the switch which will
guarantee certain cache actions within the switch delay
period. For example, when a read request travels through
a switch cache, it must not incur additional delays. Even
in the case of a switch cache hit, the request must be
passed on to the home node to update the directory, but
not generate a memory read operation. The final issue
deals with message header design to enable request
encoding, network routing, etc.

The contribution of this paper is the detailed design and
performance evaluation of a switch cache interconnect
employing a CAche Embedded Switch ARchitecture
(CAESAR). The CAESAR switch cache is made up of a
small SRAM cache operating at the same speed as a
wormhole routed crossbar switch with virtual channels.
The switch design is optimized to maintain crossbar
bandwidth and throughput, while at the same time
providing sufficient switch cache throughput and improved
remote access performance. The performance evaluation of

Interconnection Network

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.8, AUGUST 2000

N
(Network Interface/Router Node X’s
—1%_ Remote
P Local Memory
Memory
Node Y

the switch cache interconnect is conducted using six
scientific applications. We present several sensitivity
studies to cover the entire design space and to identify
the important parameters. Our experiments show that
switch caches offer a great potential for use in future
CC-NUMA interconnects for many of these applications.
The rest of the paper is organized as follows: Section 2
provides a background on the remote access characteristics
of several applications in a CC-NUMA environment and
builds the motivation behind our proposed global caching
approach. The switch cache framework and the caching
protocol are presented in Section 3. Section 4 covers the
design and implementation of CAESAR. Performance
benefits of the switch cache framework are evaluated and
analyzed in great detail in Section 5. Sensitivity studies over
various design parameters are also presented in Section 5.
Finally, Section 6 summarizes and concludes the paper.

2 APPLICATION CHARACTERISTICS AND
MOTIVATION

Several current distributed shared memory multiprocessors
have adopted the CC-NUMA architecture since it provides
transparent access to data. Fig. 1 shows the disparities in
proximity and access time in the CC-NUMA memory
hierarchy of such systems. A load or store issued by
processor X can be served in a few cycles upon L1 or L2
cache hits, in less than a hundred cycles for local memory
access, or incurs a few hundred cycles due to a remote
memory access. While the latency for stores to the memory
(write transactions) can be hidden by the use of weak
consistency models, the stall time due to loads (read
transactions) to memory can severely degrade application
performance. Data prefetching and speculation techniques
based on per-processor request streams have been success-
ful in reducing the load latency to a considerable extent. In
this paper, we take a different approach that targets
application’s sharing patterns and evaluates benefits of a
global, yet decentralized, caching mechanism.

IYER AND BHUYAN: DESIGN AND EVALUATION OF A SWITCH CACHE ARCHITECTURE FOR CC-NUMA MULTIPROCESSORS 781
£ 40000 £ 35000 235000
? gsoooo 30000
3 30000 g25000 325000
2 20000 £20000
“ 20000 1) =
S © 15000 515000
[
2 10000 810000 §10000
E 1 E 5000 £ 5000
3 YL —— z oMM S oMM
1.3 5 7 9 11 13 15 1.3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
Number of sharers Number of sharers Number of sharers
(a) (b) (c)
25000
[Z]
g 50000 § 20000 ‘325000
S 40000 & 3 20000
g 2 15000 @
E 30000 — = 15000
5 2 10000]
g 20000 g a10000
‘£ 10000 E 5000 £ 5000
3
1.3 5 7 9 11 13 15 13 5 7 9 11 13 15 1.3 5 7 9 11 13 15
Number of sharers Number of sharers Number of sharers

(d)

(e)

U]

Fig. 2. Application read sharing characteristics. (a) FWA, (b) GS, (c) GAUSS, (d) SOR, (e) FFT, (f) MM.

2.1 Global Cache Benefits: A Trace Analysis

To reduce the impact of remote read transactions, we would
like to exploit the locality in sharing patterns between the
processors. Fig. 2 plots the read sharing pattern for six
applications with 16 processors using a cache line size of
32 bytes. The six applications used in this evaluation are the
Floyd-Warshall’s Algorithm (FWA), Gaussian Elimination
(GAUSS), Gram-Schmidt (GS), Matrix Multiplication (MM),
Successive Over Relaxation (SOR), and the Fast Fourier
Transform (FFT). The x-axis represents the number of
sharing processors (X) while the y-axis denotes the number
of accesses to blocks shared by X number of processors.
From the figure, we observe that, for four out of the six
applications (FWA, GAUSS, GS, MM), multiple processors
read the same block between two consecutive writes to that
block. These shared reads form a major portion (35 to
80 percent) of the application’s read misses. To take
advantage of such read-sharing patterns across processors,
we introduce the concept of an ideal global cache that is
centrally accessible to all processors. When the first request
is served at the memory, the data sent back in the reply
message is stored in a global cache. Since the cache is
accessible by all processors, subsequent requests to the data
item can be satisfied by the global cache at low latencies.
There are two questions that arise here:

o What is the time lag between two accesses from different
processors to the same block? We define this as temporal
read sharing locality between the processors, some-
what equivalent to temporal locality in a uniproces-
sor system. The question raised here particularly
relates to the size and organization of the global
cache. In general, it would translate to: the longer the
time lag, the bigger the size of the required global
cache.

Given that a block can be held in a central location, how
many requests can be satisfied by this cached block? We
call this term attainable read sharing to estimate the
performance improvement by employing a global
cache. Again, this metric will give an indication of
the required size for the global cache.

To answer these questions, we instrumented a simulator
to generate an execution trace with information regarding
each cache miss. We designed a trace analysis tool,
SILA—Sharing Identifier and Locality Analyzer—and fed
the traces to it. In order to evaluate the potential of a global
cache, SILA generates two different sets of data: temporal
read shared locality (Fig. 3), and attainable sharing (Fig. 4).
The data sets can be interpreted as follows:

Temporal Read Sharing Locality: Fig. 3 depicts the
temporal read sharing locality among consecutive read
transactions to the same block. A point {X,Y} from this
data set indicates that Y is the probability that two read
transactions (from different processors) to the same block
occur within a time distance of X or lower (i.e.,
Y = P(z < X), where = is the average interarrival time
between two consecutive read requests to the same block).
As seen in the figure, most applications have an inherent
temporal reuse of the cached block by other processors. The
interarrival time between two consecutive shared read
transactions from different processors to the same block is
found to be less than 500 processor cycles (pcycles) for 60-
80 percent of the shared read transactions for all applica-
tions, except SOR. Ideally, this indicates a potential for at
least one extra request to be satisfied per globally cached
block.

Attainable Read Sharing: Fig. 4 explores the probability
of multiple requests satisfied by the global caching
technique termed as attainable sharing degree. A point
{X,Y} in this data set indicates that if each block can be

782 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.8, AUGUST 2000

_ 120 ® 1.20 = 120

) 'g k-]

g 1o g 1.00 g 100

A= h-} h-]

T 080 2 0.80 8 080

E © o

& o060 £ 060 £ 060

“I "’| ml

2 040 : 0.40 L 0.40

g = 020 T 020

5 020 = &

3} © 0.00 1 , . , , s © 0.00 1 , , . , ,

0.00 7 ‘ ‘ ‘ ‘ ‘ 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
0 2000 4000 6000 8000 10000 o o
Inter-arrival Time (poycles) Inter-arrival Time (pcycles) Inter-arrival Time (pcycles)
(a) (b) ()

. — % 120

':‘é 1.20 g 120)

@ 1.00 3 100 3 100

B o080 T o080 B os0

2 o060 Z o060 2 o060

)))

= 0.40 = 040 ' 0.40

< < <

T 020 E 0.20 E 0.20

S o004 : : : : ‘ S o000 : : : : ‘ © 0.00 : : : : ‘

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Inter-arrival Time (pcycles) Inter-arrival Time Inter-arrival Time (pcycles)

(d)

(€)

(f)

Fig. 3. The temporal locality of shared accesses. (a) FWA, (b) GS, (c) GAUSS, (d) SOR, (e) FFT, (f) MM.

held for X cycles in the global cache, the average number of
subsequent requests per block that can be served is Y. The
figure depicts the attainable read sharing degree for each
application based on the residence time for the block in the
global cache. The residence time of a cache block is defined
as the amount of time the block is held in the cache before it
is replaced or invalidated. While invalidations cannot be
avoided, note that the residence time directly relates to
several cache design issues such as cache size, block size
and associativity. From Fig. 2, we observed that FWA, GS,
and GAUSS have high read sharing degrees close to the
number of processors in the system (in this case,

16 processors). However, it is found that the attainable
sharing degree varies according to the temporal locality of
each application. While GAUSS can attain a sharing degree
of 10 in the global cache with a residence time of 2,000
processor cycles, GS requires that the residence time be
5,000 and FWA requires that this time be 7,000. The MM
application has a sharing degree of approximately four to
five, whereas the attainable sharing degree is much lower.
SOR and FFT are not of much interest since they have a very
low percentage (1-2 percent) of accesses to blocks shared by
more than two processors.

T 2 T 4 B

2 2 2 14

@ 10 o 12 [

o “ 10 @12

8 8] 8 10

9 e 8 2

a 6 o 6 o 8

S 4 5 s 6

i, i 5

E E 2 g 2

2 0+ : : : :) 3 0+ Z 0+ ,

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Inter-arrival Time (pcycles) Inter-arrival Time (pcycles) Inter-arrival Time (pcycles)
(a) (b) ()

B 14 < 10 T 2

2 2 2

o 12 4 @

» 3 8 @

il ® ® 15

3

8 o0s g 6 g

i - = 4

S 6 o a 1

= 0_4 5 4 k3

T X 1] 3

@ 2 o 05

8 02 £ 2 a2

E El E

3 0+ T T r T ! Z 0+ - - T T) 2 0+ T T T T !

] 2000 4000 6000 8000 10000] 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Inter-arrival Time (pcycles) Inter-arrival Time (pcycles) Int rival Time (pcycles)

Fig. 4.

()

The attainable sharing degree. (a) FWA, (b) GS, (c) GAUSS, (d) SOR, (e) FFT, (f) MM.

(e)

(f)

IYER AND BHUYAN: DESIGN AND EVALUATION OF A SWITCH CACHE ARCHITECTURE FOR CC-NUMA MULTIPROCESSORS 783

ReadReq(X)
ReadData(X)

Interconnect
Medium

Overlapping
Path

Caching
ReadData(B)(X) Potential

ReadData(A)(X) ReadReq(B)(X)

ReadReq(A)X)

Fig. 5. The caching potential of the interconnect medium.

2.2 The Interconnect as a Global Cache

In Section 2.1, we identified the need for global caching to
improve the remote access performance of CC-NUMA
systems. In this section, we explore the possible use of the
interconnect medium as a central caching location. We
attempt to answer the following two important questions:

o What makes the interconnect medium a suitable candidate
for central caching?

e Which interconnect topology is beneficial for incorporat-
ing a central caching scheme?

Communication in a shared memory system occurs in
transactions that consist of requests and replies. The
requests and replies traverse from one node to another
through the interconnection network. The network is the
only medium in the entire system that can keep track of all
the transactions between the nodes. The potential for such a
network caching strategy is illustrated in Fig. 5. The path of
two read transactions to the same block X in node C that
emerge from processors A and B overlap at some point in
the network. The common elements in the network can
act as small caches for replies from memory. A later
request to the recently accessed block X can potentially
find the block cached in the common routing element
(illustrated by a shaded circle). The benefit of such a
scheme is two-fold. From the processor point of view, the
read request gets serviced at a latency much lower than
the remote memory access latency. Second, the memory is
relieved of servicing the requests that hit in the global
interconnect cache, thus improving the access times of
other requests that are sent to it.

From the example, we observe that incorporating such
schemes in the interconnect requires a significant amount of
path overlap between processor to memory requests. Also,
replies must follow the same path as requests in order to
provide an intersection. The routing/flow of requests and
replies depends upon the topology of the interconnect. The
ideal topology for such a system is the global bus. However,
the global bus is not a scalable medium and bus contention
severely degrades performance when the number of
processors increases beyond a certain threshold.

Consequently, multiple bus hierarchies and fat-tree struc-
tures have been considered effective solutions to the
scalability issue. The tree structure provides the next best
alternative to hierarchical caching schemes.

3 THE SwiTcH CACHE FRAMEWORK

In this section, we present a new hardware realization of the
ideal global caching solution for improving the remote
access performance of shared memory multiprocessors.

3.1 The Switch Cache Interconnect

Network topology plays an important role in determining
the paths from a source to a destination in the system. Tree-
based networks like the fat tree [13], the heirarchical bus
network [25], [4], and the multistage interconnection
network (MIN) [19] provide hierarchical topologies suitable
for global caching. In addition, the MIN is highly scalable
and it provides a bisection bandwidth that scales linearly
with the number of nodes in the system. These features of
the MIN make it very attractive as scalable high perfor-
mance interconnects for commercial systems. Existing
systems such as Butterfly [2], CM-5 [13], and IBM SP2 [23]
employ a bidirectional MIN. The Illinois Cedar multi-
processor [24] employs two separate unidirectional MINs
(one for requests and one for replies). In this paper, the
switch cache interconnect is a bidirectional MIN to take
advantage of the inherent tree structure. Note, however,
that logical trees can also be embedded on other popular
direct networks like the mesh and the hypercube [12], [14].

The baseline topology of the 16-node bidirectional MIN
(BMIN) is shown in Fig. 6a. In general, an N-node BMIN
system using k x k switches is comprised of N/k switching
elements (a 2k x 2k crossbar) in each of the log; N stages. We
chose wormhole routing with virtual channels as the
switching technique because it is prevalent in current
systems such as the SGI Origin [13].

In a shared memory system, communication between
nodes is accomplished via read/write transactions and
coherence requests/acknowledgments. The read/write re-
quests and coherence replies from the processor to the
memory use forward links to traverse through the switches.
Similarly, read/write replies with data and coherence
requests from memory to the processor traverse the back-
ward path, as shown in bold in Fig. 6a. Separating the paths
enables separate resources and reduces the possibility of
deadlocks in the network. At the same time, routing them
through the same switches provides identical paths for
requests and replies for a processor-memory pair that is
essential to developing a switch cache hierarchy. The BMIN
tree structure that enables this hierarchy is shown in Fig. 6b.

The basic idea of our caching strategy is to utilize the tree
structure in the BMIN and the path overlap of requests,
replies, and coherence messages to provide coherent shared
data in the interconnect. By incorporating small fast caches
in the switching elements of the BMIN, we can serve the
requests that pass through these switching elements. We
use the term switch cache to differentiate these caches from
the processor cache. An example of a BMIN employing
switch caches that can serve multiple processors is shown in
Fig. 6¢c. An initial shared read request from processor P; to a

784

Memory Interface

b oo N N

Processor/Cache Interface

(@

Read_Req(X) serviced
by memory -~
- —- Read_Req(X) serviced
by switch caches at
different levels

Response i
Invalidation |

Request
Ack, WriteBack

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.8, AUGUST 2000

Memory Interface

FT T [T T FT T T 1T

Processor/Cache Interface

(b)

@ Switch Cache

Fig. 6. The switch cache interconnect. (a) Bidirectional MIN—structure and routing. (b) Multiple tree structures in the BMIN. (c) Switch caching in the

BMIN.

block is served at the remote memory M;. When the reply
data flows through the interconnection network, the block
is captured and saved in the switch cache at each switching
element along the path. Subsequent requests to the same
block from sharing processors, such as P; and P, take
advantage of the data blocks in the switch cache at different
stages, thus incurring reduced read latencies.

3.2 The Caching Protocol

The incorporation of processor caches in a multiprocessor
introduces the well-known cache coherence problem. Many
hardware cache-coherent systems employ a full-map
directory scheme [7], In this scheme, each home node
maintains a bit vector to keep track of all the sharers of
each block in its local shared memory space. On every
write, an ownership request is sent to the home node,
invalidations are sent to all the sharers of the block, and the
ownership is granted only when all the corresponding
acknowledgments are received. At the processing node,
each cache employs a three-state (MSI) protocol to keep
track of the state of each cache line. Incorporating switch
caches comes with the requirement that all caches remain
coherent and data access remain consistent with the system
consistency model.

Our basic caching scheme can be represented by the state
diagram in Fig. 7 and explained as follows: The switch
cache stores only blocks in a shared state in the system.
When a block is read to the processor cache in a dirty state, it is
not cached in the switch. Effectively, the switch cache needs to
employ only a 2-state protocol where the state of a block can
be either SHARED or NOT_VALID. The transitions of blocks
from one state to another is shown in Fig. 7a. When a block

is read into a processor cache in shared state (ReadReply),
the switch caches along the path also capture the block in
SHARED state. A SHARED block in the switch cache can be
evicted in two possible ways. First, an invalidation to the
processor cache (InvI'ype) will also invalidate the block in
the switch cache, if present. Second, when cache line
conflicts occur, data entered by a reply message
(ReadReply*) can replace an existing cache block in SHARED
state. To illustrate the difference between block invalida-
tions (Inv1I'ype) and block replacements (ReadReply*), the
figure shows the NOT_VALID state conceptually separated
into two states INVALID and NOT_PRESENT, respectively.
An obvious enhancement to this scheme is to incorporate a
TRANSIENT state when a request is initiated to a block that
does not exist in the switch cache. Thus, subsequent
requests to the TRANSIENT block can be held at the switch
cache until a reply arrives to the first request. This
enhancement increases the complexity of the crossbar
switch cache design and is not discussed in this paper. A
detailed description of our caching protocol based on
request, reply, and coherence messages is as follows:

Read Requests: Each read request message that enters
the interconnect checks the switch caches along its path. In
the event of a switch cache hit, the switch cache is responsible
for providing the data and sending the reply to the
requestor. The original message is marked as switch hit
and it continues to the destination memory (ignoring
subsequent switch caches along its path) with the sole
purpose of informing the home node that another sharer
just read the block. Such a message is called a marked read
request. This request is necessary to maintain the full-map
directory protocol. Note that memory access is not needed

IYER AND BHUYAN: DESIGN AND EVALUATION OF A SWITCH CACHE ARCHITECTURE FOR CC-NUMA MULTIPROCESSORS 785

ReadReply*

ReadReply*

ReadReply ReadReply

(@)

Expected State

directory vector Increnjent ack_counter

Switch Hit Read

Write Initiated Cannot reach these

by another processor states

to requestor

Fig. 7. Switch cache protocol execution. (a) Switch cache state diagram. (b) Change in directory protocol.

for these marked requests and no reply is generated. At the
destination memory, a marked read request can find the
block in only two states, SHARED, or TRANSIENT (see
Fig. 7b). If the directory state is SHARED, then this request
only updates the sharing vector in the directory. However,
it is possible that a write has been initiated to the same
cache line by a different processor and the invalidation for
this write has not yet propagated to the switch cache. This
can only be present due to false sharing or in an application
that allows data race conditions to exist. If this occurs, then
the marked read request observes a TRANSIENT state at the
directory. In such an event, the directory sends an
invalidation to the processor that requested the read and
waits for this additional acknowledgment before commit-
ting the write.

Read Replies: Read replies originate from the memory
node and enter the interconnect following the backward
path. The read reply should check the switch cache along its
path. If the line is not present in a switch cache, the data
carried by the read reply is written into the cache. The state
of the cache line is marked SHARED.

Writes, Write-backs, and Coherence Messages: These
requests flow through the switches, check the switch cache,
and invalidate the cache line if present in the cache. By
doing so, the switch cache coherence is maintained some-
what transparently.

Message Format: The messages are formatted at the
network interface where requests, replies, and coherence
messages are prepared to be sent over the network. In a
wormhole-routed network, messages are made up of flow
control digits or flits. Each flit is 8 bytes as in Cavallino [6].
The message header contains the routing information,
while data flits follow the path created by the header. The
format of the message header is shown in Fig. 8. To
implement the caching technique, we require that the
header consists of three additional bits of information.
Two bits (Reqtype — R1Ry) are encoded to denote the
switch cache access type as follows:

e 00 - sc_read—Read a cache line from the switch
cache. If present, mark read header and generate
reply message.

e 01 - sc_write—Write cache line into the switch cache.

e 10 - sc_inv—Invalidate the cache line, if present in
the cache.

e 11 - sc_ignore—Ignore switch cache, no processing
required.

Note from the above description and the caching protocol
that read requests are encoded as sc_read requests. Read
replies whose home node and requestor id are different are
encoded as sc_write. Coherence messages, write ownership
requests, and write-back requests are encoded as sc_inv
requests. All other requests can be encoded as sc_ignore
requests. An additional bit is required to mark sc_read
requests as earlier switch cache hit. Such a request is called
a marked read request. This is used to avoid multiple caches
servicing the same request. As discussed, such a marked
request only updates the directory and avoids a memory
access.

4 SwiTCcH CACHE DESIGN AND IMPLEMENTATION

Crossbar switches provide an excellent building block for
scalable high performance interconnects. Crossbar switches
mainly differ in two design issues: switching technique and
buffer management. We use wormhole routing as the
switching technique and input buffering with virtual
channels since these are prevalent in current commercial
crossbar switches [6], [8]. We begin by presenting the
organization and design alternatives for a 4 x 4 crossbar

-— 32 bits >
Physical Address
Addr (contd)] Src Dest Flits | Age Req | Swc Hit
8bits 6bits 6bits 4bits 4bits 2bits1

Fig. 8. Message header format.

786

4w
4w
w_ ‘[
0 T
Q P] Input Block 2 o m
5 & L 7 X2
== . L k=
— - = =
g % w A w Arbiter 4 23
g 4
23 b K ! nput Block & L Lz
“H - ’jj [SI
.
= 8x4 ’
w A 4w c N Aw—
rossopar M w
%) —1=Lk Tl tput Block [k S »
S ow N _ = — ¥ 2
T2 i H 3 B
E - L 53
: i 4 4w $é
o] W, . w 5 4
= .8 L s N 9 d
g8 »EK_ Input Block R 23
- 7//
Routing Tables
& Flow Cntrl

Fig. 9. A conventional crossbar switch.

switch cache. In a later subsection, the extensions required
for incorporating a switch cache module into a larger (8 x 8)
crossbar switch are presented.

4.1 Switch Cache Organization

Our base bidirectional crossbar switch has four inputs and
four outputs, as shown in Fig. 9. Each input link in the
crossbar switch has two virtual channels, thus providing
eight possible input candidates for arbitration. The arbitra-
tion process is the age technique, similar to that employed
in the SGI Spider Switch [8]. At each arbitration cycle, a
maximum of four highest age flits are selected from eight
possible arbitration candidates. The flit size is chosen to be
8 bytes (4w) with 16 bit links, similar to the Intel Cavallino
[6]. Thus, it takes four link cycles to transmit a flit from
output of one switch to the input of the next. Buffering in
the crossbar switch is provided at the input block at each
link. The input block is organized as a fixed size FIFO buffer
for each virtual channel that stores flits belonging to a single
message at a time. The virtual channels are also partitioned
based on the destination node. This avoids out-of-order
arrival of messages originating from the same source to the
same destination. We also provide a bypass path for the
incoming flits that can be directly transmitted to the output
if the input buffer is empty.

W] 4
_ o Input Block W
[N
é g N “:: Arbiter 4 E8
i ey BN %{F I
4w _ 10x4 & g
g, ¥l Crsbu LE{F [
= B U . 2
E £ 4w 4 E 8
w " N o
R ey NS SR
Routing TablesJ ﬁ Input Block
& Flow Cntrl
Switch Cache

(a)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.8, AUGUST 2000

While organizing the switch cache, we are particularly
interested in maximizing performance by serving flits
within the cycles required for the operation of the base
crossbar switch. Thus, the organization depends highly on
the delay experienced for link transmission and crossbar
switch processing. Here, we present two different alter-
natives for organizing the switch cache module within
conventional crossbar switches. The arbitration-independent
organization is based on a crossbar switch operation similar
to the SGI Spider [8]. The arbitration-dependent organization is
based on a crossbar switch operation similar to the Intel
Cavallino [6].

Arbitration-Independent Organization: This switch
cache organization is based on link and switch processing
delays similar to those experienced in the SGI Spider. The
internal switch core runs at 100 MHz, while the link
transmission operates at 400 MHz. The switch takes four
100 MHz clocks to move flits from the input to the link
transmitter at the output. The link, on the other hand, can
transmit an 8 byte flitin a single 100 MHz clock (four 400 MHz
clocks). Fig. 10a shows the arbitration-independent organiza-
tion of the switch cache. The organization is arbitration
independent because the switch cache performs the critical
operations in parallel with the arbitration operation. At the
beginning of each arbitration cycle, a maximum of four input
flits stored in the input link registers are transmitted to the
switch cache module. In order to maintain flow control, all
required switch cache processing should be performed in
parallel with the arbitration and transmission delay of the
switch (four cycles).

Arbitration-Dependent Organization: This switch cache
organization is based on link and switch processing delays
similar to those experienced in the Intel Cavallino [6]. The
internal switch core and link transmission operate at
200MHz. It takes four cycles for the crossbar switch to pass
the flit from its input to the output transmitter and four
cycles for the link to transmit one flit from one switch to
another. Fig. 10b shows the arbitration-dependent organi-
zation of the switch cache. The organization is arbitration
dependent because it performs the critical operations at the
end of the arbitration cycle and in parallel with the output
link transmission. At the end of every arbitration cycle, a

W 4

W
—tc
dw Arbiter 4
. JE ol

. 10x4 4

Crossbar W
Bprgt NS
4w 4 ’
W
IE{M

Routing Tables ﬁ Input Block
& Flow Cntrl

=

Tnput Block

Forward (K)
Link Inputs
5
Forward (K)
Link Qutputs

7 7 7 f

Backward (K)
Link Inputs
Backward (K)
Link Outputs

|
fa

Switch Cache
Module

Fig. 10. Crossbar switch cache organization. (a) Arbitration-independent. (b) Arbitration-dependent.

IYER AND BHUYAN: DESIGN AND EVALUATION OF A SWITCH CACHE ARCHITECTURE FOR CC-NUMA MULTIPROCESSORS 787

X
g 45
2 a0/
£ 35
o —&— Direct
g —
g 25 —A—SA4
9 20 —%—SA8
< 15
]
5 10
=]
o 5

0 T T T T T T T .
O 00® 4090 qh gadl A0 080 4220 oot
Cache Size (in bytes)

(@)

3.5

—&— Direct Mapped
——SA2

SA4
2 SA8

1.5

! k:
= %

0.5 ol =

3

25

Relative Area (arealsize)

0
o o ®
o R . O \,ﬂ%‘b N \639‘

Cache Size (in bytes)

(b)

Fig. 11. Cache area and access time issues. (a) Access time (in FO4). (b) Relative area.

maximum of four flits passed through the crossbar from
input buffers to the output link transmitters are also
transmitted to the switch cache. Since the output transmis-
sion takes four 200 MHz cycles, the switch cache needs to
process a maximum of four flits within four cycles.

Each organization has its advantages/disadvantages. In
the arbitration-independent organization, the cache oper-
ates at the switch core frequency and remains independent
of the link speed. On the other hand, this organization lacks
arbitration information which could be useful for complet-
ing operations in an orderly manner. While this issue does
not affect 4 x 4 switches, the drawback will be evident
when we study the design of larger crossbar switches. The
arbitration-dependent organization benefits from the com-
pletion of the arbitration phase and can use the resultant
information for timely completion of switch cache proces-
sing. However, in this organization, the cache is required to
run at link transmission frequency in order to complete
critical switch cache operations. As in the Intel Cavallino, it
is possible to run the switch core, the switch cache, and the
link transmission at the same speed.

Finally, note that, in both cases, the reply messages from
the switch cache module are stored in another input block,
as shown in Fig. 10. With two virtual channels per input
block, the crossbar switch size expands to 10 x 4. Also, in
both cases, the maximum number of switch cache inputs are
four requests and processing time is limited to four switch
cache cycles.

4.2 Cache Design: Area and Access Time Issues

The access time and area occupied by an SRAM cache
depends on several factors such as associativity, cache size,
number of wordlines, and number of bitlines [27], [18]. In
this section, we study the impact of cache size and
associativity on access time and area constraints. Our aim
is to find the appropriate design parameters for our
crossbar switch cache.

Cache Access Time: The CACTI model [27] quantifies
the relationship between cache size, associativity, and cache
access time. We ran the CACTI model to measure the switch
cache access time for different cache sizes and set
associativity values. In order to use the measurements in
a technology independent manner, we present the results
using the delay measurement technique known as the fan-
out-of-four (FO4) [9]. One FO4 is the delay of a signal passing

through an inverter driving a load capacitance that is four
times larger than its input. It is known that an 8 Kbyte data
cache has a cycle time of 25 FO4 [10].

Fig. 11a shows the results obtained in FO4 units. In
Fig. 11a, the x-axis denotes the size of the cache and each
curve represents the access time for a particular set
associativity. We find that direct mapped caches have the
lowest access time since a direct indexing method is used to
locate the line. However, a direct mapped cache may exhibit
poor hit ratios due to mapping conflicts in the switch cache.
Set-associative caches can provide improved cache hit
ratios, but have a longer cycle time due to a higher data
array decode delay. Most current processors employ multi-
ported set associative L1 caches operating within a single
processor cycle. We have chosen a 2-way set associative
design for our base crossbar switch cache to maintain a
balance between access time and hit ratio. However, we also
study the effect of varied set associativity on switch cache
performance.

Cache Relative Area: In order to determine the impact of
cache size and set associativity on the area occupied by an
on-chip cache, we use the area model proposed by Mulder
et al. [18]. The area model incorporates overhead area such
as drivers, sense amplifiers, tags, and control logic to
compare data buffers of different organizations in a
technology independent manner using register-bit equiva-
lent or rbe. One rbe equals the area of a bit storage cell. We
used this area model and obtained measurements for
different cache sizes and associativities.

Fig. 11b shows the results obtained in relative area. The
x-axis denotes the size of the cache and each curve
represents different set associativity values. For small cache
sizes ranging from 512 bytes to 4KB, we find that the
amount of area occupied by the direct mapped cache is
much lower than that for an 8-way set associative cache.
From the figure, we find that an increase in associativity
from 1 to 2 has a lower impact on cache area than an
increase from 2 to 4. From this observation, we think that a
2-way set associative cache design would be the most
suitable organization in terms of cache area and cache
access time, as measured earlier.

788

Flits Transmitted from Crossbar

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.8, AUGUST 2000

T B B
Y -
E] =

Process Incoming Flits

My
Blocking Info
To Input Block

Snoop Register#

Select

Update Read Header

! |

RI Buffer
[
[
[
[

WR Buffers

e T
. y
Arbiter . s
.
,
& S [|
s Q
- [
10x4 g & - |- - - = header vector
, 3 -3
Crossbar L, 5
P ’ =
Pae ~ =Y
P ~ // (_Dh
> . 3
. . z,
. . 5
! g
, . 3
! \ 3
! \ E
1/ | 3
! \ =1
X Switch Cache |
1 I
\ Module 2 R S
:
\\ /
N /
\ /

Cache Access Control

e R

| E

| P

I

| Cache | | L dw

| Data Y

. Unit

| U

. N

| 1

| T

I

I

Switch Cache Module

Fig. 12. Implementation of CAESAR.

4.3 CAche Embedded Switch ARchitecture
(CAESAR)

In this section, we present a hardware design for our
crossbar switch cache called CAESAR, (CAche Embedded
Switch ARchitecture). A block diagram of the CAESAR
implementation is shown in Fig. 12. For a 4 x 4 switch, a
maximum of 4 flits are latched into switch cache registers at
each arbitration cycle. The operation of the CAESAR
switch cache can be divided into 1) process incoming flits,
2) switch cache access, 3) switch cache reply generation, and
4) switch cache feedback. In this section, we cover the design
and implementation issues for each of these operations in
detail.

Process Incoming Flits: Incoming flits stored into the
registers can belong to different request types. The request
type of the flit is identified based on the 2 bits (R; Ry) stored
in the header. Header flits of each request contain the
relevant information, including memory address required
for processing reads and invalidations. Subsequent flits
belonging to these messages carry additional information
not essential for the switch cache processing. Write requests
to the switch cache require both the header flit for address
information and the data flits to be written into the cache
line. Finally, ignore requests need to be discarded since they
do not require any switch cache processing. An additional
type of request that does not require processing is the
marked read request. This read request has the swc_hit bit
set in the header to inform switch caches that it has been
served at a previous switch cache. Having classified the
types of flits entering the cache, the switch cache processing
can be broken into two basic operations.

The first operation performed by the flit processing unit
is that of propagating the appropriate flits to the switch

cache. As mentioned earlier, the flits that need to enter the
cache are read headers, invalidation headers, and all write
flits. Thus, the processing unit masks out ignore flits,
marked read flits, and the data flits of invalidation and read
requests. This is done by reading the R;R, bits from the
header vector and the swc_hit bit. To utilize this header
information for the subsequent data flits of the message, the
switch cache maintains a register that stores these bits.

Flits requiring cache processing are passed to the request
queue one in every cycle. The request queue is organized as
two buffers, the RI buffer and the set of WR buffers, shown
in Fig. 12. The RI buffer holds the header flits of read and
invalidation requests. The WR buffers store all the reply
data blocks, to be written into the cache. Since there are a
maximum of four replies that can flow through a switch at a
time, we organize the W R buffer into four separate units to
store them without mixing the packets. When all data flits
of a write request have accumulated into a buffer, the
request is ready to initiate the cache line fill operation.

The second operation to complete the processing of
incoming flits is as follows: All unmarked read header flits
need to snoop the cache to gather hit/miss information.
This information is needed within the four cycles of switch
delay or link transmission to be able mark the header by
setting the last bit (swc_hit). To perform this snooping
operation on the cache tag, the read headers are also copied
to the snoop registers (shown in Fig. 12). We require two
snoop registers because a maximum of two read requests
can enter the cache in a single arbitration cycle.

Switch Cache Access: Fig. 13 illustrates the design of the
cache subsystem. The cache module shown in the figure is
that of a 2-way set associative SRAM cache The cache
operates at the same frequency as the internal switch core.
The set associative cache is organized using two subarrays

IYER AND BHUYAN: DESIGN AND EVALUATION OF A SWITCH CACHE ARCHITECTURE FOR CC-NUMA MULTIPROCESSORS 789

P
2
®
UPDATE READ HEADER % :‘;
E < ;"-: BLOCKING INFO TO INPUT BLOCK
. . 2 @
Hit/Miss § E Queue|Status ~ Send Reply
-
8
Qsize
|
Directory 0 WAY 0 Header
>
ali T
Valid |12 Data In/Out s
Bit 2
s 4
L 5
his I O
| —1 Data In/Out
Data Buffer
Directory 1 WAY 1
REPLY UNIT

Fig. 13. Design of the CAESAR cache module.

for tag and data. The cache output width is 64 bits, thus
requiring four cycles of data transfer for reading a 32 byte
cache line. The tag array is dual ported to allow two
independent requests to access the tag at the same time. We
now describe the switch cache access operations and their
associated access delays. Requests to the switch cache can
be broken into two types of requests: snoop requests and
regular requests.

Snoop Requests: Read requests are required to snoop the
cache to determine hit or miss before the outgoing flit is
transmitted to the next switch. For the arbitration indepen-
dent switch cache organization (Fig. 10a), it takes a
minimum of four cycles for moving the flit from the switch
input to the output. Thus, we need the snoop operation
within the last cycle to mark the message before link
transmission. Similarly, for the arbitration dependent
organization (Fig. 10b), it takes four cycles to transmit a
64-bit header on a 16-bit output link after the header is
loaded into the 64-bit (4w) output register. From the
message format in Fig. 8, the phit containing the swc_hit
bit to be marked is transmitted in the fourth cycle. Thus, it is
required that the cache access be completed within a
maximum of three cycles. From Fig. 12, copying the first
read to the snoop registers is performed by the flit
processing unit and is completed in one cycle. By dedicat-
ing one of the ports of the tag array primarily for snoop
requests, each snoop in the cache takes only an additional
cycle to complete. Since a maximum of two read headers
can arrive to the switch cache in a single arbitration cycle,
we can complete the snoop operation in the cache within
three cycles. Note from Fig. 13 that the snoop operation is
done in parallel with the pending requests in the RI buffer
and the W R buffers. When the snoop operation completes,
the hit/miss information is propagated to the output
transmitter to update the read header in the output register.
If the snoop operation results in a switch cache miss, the
request is also dequeued from the RI buffer.

Regular Requests: A regular request is a request chosen
from either the RI buffer or the W R buffers. Such a request
is processed in a maximum of four cycles in the absence of
contention. Requests from the RI buffer are handled on an
FCFS basis. This avoids any dependency violation
between read and invalidation requests in that buffer.
However, we can have a candidate for cache operation from
the RI buffer as well as from one or more of the WR
buffers. In the absence of address dependencies, the
requests from these buffers can progress in any order to
the switch cache. When a dependency exists between two
requests, we need to make sure that cache state correctness
is preserved. We identify two types of dependencies
between a request from the RI buffer and a request from
the WR buffer:

e An invalidation (from the RI buffer) to a cache
line X and a write (from the the W R buffer) to the
same cache line X can occur simultaneously. To
preserve consistency, the simplest method is to
discard the write to the cache line, thus avoiding
incorrectness in the cache state. Thus, when
invalidations enter the switch cache, write ad-
dresses of pending write requests in the WR buffer
are compared and invalidated in parallel with the
cache line invalidation.

e A read (from the RI buffer) to a cache line X and a
write (from the WR buffer) to a cache line Y that
map on to the same cache entry can also occur. If the
write occurs first, then cache line X will be replaced.
In such an event, the read request cannot be served.
Since such an occurrence is rare, the remedy is to
send the read request back to the home node
destined to be satisfied as a typical remote memory
read request.

Switch Cache Reply Generation: While invalidations

and writes to the cache do not generate any replies from the
switch cache, read requests need to be serviced by reading

790

the cache line from the cache and sending the reply message
to the requesting processor. The read header contains all the
information required to send out the reply to the requester.
The read header and cache line data are directly fed into the
reply unit shown in Fig. 13. The reply unit gathers the
header at the beginning of the cache access and modifies the
source/destination and request/reply information in the
header in parallel with the cache access. When the entire
cache line has been read, the reply packet is generated and
sent to switch cache output block. The reply message from
the switch cache now acts as any other message entering a
switch in the form of flits and gets arbitrated to the
appropriate output link and progresses using the backward
path to the requesting processor.

Switch Cache Feedback: Another design issue for the
CAESAR switch is the selection of queue sizes. In this
section, we identify methods to preserve crossbar switch
throughput by blocking only those requests that violate
correctness. As shown in Figs. 12 and 13, finite size queues
exist at the input of the switch cache (RI buffer and WR
buffer) and at the reply unit (virtual channel queues in the
switch cache output block). When any limited size buffer
gets full, we have two options for the processing of
read /write requests. The first option is to block the requests
until a space is available in the buffer. The second option,
probably the wiser one, is to allow the request to continue
on its path to memory. The performance of the switch cache
will be dependent on the chosen scheme only when buffer
sizes are extremely limited. Finally, invalidate messages
have to be processed through the switch cache since they
are required to maintain coherence. These messages need to
be blocked only when the RI buffer gets full. The
modification to the arbiter required to make this possible
is quite simple. To implement the blocking of flits at the
input, the switch cache needs to inform the arbiter of the
status of all its queues. At the end of each cycle, the switch
cache informs the crossbar about the status of its queues in
the form of free_space available in each queue. The
modification to the arbiter to perform the required blocking
is minor. Depending on the free_space of each queue,
appropriate requests (based on R; Ry) will be blocked while
others will traverse through the switch in a normal fashion.

4.4 Design of a 8 x 8 Crossbar Switch Cache

In the previous sections, we presented the design and
implementation of a 4 x 4 cache embedded crossbar switch.
Current commercial switches, such as SGI Spider and Intel
Cavallino, have six bidirectional inputs, while the IBM SP2
switch has eight inputs and eight outputs. In this section,
we present extensions to the CAESAR design to incorporate
a switch cache module in a 8 x 8 switch. We maintain the
same base parameters depending on switch type (see
Fig. 10) for switch core frequency (100 MHz, 200 MHz),
core delay (four cycles), link speed (400 MHz, 200 MHz),
link width (2 bytes), and flit size (8 bytes).

The main issue when expanding the switch is that the
number of inputs to the switch cache module doubles from
four to eight, requiring a 16 x 8 crossbar. Thus, in each
arbitration cycle, a maximum of four read requests can
enter the switch. These requests require snoop operation on
the switch cache within four cycles of switch core delay or

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.8, AUGUST 2000

link transmission, depending on the switch cache organiza-
tion shown in Fig. 10. As shown in Fig. 12, it takes one cycle
to move the flits to the snoop registers. Thus, it is required
that the snoop operation for four requests completes within
two cycles to mark the header flit in the last cycle,
depending on the snoop result.

In order to perform four snoops in two cycles, we
propose using a multiported CAESAR cache module.
Multiporting can be implemented either by duplicating
the caches or interleaving it into two independent banks.
Since duplicating the cache consumes a tremendous
amount of on-chip area, we propose using a 2-way
interleaved switch cache called CAESAR?'. The cache
organization of CAESART is shown in Fig. 14. Interleaving
splits the cache organization into two independent banks.
Current processors such as MIPS R10000 [27] use even and
odd addressed banked caches. However, the problem
remains that four simultaneous even addressed or four
simultaneous odd addressed requests will still require four
cycles for snooping due to bank conflicts. We propose
interleaving the banks based on the destination memory by
using the outgoing link ids. In an 8 x 8 switch there are four
outgoing links that transmit flits from the switch towards
the destination memory and vice versa. Each cache bank
will serve requests flowing through two of these links, thus
partitioning the requests based on the destination memory.
In an arbitration-independent organization (Fig. 10a), it is
possible that four incoming read requests are directed to the
same memory module and thus result in link conflicts and
bank conflicts. However, in the arbitration-dependent
organization (Fig. 10b), link conflicts get resolved during
the arbitration phase. This guarantees that the arbitrated
flits flow through different links. Since each bank serves
only flits flowing through two links, a maximum of only
two requests can target a single cache bank in an arbitration
period of four cycles. Thus, for 8 x 8 switches, it would be
more advantageous to use an arbitration dependent
organization where the snoop operation of four requests
can be completed in the required two cycles. Finally, note
that only a few bits from the routing tag are needed to
identify the bank in the cache.

Such an interleaved organization changes the aspect ratio
of the cache [27] and may affect the cycle time of the cache.
Wilson and Olukotun [26] showed that the increase in cycle
time measured using the fan-out-of-four (FO4) [10] for
banked or interleaved caches over single ported caches was
minimal. Since two requests can simultaneously access the
switch cache, the reply unit needs to provide twice the
buffer space for storing the data from the cache. Similarly,
the header flit of the two read requests also needs to be
stored. As shown in Fig. 14, the buffers are connected to
outputs from different banks to gather the cache line data.

5 PERFORMANCE EVALUATION

In this section, we present a detailed performance
evaluation of 8 x8 switch caches employed in a
CC-NUMA multiprocessor. A preliminary evaluation of
4 x 4 switch caches was presented in [11]. In this paper,
we present base comparisons as well as detailed
sensitivity studies of cache size, line size, associativity,

IYER AND BHUYAN: DESIGN AND EVALUATION OF A SWITCH CACHE ARCHITECTURE FOR CC-NUMA MULTIPROCESSORS 791

Snoop Address (0)
Snoop Address (1)
Addr/Data Pair (0)
Addr/Data Pair (1)

w2)

s 3

Hit/Miss 2 g

[=4 7]

Bank Select
| 1k =8
~z 2
Way 0 Way 1 Way 0 Way 1 Qsize
> =
% %
5 g D>

= aa— =~ =]

i

5

~

H |2

Way 0 Wayl | | Way 0 Way 1 j ©
— —
]]
g g
=} =}

|
REPLY UNIT

Fig. 14. Design of the CAESAR*' cache module.

and application size. Our results are based on extensive
execution-driven simulation experiments.

5.1 Simulation Methodology

To evaluate the performance impact of switch caches on the
application performance of CC-NUMA multiprocessors, we
use a modified version of the Rice Simulator for ILP
Multiprocessors (RSIM) [21]. RSIM is an execution driven
simulator for shared memory multiprocessors with accurate
models of current processors that exploit instruction-level
parallelism. In this section, we present the various system
configurations and the corresponding modifications to
RSIM for conducting simulation runs.

The base system configuration consists of 16 nodes. Each
node consists of a 200MHz processor capable of issuing four
instructions per cycle, a 16KB L1 cache, a 128KB L2 cache, a
portion of the local memory, directory storage, and a local
bus interconnecting these components. The processor
microarchitecture in RSIM is based on the MIPS R10000.
Latency hiding techniques such as hardware prefetching
are not enabled. The L1 cache is 2-way set associative with
an access time of a single cycle. The L2 cache is 4-way set
associative and has an access time of eight cycles. The raw
memory access time is 40 cycles, but it takes more than
50 cycles to submit the request to the memory subsystem
and read the data over the memory bus. The system
employs the full-map three-state directory protocol [7] and
the MSI cache protocol to maintain cache coherence. The
system uses a release consistency model. We modified
RSIM to employ a wormhole routed bidirectional MIN
using 8 x 8 switches organized in two stages, as shown
earlier in Fig. 6. Virtual channels were also added to the
switching elements to simulate the behavior of commercial
switches like Cavallino and Spider. Each input link to the
switch is provided with two virtual channel buffers capable

of storing a maximum of four flits from a single message.
The crossbar switch operation is similar to the description
in Section 4.1. A detailed list of simulation parameters is
also shown in Table 1.

To evaluate switch caches, we further modified the
simulator to incorporate switch caches into each switching
element in the IN. The switch cache system improves on the
base system in the following respects. Each switching
element of the bidirectional MIN employs a variable size
cache that models the functionality of the CAESAR switch

TABLE 1
Simulation Parameters

Multiprocessor System - 16 processors

Processor Memory

Speed 200MHz || Access time 40

Issue 4-way || Interleaving 4
Cache Network

L1 Cache 16KB || Switch Size 8x8

line size 32bytes || Core delay 4

set size 2 || Core Freq 200MHz

access time 1 || Link width 16 bits

L2 Cache 128KB || Xfer Freq 200MHz

line 32bytes || Flit length 8bytes

set size 4 || Virtual Chs. 2

access time 8 || Buf. Length 4 flits

Switch/Network Caches
Switch Cache 128bytes-8KB || Network Cache 4KB
Application Workload

FWA 128x128 || GE 128x128

GS 96x128 || MM 128x128

SOR 512x512 || FFT 16K pts

792

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.8, AUGUST 2000

OBase

ENC

osc

Normalized Number of
Memory Reads
[*2]
o

FWA GS GE
Application/System

MM SOR FFT

Fig. 15. Percentage reduction in memory reads.

cache presented in Section 4. Several parameters such as
cache size and set associativity are varied for evaluating the
design space of the switch cache.

We have selected some numerical applications to
investigate the potential performance benefits of the switch
cache interconnect. These applications are Floyd-Warshall’s
all-pair-shortest-path algorithm, Gaussian elimination (GE),
QR factorization using the Gram-Schmidt Algorithm (GS),
and the multiplication of 2D matrices (MM), successive
over-relaxation of a grid (SOR), and the six-step 1D fast
Fourier transform (FFT) from SPLASH [22]. The input data
sizes are shown in Table 1 and the sharing characteristics
were discussed in Section 2.1. Four of the six applications
were chosen since they exhibit wide-shring characteristics.
The remaining two applications, FFT and SOR, were chosen
to show that switch caches do not degrade the performance
of applications with different sharing patterns.

5.2 Base Simulation Results

In this subsection, we present and analyze the results
obtained through extensive simulation runs to compare
three systems: the base system (Base), network cache (NC),
and switch cache (SC). The Base system does not employ
any caching technique beyond the L1 and L2 caches. We
simulate a system with NC by enabling 4K B switch caches
in all the switching elements of stage 0 in the MIN. Note
that stage 0 is the stage close to the processor, while stage 1
is the stage close to the remote memory, as shown in Fig. 6.
The SC system employs switch caches in all the switching
elements of the MIN.

The main purpose of switch caches in the interconnect is
to serve read requests as they traverse to memory. This
enhances the performance by reducing the number of read
misses served at the remote memory. Fig. 15 presents the
reduction in the number of read misses to memory by
employing network caches (NC) and switch caches (SC)
over the base system (Base). In order to perform a fair
comparison, here we compare an SC system with 2KB
switch caches at both stages (overall 4KB cache space) to an
NC system with 4KB network caches. Fig. 15 shows that
network caches reduce remote read misses by 6-20 percent
for all the applications, except FFT. The multiple layers of
switch caches are capable of reducing the number of
memory read requests by up to 45 percent for FWA, GS,
and GE applications.

Table 2 shows the distribution of switch cache hits across
the two stages (St0 and St1) of the network. From the table,

we note that a high percentage of requests get satisfied in
the switch caches present at the first stage (St0) in the
interconnect. Note, however, that for three of the six
applications, roughly 30-40 percent of the requests are
switch cache hits in the stage close to the memory (Stl). It is
also interesting to note the number of requests satisfied by
storing each block in the switch cache. Table 2 presents this
data as sharing, which is defined as the number of different
processor requests served for a block, encached in the
switch cache. We find that this sharing degree ranges from
1.0 to 2.7 across all applications. For applications with high
overall read sharing degrees (FWA, GS, and GE), the degree
of sharing is approximately 1.7 in the stage closer to the
processor. With only four of 16 processors connected to
each switch, many read requests do not find the block in the
first stage, but get satisfied in the second stage. Thus, we
find a higher (approximately 2.5) read sharing degree at St1
for these applications. The MM application has an overall
sharing degree of approximately 4 (see Fig. 2). The data is
typically shared by four processors physically connected to
the same switch in the first stage of the network. Thus, most
of the requests (88.2 percent) get satisfied in the first stage
and attain a read sharing degree of 1.8. Finally, the SOR and
FFT applications have very few read shared requests, most
of which are satisfied in the first stage of the network.

Fig. 16 shows the improvement in average memory
access latency for reads for each application by using switch
caching in the interconnect. For each application, the figure
consists of three bars corresponding to the Base, NC, and SC
systems. The average read latency is comprised of processor
cache delay, bus delay, network data transfer delay,
memory service time, and queuing delays at the network
and memory module. As shown in the figure, by employing

TABLE 2
Distribution of Switch Cache Accesses

Appl || Hit Distribution | Sharing
St0 Stl St0 | St1

FWA || 67.21 32.79 1.79 | 2.49
GS 69.02 30.98 1.94 | 2.37
GE 59.55 40.45 1.58 | 2.66
MM | 88.20 11.80 1.80 | 1.08
SOR || 94.47 5.53 1.32 | 1.0
FFT || 60.59 39.41 1.95 | 1.96

IYER AND BHUYAN: DESIGN AND EVALUATION OF A SWITCH CACHE ARCHITECTURE FOR CC-NUMA MULTIPROCESSORS 793

OBase
120 -

ENC

asc

=y
® O
o o
I I

Norm. Avg. Read
Miss Latency
A O
o o

»n
o
I

o
I

FWA GS GE
Application/System

MM SOR FFT

Fig. 16. Impact on average read latency.

OBusy_Sync B Write Stall

ORead Stall

120 +
100
80 -
60 -
40 -
20
0

Norm. Execution Time

NC
sC
NC
sC

Q
=z

FWA GS GE

Base
Base
Base

Application/System

Q Q
z (0]

Base
Base
NC
sC
Base
NC
sC

MM SOR

Fig. 17. Application execution time improvements.

network caches, we can improve the average read latency
by atmost 15 percent for most of the applications. With
switch caches in multiple stages of the interconnect, we find
that the average read latency can be improved by as high as
35 percent for FWA, GS, and GE applications. The read
latency reduces by about 7 percent for the MM application.
Again, SOR and FFT are unaffected by network caches or
switch caches due to negligible read sharing.

The ultimate parameter for performance is execution
time. Fig. 17 shows the execution time improvement. Each
bar in the figure is divided into computation and
synchronization time, read stall time, and write stall time.
In a release consistent system, we find that the write stall
time is negligible. However, the read stall time in the base
system comprises as high as 50 percent of the overall
execution time. Using network caches, the read stall time
reduces by a maximum of 20 percent (for the FWA, GS, and
GE applications) and thus translates to an improvement in
execution time by up to 10 percent. Using switch caches, we
observe execution time improvements as high as 20 percent
in the same three applications. The execution time of the
MM application is comparable to that with network caches.
SOR and FFT are unaffected by either network or switch
caches.

5.3 Sensitivity Studies

5.3.1 Sensitivity to Cache Size

In order to determine the effect of cache size on perfor-
mance, we varied the switch cache size from a mere
128 bytes to a large 8 K B. Figs. 18 and 19 show the impact of
switch cache size on the number of memory reads and the
overall execution time. As the cache size is increased, we see
that a switch cache size of 512 bytes provides the maximum

performance improvement (up to 45 percent reads and
20 percent execution time) for three of the six applications.
The MM and SOR applications require larger caches for
additional improvement. The MM application attains a
performance improvement of 7 percent in execution time at
a switch cache size of 2KB. Increasing the cache size further
has negligible impact on performance. For SOR, we found
some reduction in the number of memory reads, contrary to
the negligible amount of sharing in the application (shown
in Fig. 2). Upon investigation, we found that the switch
cache hits come from replacements in the L2 caches. In
other words, blocks in the switch cache are accessed highly
by the same processor whose initial request entered the
block into the switch cache. The switch cache acts as a
victim cache for this application. The use of switch caches
does not affect the performance of the FFT application.
Fig. 20 investigates the impact of cache size on the
eviction rate and type in the switch cache for the FWA
application. The x-axis in the figure represents the size of
the cache in bytes. A block in the switch cache can be
evicted either due to replacement or due to invalidation.
Each bar in the figure is divided into two portions to
represent the amount of replacements versus invalidations
in the switch cache. The figures are normalized to the
number of evictions for a system with 128 byte switch
caches. The first observation from the figure is the reduction
in the number of evictions as the cache size increases. Note
that the number of evictions remains constant beyond a
cache size of 1KB. With small caches, we also observe that
roughly 10-20 percent of the blocks in the switch cache are
invalidated, while all others are replaced. In other words,
for most blocks, invalidations are not processed through the
switch cache since they have already been evicted through

794

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.8, AUGUST 2000

‘I:IBase W128 0256 [O512 W1024 [©O2048 MW4096 I:I8192‘

120 -
£
c o 100 -
SR
5 o 80+
S X
° > 604
$5 .
€5
6= 20
=z 04

FWA GS GE
Application/Switch Cache Size

MM SOR FFT

Fig. 18. Impact of cache size on the number of memory reads.

OBase

m128 0256 0512 MW1024 [O2048 MW4096 [O8192

Normalized
Execution Time
(o)}

o
o
o
;

FWA GS GE
Application/Switch Cache Size

MM SOR FFT

Fig. 19. Impact of cache size on execution time.

replacements due to small capacity. As the cache size
increases, we find the fraction of invalidations increases
since fewer replacements occur in larger caches. For the 8KB
switch cache, we find that roughly 50 percent of the blocks
are invalidated from the cache.

We next look at the impact of cache size on the amount of
sharing across stages. Fig. 21 shows the amount of hits
obtained in each stage of the network for the FWA
application. Each bar is divided into two segments,
representing each stage of switch caches, denoted by the
stage number. Note that Stage0 is the stage closest to the
processor interface. From the figure, it is interesting to note
that, for small caches, an equal amount of hits are obtained
from each stage in the network. On the other hand, as the
cache size increases, we find that a higher fraction of the
hits are due to switch caches closer to the processor
interface (60-70 percent from St0). This is beneficial because
fewer hops are required in the network to access the data,
thereby reducing the read latency considerably.

5.3.2 Sensitivity to Cache Line Size

In the earlier sections, we analyzed data with 32 byte cache
lines. In this section, we vary the cache line size to study its
impact on switch cache performance. Figs. 22 and 23 show
the impact of a larger cache line (64 bytes) on the switch
cache performance for three applications (FWA, GS, and
GE). We vary the cache size from 256 bytes to 16KB and
compare the performance to the base system with 32 byte
cache lines and 64 byte cache lines. Note that the results are
normalized to the base system with 64 byte cache lines. We
found that the number of memory reads were reduced by
37 to 45 percent when we increase the cache line size in the

base system. However, the use of switch caches still has
significant impact on application performance. With 1KB
switch caches, we can reduce the number of read requests
served at the remote memory by as much as 45 percent and
the execution time by as much as 20 percent. In summary,
the switch cache performance does not depend highly on
cache line size for highly read shared applications with
good spatial locality.

5.3.3 Sensitivity to Set Associativity

In this section, we study the impact of cache set associativity
on application performance. Fig. 24 shows the percentage of
switch cache hits as the cache size and associativity are
varied. We find that set associativity has no impact on
switch cache performance. Frequently accessed blocks need
to reside in the switch cache only for a short amount of time,
as we observed earlier from our trace analysis. A higher
degree of associativity tries to prolong the residence time by
reducing cache conflicts. Since we do not require a higher
residence time in the switch cache, the performance is
neither improved nor hindered.

5.3.4 Sensitivity to Application Size

Another concern for the performance of switch caches is the
relatively small data set that we have used for faster
simulation. In order to verify that the switch cache perfor-
mance does not change drastically for larger data sets, we
used the FWA application and increased the number of
vertices from 128 to 192 and 256. The results obtained from
these simulations are shown in Fig. 25. Note that the data set
size increases by a square of the number of vertices. The base
system execution time increases by a factor of 2.3 and 4.6,

IYER AND BHUYAN: DESIGN AND EVALUATION OF A SWITCH CACHE ARCHITECTURE FOR CC-NUMA MULTIPROCESSORS 795

ORepl Hinv
120 - P
2 100 -
S 2 80
O .0
.8 604
E —
5 o 40+
=z 20 +
0 ‘
512 1024 2048 4096 8192
Switch Cache Size (in bytes)
Fig. 20. Effect of cache size on the eviction rate.
\ O Stage1 M Stage0 \
100% -
5 8 80% |
o3
2 60%
t 3
e t 40% -
£
& £ 20% -
0% T . .
128 256 512 1024 2048 4096 8192
Switch Cache Size (in bytes)
Fig. 21. Effect of cache size on switch cache hits across stages.
2001 DBASES2
s 180
5 160 - B BASE64
2 T 140 4 ONC
£
3 g120 0256
b 5100 m512
N g 80 1024
g2 ig] m2048
£ 1
S 5] 04096
0+ W8192
FWA GS GE B16384
Application/System
Fig. 22. Effect of line size on the number of memory reads.
GE) 140 - OBASE32
= 120 4 HEBASE64
8 100 | aONC
3 0256
S 80
i m512
3z 07 m1024
-% 40 4 E2048
g 20 04096
2 ol m3192
FWA GE 16384
Application/System

Fig. 23. Effect of line size on execution time.

respectively. With 512 byte switch caches, the execution time
reduces by 17 percent for 128 vertices, 13 percent for 192
vertices, and 10 percent for 256 vertices. In summary, we
believe that switch caches require small cache capacity and
can provide sufficient performance improvements for large
applications with frequently accessed read shared data.

6 CONCLUSIONS

In this paper, we presented a novel hardware caching
technique, called switch cache, to improve the remote
memory access performance of CC-NUMA multiproces-
sors. A detailed trace analysis of several applications

796

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO.8, AUGUST 2000

-~ O Direct HSA2 OSA4 OFA

9 _ _ _ _ _
@ 404

=

o 304

K=

o

S 20 4

=

2 10

é

0 - T
128 256 512 1024 2048 4096 8192
Switch Cache Size (in bytes)

Fig. 24. Effect of associativity on switch cache hits.

showed that accesses to shared blocks have a great deal of
temporal locality. Thus, remote memory access perfor-
mance can be greatly improved by caching shared data in a
global cache. To make the global cache accessible to all the
processors in the system, the interconnect seems to be the
best location since it has the ability to monitor all internode
transactions in the system in an efficient, yet distributed
fashion.

By incorporating small caches within each switching
element of the MIN, shared data was captured as they
flowed from the memory to the processor. In designing
such a switch caching framework, several issues were dealt
with. The main hindrance to global caching techniques is
that of maintaining cache coherence. We organized the
caching technique in a hierarchical fashion by utilizing the
inherent tree structure of the BMIN and sending invalida-
tions from the home node along the tree. The read requests
that hit in the switch cache were marked and allowed to
continue on their path to the memory for the sole purpose
of updating the directory. The caching technique was also
kept noninclusive and, thus, devoid of the size problem in a
multilevel inclusion property.

The most important issue while designing switch caches
was that of incorporating a cache within typical crossbar
switches (such as SPIDER and CAVALLINO) in a manner
such that requests are not delayed at the switching elements.
A detailed design of a cache embedded switch architecture
(CAESAR) was presented and analyzed. The size and
organization of the cache depends heavily on the switch
transmission latency. We presented a dual-ported 2-way set
associative SRAM cache organization for a 4 x 4 crossbar

switch cache. We also proposed a link-based interleaved
cache organization to scale the size of the CAESAR module
for 8 x 8 crossbar switches. Our simulation results indicate
that a small cache of size 1 KB bytes is sufficient to provide up
to 45 percent reduction in memory service and, thus, a 20
percent improvement in execution time for some applica-
tions. This relates to the fact that applications have a lot of
temporal locality in their shared accesses. Current switches
such as SPIDER maintain large buffers that are underutilized
in shared memory multiprocessors. It seems that, by
organizing these buffers as a switch cache, more improve-
ment in performance can be realized.

In this paper, we studied the use of switch caches to store
recently accessed data in the shared state to be reused by
subsequent requests from any processor in the system. In
addition to these requests, applications also have a
significant amount of accesses to blocks in the dirty state.
To improve the performance of such requests, directories
have to be embedded within the switching elements. By
providing shared data through switch caches and owner-
ship information through switch directories, the perfor-
mance of the CC-NUMA multiprocessor can be improved.
Latency hiding techniques such as data prefetching or
forwarding can also utilize the switch cache and reduce the
risk of processor cache pollution. The use of switch caches
along with the above latency hiding techniques can further
improve the application performance on CC-NUMA multi-
processors. A recent paper [3] on wide area network (WAN)
caches suggests that a variant of switch caches can also help
in reducing the response time to frequently accessed world
wide web objects.

120 - OBASE
© ENC
£ 100+ 0128
5 80 0256
§ 50 | m512
i 40 1024
£ 2048
S 20 4 04096

0 m38192

128 192 256
FWA Application Size

Fig. 25. Effect of application size on execution time.

IYER AND BHUYAN: DESIGN AND EVALUATION OF A SWITCH CACHE ARCHITECTURE FOR CC-NUMA MULTIPROCESSORS 797

ACKNOWLEDGMENTS
This research has been supported by US National Science

Foundation grants MIP-9622740 and CCR-9810205.

REFERENCES

[1] G. Astfalk and T. Brewer, “An Overview of the HP/Convex
Exemplar Hardware,” http://www.convex.com/tech_cache/ps/
hw_ov.ps, accessed in Dec. 1997.

[2] BBN Laboratories Inc., “Butterfly Parallel Processor Overview,
version 1,”Cambridge, Mass., Dec. 1985.

[3] S. Bhattacharjee, K.L. Calvert, and E.W. Zegura, “Self-Organizing
Wide-Area Network Caches,” Proc. IEEE Infocom '98, Mar. 1998.

[4] L. Bhuyan, R. Iyer, T. Askar, A. Nanda, and M. Kumar,
“Performance of the Multistage Bus Networks for a Distributed
Shared Memory Multiprocessor,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 8, no. 1, pp. 82-95, Jan. 1997.

[5] L. Bhuyan, H. Wang, R. Iyer, and A. Kumar, “The Impact of
Switch Design on the Application Performance of Shared Memory
Multiprocessors,” Proc. Int’l Parallel Processing Symp., pp. 466-474,
Mar. 1998.

[6] J. Carbonaro and F. Verhoorn, “Cavallino: The Teraflops Router
and NIC,” Proc. Symp. High Performance Interconnects (Hot
Interconnects 4), Aug. 1996.

[71 L.M. Censier and P. Feautrier, “A New Solution to Coherence
Problems in Multicache Systems,” IEEE Trans. Computers, vol. 27,
no. 12, pp. 1,112-1,118, Dec. 1978.

[8] M. Galles, “Scalable Pipelined Interconnect for Distributed End-
point Routing: The SGI SPIDER Chip,” Proc. Symp. High
Performance Interconnects (Hot Interconnects 4), Aug. 1996.

[9] M. Horowitz, S. Przybylski, and M. Smith, “Tutorial on Recent
Trends in Processor Design: Reclimbing the Complexity Curve,”
Stanford, Calif.: Western Inst. of Computer Science, Stanford
Univ., 1992.

[10] M. Horowitz, “High Frequency Clock Distribution,” Proc. 1996
Symp. VLSI Circuits, June 1996.

[11] R. Iyer and L.N. Bhuyan, “Switch Cache: A Framework for
Improving the Remote Memory Access Latency of CC-NUMA
Multiprocessors,” Proc. Fifth Int’l Conf. High Performance Computer
Architecture (HPCA-5), pp. 152-160, Jan. 1999.

[12] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” Proc. 24th Ann. Int'l Symp. Computer Architecture,
pp. 241-251, 1997.

[13] C.E. Leiserson, Z. Abuhamdeh, D. Douglas, C. Feynman, M.
Ganmukhi et al., “The Network Architecture of the Connection
Machine,”]. Parallel and Distributed Computing, vol. 33, no. 2,
pp. 145-158, Mar. 1996.

[14] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta et al.,
“The Stanford DASH Multiprocessor,” Computer, vol. 25, no. 3,
pp- 63-79, Mar. 1992.

[15] T. Lovett and R. Clapp, “STiNG: A CC-NUMA Computer System
for the Commercial Marketplace,” Proc. 23rd Ann. Int’l Symp.
Computer Architecture, pp. 308-317, May 1996.

[16] A. Moga and M. Dubois, “The Effectiveness of SRAM Network
Caches on Clustered DSMs,” Proc. Fourth Int'l Symp. High
Performance Computer Architecture, pp. 103-112, Feb. 1998.

[17] P. Mohapatra and C.R. Das, “A Performance Model for Finite-
Buffered Multistage Interconnection Networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 7, no. 1, pp. 18-25, Jan. 1996.

[18] J. Mulder, N. Quach, and M. Flynn, “An Area Model for On-Chip
Memories and Its Application,” IEEE]. Solid State Circuits, vol. 26,
no. 2, pp. 98-106, Feb. 1991.

[19] A. Nanda and L. Bhuyan, “Design and Analysis of Cache
Coherent Multistage Interconnection Networks,” IEEE Trans.
Computers, vol. 42, no. 4, Apr. 1993.

[20] B. Nayfeh, K. Olukotun, and J.P. Singh, “The Impact of Shared-
Cache Clustering in Small-Scale Shared-Memory Multiproces-
sors,” Proc. Second Int’l Symp. High Performance Computer Archi-
tecture, pp. 74-84, Feb. 1996.

[21] V. Pai, P. Ranganathan, and S.V. Adve, “RSIM Reference Manual,
Version 1.0,” Technical Report 9705, Dept. of Electrical and
Computer Eng., Rice Univ., July 1997.

[22] J.P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford
Parallel Applications for Shared-Memory,” ACM SIGARCH
Computer Architecture News, vol. 20, no. 1, pp. 5-44, Mar. 1992.

[23] C.B. Stunkel, D. Shea, B. Abali, M. Atkins, C. Bender et al., “The
SP2 High Performance Switch,” IBM Systems]., vol. 34, no. 2,
pp. 185-204, 1995.

[24] J. Torrellas and Z. Zhang, “The Performance of the Cedar
Multistage Switching Network,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 8, no. 4, pp. 321-336, Apr. 1994.

[25] A.W. Wilson, “Hierarchical Cache/Bus Architecture for Shared
Memory Multiprocessors,” Proc. 14th Ann. Int’l. Symp. Computer
Architecture, pp. 244-252, 1987.

[26] K. Wilson and K. Olukotun, “Designing High Bandwidth On-Chip
Caches,” Proc. 23rd Int’l Symp. Computer Achitecture, pp. 121-132,
1997.

[27] S. Wilton and N. Jouppi, “An Enhanced Access and Cycle Time
Model for On-Chip Caches,” Technical Report no. 93/5, DEC-
Western Research Lab, 1994.

[28] K. Yeager, “The MIPS R10000 Superscalar Microprocessor,
Micro, vol. 16, no. 2, pp. 28-40, Apr. 1996.

[29] Z. Zhang and]. Torellas, “Reducing Remote Conflict Misses:
NUMA with Remote Cache versus COMA,” Proc. Third Int'l Symp.
High Performance Computer Architecture, pp. 272-281, Jan. 1997.

” IEEE

Ravishankar R. lyer received his PhD in
computer science, MS in computer science,
and BS in electrical engineering in August
1999, August 1996, and December 1994,
respectively, from Texas A&M University, Col-
lege Station, Texas. He is currently working in
the Server Architecture Laboratory at Intel
Corporation. He previously worked in a chipset
architecture group at Intel Corporation and in a
memory technology group at Hewlett-Packard
Laboratories. His research interests include computer architecture,
parallel computing and performance evaluation. He is a member of the
IEEE.

Laxmi N. Bhuyan (S'81-M’82-SM’87-F’98) re-
ceived the MSc degree in electrical engineering
from Sambalpur University, India, in 1979, and
the PhD degree in computer engineering from
Wayne State University, Detroit, Michigan, in
1982. Currently, he is a professor of computer
‘ v science at Texas A&M University, College
. Station, Teaxas. His research interests are in
. the areas of computer architecture, parallel
processing, interconnection networks and per-
formance evaluation. He has published more than 100 papers in these
areas.

Dr. Bhuyan has served on the editorial boards of the Computer
magazine, the Journal of Parallel and Distributed Computing (JPDC),
IEEE Transactions on Parallel and Distributed Systems, and Parallel
Computing journal. He was the founding program committee chairman
of the First International Symposium on High-Performance Computer
Architecture (HPCA), January 1995, and later chairman of the IEEE
Computer Society Technical Committee on Computer Architecture
(TCCA) between 1996-1998. He is a fellow of the ACM and the IEEE.

