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Abstract  
A wide spectrum of e-commerce (B2B/B2C), banking, 
financial trading and other business applications 
require the exchange of data to be highly secure. The 
Secure Sockets Layer (SSL) protocol provides the 
essential ingredients of secure communications – 
privacy, integrity and authentication. Though it is well-
understood that security always comes at the cost of 
performance, these costs depend on the cryptographic 
algorithms. In this paper, we present a detailed 
description of the anatomy of a secure session. We 
analyze the time spent on the various cryptographic 
operations (symmetric, asymmetric and hashing) during 
the session negotiation and data transfer. We then 
analyze the most frequently used cryptographic 
algorithms (RSA, AES, DES, 3DES, RC4, MD5 and 
SHA-1). We determine the key components of these 
algorithms (setting up key schedules, encryption 
rounds, substitutions, permutations, etc) and determine 
where most of the time is spent. We also provide an 
architectural analysis of these algorithms, show the 
frequently executed instructions and discuss the ISA / 
hardware support that may be beneficial to improving 
SSL performance. We believe that the performance data 
presented in this paper will be useful to performance 
analysts and processor architects to help accelerate 
SSL performance in future processors. 
 

1. Introduction 
 

The World Wide Web, one of the most popular 
Internet applications, provides an infrastructure for 
exchanging data in a client-server environment. This 
has boosted the rapidly expanding e-commerce and on-
line banking systems. One of the most important issues 
in these systems is security. To address this problem, 
the Secure Sockets Layer (SSL) [7], Transport Layer 
Security (TLS) [5] protocol and the Internet Protocol 
Security Protocol (IPSEC) [11] have been developed 
and employed to provide secure communications 
between two applications that run on public domains 
such as Internet. Although SSL/TLS protocol and 
IPSEC are situated in different layers (session and 
network layer respectively), they have common 
components for security issues. In this paper, we focus 

on the SSL protocol and do an in-depth analysis of the 
performance overhead and the execution characteristics.  

As secure communications become more important, 
researchers have been studying the overhead of secure 
processing and proposing various architectural 
optimizations for acceleration. In [10], K.Kant et al. 
studied the performance and architectural impact of 
SSL on web servers. They showed the overall 
performance behavior of web server applications when 
using HTTP versus HTTPS. While this showed the 
overhead of SSL, it did not present a detailed 
breakdown of the secure session to show where the 
maximum performance overhead came from. Other 
studies [2][12][20] have focused on cryptographic 
algorithms and proposed optimizations for accelerating 
these crypto operations. Recently, crypto units [8] have 
been added to the IXP2850 network processors. The 
scope of our paper is to profile SSL processing, show 
how the crypto algorithms affect SSL performance and 
point out architectural improvements that can be made.  

We start by analyzing the overall effect of SSL 
performance in a web server environment. We show 
that SSL processing consumes about 70% of an HTTPS 
transaction. We break the time spent into crypto and 
non-crypto portions and show that the non-crypto SSL 
processing takes a negligible fraction of the time. The 
significant overhead by SSL is mainly due to its crypto 
operations, which include asymmetric cryptography, 
symmetric cryptography and hash functions. We then 
present a detailed anatomy of SSL processing by 
analyzing and measuring the two major phases – 
session negotiation (or handshake) and bulk data 
transfer. Having exposed the anatomy, we then focus 
our time on examining the frequently used crypto 
operations. We study their architectural characteristics 
like CPI, path length and frequently used instructions. 
For each cryptographic algorithm, we present which 
underlying operations (substitutions, permutations, 
encryption rounds, key schedule initialization, etc) take 
a most amount of time. Based on our observations, we 
present and discuss hardware support that may be 
beneficial to improving crypto performance and SSL 
performance in the future.  

The rest of the paper is organized as follows. The 
background is presented in section 2. The methodology 
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for our experiments is described in section 3. Section 4 
shows the measurement data for SSL processing and 
crypto operations. We also present the anatomy of SSL 
handshake and study each component in detail. In 
section 5, the main crypto operations that contribute to 
the SSL processing are analyzed. Section 6 studies the 
architectural characteristics of the crypto operations and 
discusses hardware support can be used to accelerate 
SSL processing. The conclusions and future work are 
described in section 7. 

 
2. Background 
 

Secure communication between two systems (a client 
and a server for instance) can be achieved if the 
following three aspects are guaranteed: (1) Privacy -- to 
ensure that the data exchanged cannot be viewed by a 
third party, (2) Integrity -- to ensure that the data are not 
modified along the way transferred and (3) 
Authentication -- to ensure that the end systems are 
indeed the systems that they say they are. The SSL 
protocol, which sits in the session layer, accomplishes 
this in two phases: (1) a session negotiation phase and 
(2) bulk data transfer phase in encrypted form.  

 
Figure 1. Description of the SSL protocol flow 
 

Figure 1 presents the messages exchanged in these 
two phases. In the session negotiation (handshake) 
phase, the client starts the session by sending a “client 
hello” message. All the subsequent messages 
exchanged between the client and the server are used to 
negotiate the cipher suite (what crypto algorithm will be 
used), an session id (used to resume a previous session), 
certificates (usually only the server is authenticated), 
and secret keys for the bulk data transfer. The “finish” 
messages are sent to finish the session negotiation 
phase.  

In the bulk data transfer phase, the data exchanged 
between the client and the server is encrypted/decrypted 

based on the chosen crypto algorithm with the 
established private keys. Each message is also 
appended with a message authentication code (MAC) to 
ensure its integrity. The MAC calculation is based on 
the secure hash function, a hash function performed on 
the transferred data together with private keys.  

The three main crypto operations used in SSL 
protocol are: asymmetric encryption (public key 
encryption), symmetric encryption (private key 
encryption) and hashing. Asymmetric encryption 
algorithms like RSA [13] and Diffie-Hellman [6] are 
used in the handshake phase to exchange secret keys 
between the server and the client. Symmetric 
encryption algorithms like AES [14] and DES [13] are 
used to encrypt/decrypt the data exchanged in the bulk 
data transfer phase. One-way hash functions like MD5 
[13] and SHA-1 [15] are used to guarantee the integrity 
of the exchanged data. It is used in both the handshake 
phase as well as the bulk data transfer phase.  

For our evaluation in this paper, we choose the 
following widely used crypto algorithms from each of 
the above three categories. Below, we briefly introduce 
these algorithms and discuss their basic concepts.  

(1) Public key encryption: RSA is one of the most 
commonly used public key encryption algorithms. The 
basic idea is as follows. First two large prime numbers 
p and q are chosen. Then e is chosen on the condition 
that 1) e is less than pq and 2) e and (p-1)(q-1) have no 
prime factors in common. Next d is computed in such a 
way that (de-1) is evenly divisible by (p-1)(q-1). Now 
the public key consists the pair (N, e) where N=pq, and 
the private key consists the triplet (p,q,d). The 
encryption and decryption functions are the following: 

C = Te mod N ; T = Cd mod N 
(C = cipher text, T = plain text) 

(2) Private key encryption: Unlike public key 
encryption, this class of encryption algorithms uses the 
same key for both the encryption and decryption. There 
are two types of private key encryption. One is stream 
cipher encryption (e.g. RC4 [13]), where the plaintext is 
encrypted in one bit or byte at a time. The input stream 
is XORed with a random sequence which is generated 
by a cryptographically-secure keyed pseudorandom 
number generator. The other is block cipher encryption 
(e.g. AES, DES/3DES), where encryption is performed 
in larger units or blocks of data. Data in the block is 
encrypted using methods like diffusion, substitution and 
transposition. For the block cipher encryption, one of 
the most popular modes is chaining-block-cipher (CBC) 
mode. In this mode, the plain text is XORed with the 
previous cipher block before it is encrypted. This 
ensures a dependency between blocks of data within the 
message and removes the potential for parallelism 
across individual blocks of data. 

(3) Hash Functions:  MD5 and SHA-1 are the 

TCP Connection 

  Client 

Session 
 Negotiation 

Bulk data 
Transfer

Server Hello 
Server Certificate 

Server Key Exchange 
Server Hello Done 

Client Key Exchange 
Change Cipher Spec 

Client Finished 

Change Cipher Spec 
Server Finished 

Client Hello 

Encrypted Data 

End Session 

   Server 



 

widely used hash functions in SSL. These algorithms 
take a variable length input data and generate a message 
digest (128 bits for MD5 and 160 bits for SHA-1).  

In this paper, we will present a detailed analysis of 
the time spent in each of these cryptographic operations 
for SSL sessions. In addition, we will also present a 
detailed analysis of where the majority of the time is 
spent within these cryptographic operations. 

 
3. Methodology 
 

In this section, we discuss the methodology we use 
for evaluating the SSL processing and the crypto 
operations. The purpose of our experiments is the 
following: 1) Isolate the overhead of SSL processing 
from the HTTPS web server transaction. 2) Within SSL 
processing, isolate the overhead of handshake phase 
from the bulk data transfer phase and study the major 
components in each phase. 3) Analyze the crypto 
operations in the SSL processing in terms of their 
architectural characteristics like path length, cycles per 
instruction and frequently used instructions. 

To achieve these three major goals, we have the 
following three setups for our experiments. 

 
3.1. SSL Analysis in Web Servers 
 

The web server we use is a 2.26GHz Intel® 
Pentium® IV based workstation with 512MB of 
memory. The client machine is a DP system with 
Intel® XeonTM processor running at 2.6GHz and with 
1GB of memory. Both machines run Linux 2.6.6. The 
Apache 2.0 [1] server together with mod_ssl (which is 
an interface to the OpenSSL library) is used as the web 
server. The client software based on curl [4] generates 
multiple secure HTTP requests. Both the server and the 
client machine are installed with OpenSSL 0.9.7d [16] 
as the SSL library, which is compiled using the 
optimizations for Pentium processor. The client makes 
HTTP requests as fast as the server can handle them. 
During our experiments, the server load is always 
maintained at more than 90%. The tools we use to 
perform the measurements are Oprofile [17], which is a 
system-wide profiler for Linux systems. By profiling all 
the running code at a low cost, Oprofile enables us to 
identify the time spent in various modules and 
functions. 

OpenSSL supports SSL v2/v3 and TLS v1 protocols 
as well as a cryptography library. Our experiments 
employ the widely used SSL v3. The cipher suite we 
use is DES-CBC3-SHA, where (1) the RSA algorithm 
is used for signing as well as the public key encryption, 
(2) 3DES in CBC mode is used as the private key 
encryption, and (3) SHA-1 is used as the hashing 
function for MAC calculation. MD5 is also used in the 

handshake phase for calculation of hash values in the 
finish messages.  

 

3.2. Standalone SSL Setup for Detailed Analysis 
 

To focus on the SSL processing itself without 
including any networking or IO overhead, we use a 
standalone program running on the same server 
machine as the second setup. We modify the program 
ssltest for this purpose. This program creates a server 
context as well as a client context, and relays messages 
between these two through some memory buffers. Our 
measurements are taken on the server side. The same 
OpenSSL library and the same cipher suite are used as 
well. To get the latency on those components that we 
are interested in, we use the read timestamp instruction.   

 
3.3. Standalone Crypto Benchmark  
 

The crypto operations are the main components in 
the SSL protocol processing. To study these operations, 
we developed a crypto benchmark, which essentially 
makes various function calls into the crypto library that 
comes with the SSL library. We use Vtune [9] and 
SoftSDV [19] to do profiling and tracing the 
instructions executed respectively. The Vtune analyzer 
allows time-based sampling as well as event-based 
sampling at various levels – from processes to modules 
to functions. SoftSDV is a full system simulation 
environment. It provides a virtual platform that consists 
of a simulated CPU and other platform components. 
SoftSDV allows an actual Operating system to be 
loaded so that the crypto benchmark can be executed 
within it. The instruction traces collected from SoftSDV 
are then analyzed through various simulation tools to 
understand the execution profile. 

 
4. Analysis of SSL Processing 
 

In this section, we focus on studying the anatomy of 
the important SSL phase(s). We first look at the 
execution time breakdown in SSL processing in a web 
server. We then study in detail how the SSL handshake 
is performed on the server side and how the execution 
time is distributed across the various steps. 

 
4.1 Execution Time Breakdown in SSL 
 

Table 1 shows the execution time breakdown on 
various components when the web server processes a 
1KB web page. Similar results can be obtained when 
we increase the request file size. We can see that the 
SSL processing (libssl and libcrypto) takes 71.6% of 
the total processing time, which is mostly due to the 
crypto operations (libcrypto). We further breakdown 
the crypto operations into four components: public key 
encryption, private key encryption, hashing and other 



 

operations (including random number generation, etc). 
Figure 2 shows the execution time breakdown in the 
crypto library as we vary the request file size. It can be 
seen that the public key encryption takes a very large 
portion: about 90% when the request file size is 1k 
bytes. This portion reduces as we increase the file size. 
Since the public key encryption is one of the main 
operations in the SSL handshake, it makes the 
handshake quite expensive. Session re-negotiation 
using the previously setup keys can avoid the public 
key encryption, therefore greatly reduces the handshake 
overhead. On the other hand, the portion of the private 
key encryption and hashing are increasing as we 
increase the request file size. This is obvious since the 
cost of encryption and hashing is proportional to the 
request file size. The private key encryption portion is 
negligible with a small file size. It is only 2.4% when 
the file size is 1K bytes. However, as this part is the 
main contributor to the bulk data transfer, it can become 
significant at very large file size. Therefore for 
workloads that have large request file size or long 
sessions of data exchange (e.g. B2B sessions), 
optimizations should be concentrated on both private 
key encryption and public key encryption.  

 
Table 1. Execution time breakdown in web server 
Components Functionality % 

libcrypto Crypto library, including all 
the cryptography functions 70.83

libssl SSL functions 0.82 
httpd Apache web server 1.84 

vmlinux Linux kernel, including TCP 
stack processing 17.51

other Other library, including c, 
thread library, etc. 9.00 
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Figure 2. Time breakdown in crypto library 
 

4.2 Anatomy of SSL Handshake 
 

The SSL handshake on the server side can be 
partitioned into 10 steps based on its functionality. For 
each step, we measure the total processing time as well 
as the time spent on the crypto operations. Table 2 
shows the results in complete detail. 

The server receives and processes the client hello 
message in step 1 after its initialization for internal data 
structures. In step 2, the server generates a random 
number, session id, etc. and sends out the server hello 
message. Then the server’s certificate followed by a 
server done message are sent in step 3 and 4 
respectively. In the cipher suite we use for the 
experiments, the certificate contains the RSA public 
key for key exchange, therefore the server key 
exchange message is skipped.  

In step 5, the server receives the client key exchange 
message that contains a 48-byte key called pre-master. 
It is encrypted using the server’s RSA public key in the 
client side. The server decrypts this pre-master using its 
private key. This pre-master is used to generate another 
key called master through a series of hash functions 
(both MD5 and SHA-1 are used).  

In step 6, the server receives the change cipher spec 
message from the client, which indicates that the 
subsequent message will be encrypted by the finally 
generated private keys. At this moment, the server 
calculates the key blocks using the master key 
generated in the previous step. This calculation is also a 
series of hash functions that are similar to the master 
key generation. These keys are used for private key 
encryption as well as MAC calculation, which are 
performed in the bulk data transfer. Upon this point, the 
server has received all the handshake messages from 
the client, and also transmitted its own handshake 
messages to the client. (Handshake messages include all 
the received and transmitted messages except change 
cipher spec message.) The server then calculates two 
finish hash values (MD5 and SHA-1 respectively) over 
these handshake messages for the client side using 
‘CLNT’ padding. After this is done, it reads the client 
finished message. Note that this is the first message that 
uses the private key encryption. Therefore, the server 
decrypts this message using the private key. The MAC 
together with this message is also calculated to ensure 
its integrity. After retrieving the two finish hash values 
inside the finish message, the server verifies that they 
are same as the ones that are just calculated. 

In step 7, the server sends out its own change spec 
cipher message. Finally in step 8, the server calculates 
the two finish hash values with ‘SRVR’ padding. These 
two values together with the MAC value for this 
message are encrypted using the private keys, and are 
sent out as the server finish message. Then the server 
flushes its internal memory and cleans data structures 
that will not be used (like the pre-master and master 
keys). All the subsequent messages will be 
en/decrypted using the private keys. 

Since the finish hash values are calculated based on 
all the handshake messages that are received as well as 
transmitted, and because the hash value is calculated 



 

Table 2. Execution time breakdown in SSL handshake 

based on a block of 64 bytes, in OpenSSL’s 
implementation, the two hash values are calculated 
whenever a handshake message is received or 
transmitted. They are finalized when the last handshake 
message is received. This is why the hashing functions 
are called in most of the steps.  
 
Table 3. Crypto operations during SSL handshake 

Functionality Latency (Cycles) % 
Public key encryption 18562720 90.4 
Private key encryption 27260 0.1 
Hash functions 569948 2.8 
Other functions 346354 1.7 
Total crypto operations 19506282 95.0 
Total SSL processing 20540392 100 

 

We can see from Table 2 that the main crypto 
operations used in SSL handshake are public key 
encryption, hashing and private key encryption. Table 3 
summarizes the total time spent on these crypto 

operations during the handshake process. Public key 
encryption takes about 90.4% and hashing takes 2.8%. 
Since the private key encryption is performed on only 
two messages, this part is almost ignorable. Other 
functions include random number generation, X509 
functions for server certificate, etc., which also take a 
very small portion. In total, the crypto operations take 
about 95.0% of the SSL handshake. 

 
5. Anatomy of Crypto Operations in SSL 
 

We have shown that crypto operations are the main 
bottleneck in SSL processing. In this section, we look 
in detail at these operations.  
 
5.1. Symmetric Key Encryption 
 

We study two block ciphers -- AES and DES/3DES, 
and a stream cipher -- RC4. Since the symmetric key 
cryptography has a similar process for both encryption 
and decryption, we only talk about encryption here. The 

Step Functionality Descriptions Latency 
(1000s of cycles) 

Crypto Functions 
Called 

Latency 
(1000s of cycles) 

0 Init Initialize states and variables 348 init_finished_mac 29 

1 get_client_hello  

check version, get client random, 
session-id and generate new session id  
check if compression is needed, choose 
a cipher from the cipher list 

198 rand_pseudo_bytes 
finish_mac 

68 
1.4 

2 send_server_hello  
 

generate server random, send server 
hello message  61 rand_pseudo_bytes 

finish_mac 
40 
5.8 

send_server_cert  Send server certificate 239 X509 functions 
finish_mac 

232 
16 

skip server_kx  0.6   3 

skip cert_req  0.1   
send_server_done  Send server done message 3.8 finish_mac 1.65 

4 server_flush Internal buffer control 3.4 BIO_ctrl, BIO_flush 3.4 
check_client_hello Read client_kx message 12 finish_mac 5.6 

5 get_client_kx  
 

get pre-master using rsa-private-
decryption, generate master key from it 18941 

rsa_private_decryption
, gen_master_secret, 
cert_verify_mac 

18563 
148 
61 

get_cert_verify  
 

a. read client change cipher spec, 
generate key block from master key, 
calculate hash values for finish message 
b. read client finished message, decrypt 
it, calculate mac 

293 
 

a. gen_key_block 
final_finish_mac  
b. pri_decryption 
mac 
finish_mac  

106 
62 
16 
33 
3.1 6 

get_finished  
 

compare the finish hash values in the 
client finished message with the 
previously computed one  

0.74   

7 send_cipher_spec  Send server change cipher spec 
message 38   

8 send_finished  
calculate server finish hash values for 
finish message ,  
Calculate mac, encrypt it 

114 
finial_finish_mac 
mac 
pri_encrytpion, 
finish_mac 

64 
31 
11.5 
3.5 

server_flush Internal buffer control 2.5 BIO_ctrl, BIO_flush 2.5 
9 

check state; end  287   
 Total  20540  19506 
      



 

encryption process consists of two phases: a key setup 
followed by an encryption kernel. The key setup is to 
initialize a key schedule (for block ciphers) or a state 
table (for stream ciphers) based on the input private 
key. Both the key schedule and the state table are in the 
form of an array. Data in this array are accessed during 
the encryption kernel. Figure 3 shows the portion of key 
setup in the encryption process as we vary the 
encryption data size. While this portion is quite small 
for the block ciphers (only 1.0% ~ 3.6% even when the 
transferred data size is 1Kbytes), it is much higher for 
RC4 (28.5% for a 1Kbytes of data). This is because 
RC4 has a much simpler encryption kernel than AES 
and DES/3DES, and because the key setup for RC4 is 
to initialize a bigger table which has 256 entries. AES 
and DES/3DES use a smaller sized key schedule. In any 
case, however, the key setup portion is decreasing as 
we increase the data size. When the data size is 
increased to 8K bytes, this portion becomes less than 
0.5% and 5% for AES/DES/3DES and RC4 
respectively. At an even larger data size, this portion is 
almost negligible.  
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Figure 3. Key setup during encryption 

 

Table 4. Important data structures and characteristics 
 (* key size for AES can be 192 or 256 bits) 

  AES DES 3DES RC4 

Block Size 128b 64b 64b 8b 
Key Size 128b* 56b 3x56b 128b 
Key Schedule 44,32b 32,32b 3x(32,32b) n/a 
Tables 4,256,32b 8,64,32b 8,64,32b 1,256,8b
Rounds 10 16 3x16 1 
Table Lookup 16 8 8 3 

 

After initialization, the encryption kernel consists of 
a series of block operations depending on the input data 
size. Since RC4 is not a block cipher, its encryption is 
performed on a unit of one byte. So when we talk about 
block operations in general, it is referring to a one byte 
operation for RC4. Table 4 shows the main data 
structure and characteristics for each block operation. 
All the tables except for RC4 contain constant values 
that are initialized as static data structures. For AES and 
DES/3DES, each block operation consists of several 
iterations (rounds) of basic operations, which are 
essentially logical operations and table lookups. The 

number of table lookups (not including accessing the 
key schedule array) for each round is listed in the table 
as well. For RC4, the generation of pseudo-number also 
includes 3 table lookups. In the subsequent subsections, 
we will look at how these block operations are 
performed and what are their architectural 
characteristics. 

1) AES Performance Breakdown 
The block operation on AES can be divided into the 

following 3 parts: 1) Map byte array block to cipher 
state and add initial round key. Its main operations are 
shift and XOR. 2) Main rounds (9 for 128 bit key and 
13 for 256 bit key) of byte substitution, row shift 
transformation, column transformation and round key 
addition are performed. The main operations are table 
lookup, shift and XOR. 3) The last round and map the 
cipher state to byte array. Its main operations are same 
as those in step 2. Table 5 list the latency for each part 
on the block operations with a 128 bit key and a 256 bit 
key. We can see that the main rounds take a large 
portion. It is about 70.64% and 77.91% for a 128-bit 
key and 256-bit key respectively. Larger key size only 
affects the second part since the first and the last parts 
are fixed. 

Table 5. AES execution time breakdown 
128 bit key 256 bit key 

Step Functionality 
Cycles % Cycles % 

1 
Map byte array block to 
cipher state, add initial 
round key 

69 12 69 9 

2 Main rounds 397 71 582 78 

3 Last round and Map cipher 
state to byte array 96 17 96 13 

 Total 562 100 747 100 
 

One round consists of four basic operations. Each 
basic operation takes four 32-bit inputs and generates 
one 32-bit output. One byte is taken from each of the 
four inputs, and is indexed to one of the four tables. The 
four values from the tables are XORed together with 
the corresponding key value from the key schedule to 
generate one output. Each basic operation takes a 
different byte from the input and index to different 
tables. The byte used to index the table is taken in the 
order of left rotate within one input. Four such 
operations generate four outputs in one round. The four 
outputs become the four inputs for the next round. 

2) DES / 3DES Performance Breakdown 
The block operation on DES/3DES can be divided 

into the following 3 parts:  
(1) Initial permutation -- Its main operations are shift, 

AND, XOR, and rotate.  
(2) Substitution -- This part consists of one and three 

sets of 16 rounds for DES and 3DES respectively. The 
main operations are XOR, rotate, AND, shift and table 



 

lookup.  
(3) Final Permutation -- This part has similar 

operations as the first part.  
 

Table 6. DES/3DES execution time breakdown 
DES 3DES 

Step Functionality 
Cycles % Cycles % 

1 IP 50 13.15 55 5.3 
2 Substitution 286 74.74 915 89.1 
3 FP 46 12.11 57 5.6 
Total   382 100 1027 100 

 

We measured the latency spent on each part for DES 
and 3DES. As shown in Table 6, the second part is the 
main bottleneck. It is 74.7% and 89.1% for DES and 
3DES respectively. In each round of the substitution 
part, it takes two 32-bit inputs and generates two 
outputs. The basic operation is also table lookups. First 
two 32-bit temporal data are obtained by XOR 
operations between one of the inputs and its 
corresponding key value from the key schedule. Then 
all the eight bytes from these two temporal data are 
indexed to the eight tables. Each byte is shifted 2 bit 
right so that only six bits are used as the index. Finally 
the eight values from the eight tables are XORed with 
another input and write it back. The two outputs are 
exchanged as inputs for the next round.    

3) RC4 Performance Summary 
RC4 is fairly simple compared to the previous crypto 

operations. Essentially it uses a pseudo-random 
generation algorithm to generate a byte stream, which is 
XORed with the input stream. We did not breakdown 
the execution time further because the encryption 
routine itself is a single step. During the generation for 
each of the pseudo-random numbers, the state table 
with 256 entries is read 3 times and updated twice. The 
main operations are AND, ADD and XOR. 

 
5.2. Asymmetric Key Encryption 
 

As the web server performs RSA decryption on the 
client key exchange message, we focus on the RSA 
decryption process. RSA decryption can be partitioned 
into six parts:  

(1) Initialization -- The internal data structures and 
memory buffers are initialized.  

(2) String to Big Number conversion -- The input of 
the RSA decryption in SSL implementation is an octet 
string, which needs to be converted into a multi-
precision integer.  

(3) Blinding -- This is used to avoid a time attack [3]. 
(4) RSA computation -- This is where the real 

computation is performed using the private key. The 
main operations in this part as well as the previous part 
are exponentiation and modulus. The output for this 

part is also a multi-precision integer.  
(5)  Big number to octet string conversion -- This is 

the reverse of step 2.   
(6) Block parsing -- This part is required because 

before the client uses the server’s public key to encrypt 
the plaintext, the plaintext is first padded into a string 
that has some format and length defined in PKCS #1 
[18]. Therefore, to recover the plaintext, the reverse 
operation is performed.  

 

Table 7. Execution time breakdown for RSA 
512b 1024b Step Functionality

Cycles % Cycles % 
1 Init 866 0.07 936 0.02 
2 data_to_bn 783 0.07 1189 0.02 
3 blinding 14319 1.20 39783 0.66 
4 computation 1159628 97.01 5972288 98.85 
5 bn_to_data 587 0.05 1053 0.02 
6 block_parsing 19107 1.60 26104 0.43 
Total   1195290 100 6041353 100 

 

Table 7 lists the time breakdown for each step with a 
512-bit key and a 1024-bit key respectively. As 
expected, the RSA computation is the main bottleneck. 
It takes about 97.0% and 98.8% of the total processing 
for the two keys. The main reason is due to the 
extensive computation for multi-precision integer 
operations such as multiplication and addition.  

 

Table 8. Top Ten Functions in 
RSA 

Table 9. Instructions in 
bn_mul_add_words() 

Function  % 
bn_mul_add_words 47.04 
bn_sub_words 22.61 
BN_from_montgomery 9.47 
bn_add_words 4.92 
BN_usub 3.24 
BN_copy 1.50 
ERR_load_BN_strings 1.77 
OPENSSL_cleanse 1.59 
BN_sqr 1.04 
BN_CTX_start 0.77   

movl 0x8(%ebx), %eax
mull %ebp 
addl %esi, %eax 
movl 0x8(%edi), %esi 
adcl $0x0, %edx 
addl %esi, %eax 
adcl $0x0, %edx 
movl %eax, 0x8(%edi) 
movl %edx, %esi 

 

There are many function calls in RSA decryption 
process. We list the top ten functions in Table 8 based 
on the total time spent on them. This data is collected 
with a 1024 bits key. We can see that the function 
bn_mul_add_words() is most time-consuming. It takes 
about 47.0% of all the processing time. This function is 
in fact very small and simple. Its basic operation is to 
do a multiplication followed by two additions. Table 9 
lists its corresponding instructions that are executed. It 
can be seen that MULL, ADDL, ADCL (add with 
carry) are the main instructions used.  

 



 

5.3. Hash Functions 
 

Both MD5 and SHA-1 add padding to ensure that the 
padded message is a multiple of 512 bits. Then the 
message is parsed using a sequence of logical functions 
at a block size of 64 bytes. The hashing processes can 
be partitioned into 3 parts:  

(1) Initialization -- The internal states are initialized. 
SHA-1 has more states than MD5.  

(2) Update -- The hashing functions are performed 
on the input data in a block size of 64 bytes. The block 
operation and the number of block operations are 
different for MD5 and SHA-1, with SHA-1 more 
compute intensive. 

(3) Final -- One or two block operations are 
performed on what is left from the previous step (some 
padding are added), and generates the final signature.  

 

Table 10. Execution time breakdown for MD5 and SHA-1 
MD5 SHA-1 

Step Functionality 
Cycles % Cycles % 

1 Init 59 0.88 66 0.62 
2 Update 6070 90.88 9871 92.05 
3 Final 550 8.24 786 7.33 
Total   6679 100 10723 100 

 

We take 1024 bytes data as the input, and measure 
how much latency spent on each part. As shown in 
Table 10, the second part is most time-consuming. This 
is obvious because the main block operations are 
performed in this part. The block operation essentially 
contains a lot of logical operations such as XOR, and 
shift operations. 

 

6. Architectural Characteristics and 
Optimizations  

In this section, we summarize the crypto operations 
by showing their architectural characteristics like 
instruction distribution, CPI and throughput they can 
achieve. We then talk about some optimizations and 
inferences that can improve the performance of crypto 
operations, which in turn improve the SSL processing.   

 

6.1. Architectural characteristics  
 

Table 11 shows the CPI, path length and throughput 
for these crypto operations. Since all of these crypto 
operations are compute intensive, their CPI is very low 
(0.52 to 0.77). RSA has the highest CPI due to its 
multiplication operations. From the path length 
(instructions per byte), we can see the complexity of 
these crypto operations. RSA has the longest path 
length. MD5 and SHA-1 have the shortest one. And the 
path length for private key encryption is between the 
previous two. In private key encryption, 3DES is the 
most complex one. The throughput is mostly 

determined by the path length since they have the 
similar CPI. Again, RSA can achieve the throughput at 
only 0.036 Mbytes/s. Hashing functions are much 
faster, with MD5 even faster than SHA-1. For the 
private key encryption, it can achieve a throughput of 
about 13.32 to 211.34 Mbytes/s (which corresponds to 
106 Mbps to 1.7 Gbps), with 3DES and RC4 the lowest 
and the highest respectively. Although AES is faster 
than 3DES, it is still incapable of saturating a network 
link running at 1Gbps.  

 

Table 11. Characteristics for crypto operations 
Crypto 

Operations Private key Public 
key Hashing 

 AES DES 3DES RC4 RSA MD5 SHA-1

CPI 0.66 0.67 0.66 0.57 0.77 0.72 0.52 

Path length 
(Instructions 

per byte) 
50 69 194 14 61457 12 24 

Throughput 
(MB/s) 51.19 36.95 13.32 211.34 0.036 197.86 135.30
 

Table 12 shows the top ten instructions that are 
frequently used for these crypto operations. These 
instructions take 89.78% to 98.53% of the total 
instructions that are executed. We can see that the move 
instruction, which load/store data from/to the memory, 
is the top one instruction for all these operations except 
DES/3DES. This is because there is very limited 
number of registers in Intel’s x86 architecture. Since all 
these crypto operations are compute intensive, most of 
these move instructions are hits in the L1 cache. 
However, adding more general purpose registers to the 
CPU may help reduce the number of these move 
instructions, which in turn will reduce the execution 
time. For private key encryption and hashing functions, 
logical operations like XOR and AND are the 
frequently used instructions as expected. Shifts or 
rotates also take a large portion (except for RC4). For 
RSA, the compute instruction like ADD and ADC (add 
with carry) is very frequently used, followed by the 
multiply instruction. These instructions are mostly used 
in the exponentiation and modulus operations.     

 

6.2 Optimizations and Inferences 
 

To accelerate the SSL processing, many techniques 
can be employed to improve the crypto operations. We 
classify the potential techniques into three categories: 
1) ISA support, 2) Hardware units and 3) crypto 
engines. It should be noted that a detailed evaluation of 
these optimizations is not within the scope of this paper. 
However, based on our characterization, we believe that 
the following are the important types of optimizations 
in above mentioned categories:  

(1) ISA support for secure processing includes adding



 

Table 12. Top ten instructions for crypto operations 
Private key Public key Hashing 

AES DES 3DES RC4 RSA MD5 SHA-1 
movl 37.75 xorl 41.11 xorl 39.80 movl 38.06 movl 37.17 Movl 22.11 movl 27.81 
xorl 25.09 movb 17.54 movb 18.76 andl 18.15 addl 16.25 Addl 19.12 xorl 22.40 
movb 11.52 movl 13.54 movl 13.49 addl 13.61 adcl 16.18 Xorl 18.58 addl 12.04 
andl 7.40 andl 13.52 andl 13.16 movb 6.35 mull 6.10 Leal 9.15 roll 10.14 
shrl 4.11 shrl 5.85 shrl 6.25 incl 6.18 pushl 4.81 Roll 8.88 leal 5.77 
decl 2.26 rorl 3.29 Rorl 3.71 nop 5.96 popl 2.44 Andl 4.75 rorl 5.64 
jnz 2.16 roll 1.83 Roll 1.11 xorl 1.82 jnz 2.24 Movb 4.24 andl 4.39 
incl 1.65 pushl 0.75 pushl 1.05 cmpl 1.43 subl 1.95 Orl 2.31 orl 2.86 
xorb 1.65 popl 0.74 popl 1.04 popl 1.13 xorl 1.34 Addb 1.57 movb 2.25 
pushl 0.93 addl 0.37 Ret 0.26 pushl 1.08 cmpl 1.29 Pushl 1.21 bswap 1.06 
Total 94.52   98.53   98.63   93.75   89.78   91.91   94.36 

new instructions to replace a series of instructions for a 
basic operation. For instance, MD5 and SHA-1 use a lot 
of logical operations, which take three inputs and 
generate one output. Figure 4 shows some of the 
examples. All the operations are simple functions like 
AND and XOR. However since logical instructions take 
only two operands, these operations take at least two 
instructions like (b). For (a) and other operations, many 
more instructions are needed. In addition, since these 
operations can only employ the limited set of x86 
registers, this series of computations also introduces 
several move operations to save the data to memory and 
fetch it back. To avoid these overheads, a single 
instruction that allows for three operands can replace 
these series of operations. Another approach is to 
continue to use two operands but require larger registers 
(like MMX registers). One 128-bit MMX register can 
contain multiple 32-bit or 64-bit data and therefore can 
implicitly represent more than two operands.  
 
 X Y Z 

xor 
and 

xor 

(a) 

xor 

xor 

X Y Z

(b)  
Figure 4. Basic logical operations in MD5 and SHA1 

 
(2) Hardware support can be added to perform some 

crypto operations at a higher level. For instance, there 
are a lot of table lookup operations in AES and 
DES/3DES. Figure 5 shows hardware support that can 
be used to perform one round in AES algorithm. S0 to 
S3 and T0 to T3 are the four inputs and outputs 
respectively. Te0 to Te3 are the four tables that contain 
constant values. KS is the key schedule. As described in 

the previous section, each round consists of four basic 
operations. As shown in the figure, in the first basic 
operation (in solid lines indicated by ‘0’), the first byte 
from S0 is indexed to table Te0, the second byte from 
S1 is indexed to table Te1, and so on. The four values 
from the four tables are XORed with the corresponding 
key value from the key schedule. This results in the first 
output (T0) for this round. In the next basic operation 
(in dashed lines indicated by ‘1’), the fourth byte from 
S0 is indexed to table Te3, the first byte from S1 is 
indexed to table Te0, and so on. The next two outputs 
are generated in a similar way. Note that these four 
basic operations have no dependency on each other, 
therefore can be performed in parallel completely. To 
drive this hardware unit, a new instruction needs to be 
added after assigning the four input registers. Since T0 
~ T3 become the inputs for the next round, this 
hardware unit can be extended to perform all rounds 
and return the final four outputs.  
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Figure 5. Hardware support for AES table lookup 

 

3) Crypto engines can be used at an even higher level 
than the hardware unit. It can support a complete 
encryption algorithm. For instance, a crypto engine that 
supports AES can take a string as its input and 



 

generates the encrypted data as the output. In addition, 
crypto engines can run asynchronously with the CPU, 
so that the throughput can be improved significantly. 
Furthermore, several crypto units within one engine can 
run in parallel in the bulk transfer phase. For instance, 
when the web server tries to send a 1K bytes data to the 
client using AES encryption, the data actually sent is an 
encrypted fragment that consists of the 1K bytes data, 
the MAC value and some padding (to make the 
fragment a multiple of the block length). What the 
server does is that it first calculates the MAC of the 
data, and then performs AES encryption on the 
fragment. With the support of a crypto engine that 
includes an AES encryption unit and a hashing unit, the 
AES encryption and the MAC calculation can be 
performed in parallel. As shown in Figure 6, the control 
unit in the engine fetches data from the memory (via 
reading descriptors set by the user program) and feed it 
into the AES encryption unit as well as the hashing 
unit. The AES encryption unit generates the first part of 
the fragment. When the hashing unit finishes the MAC 
calculation, the MAC value and the padding are feed 
into the AES encryption unit and generate the last part 
of the fragment.  

 

 
 

Figure 6.  Pipelining/parallelism in crypto engines 
 

7. Conclusions and Future Work 
 

In this paper, we analyzed the SSL performance in 
secure web transactions. It turns out that about 70% of 
the total processing time of an HTTPS transaction is 
spent in SSL processing. As a result, a more detailed 
understanding of the key overheads within SSL 
processing was required. By presenting a detailed 
description of the anatomy of SSL processing, we 
showed that the major overhead incurred during SSL 
processing lies in the session negotiation phase when 
small amount of data are transferred (as in banking 
transactions).  On the other hand, when the data 
exchanged in the session crosses over 32K bytes, the 
bulk data encryption phase becomes important. We then 
showed the breakdown of time spent on the 
cryptographic operations that were classified as 
asymmetric encryption algorithms, symmetric 
encryption algorithms and hash functions.  

Our final contribution was a more detailed analysis 
of the commonly used crypto algorithms to determine 
the time consuming operations (table lookups, 
permutations, logical operations, etc) occupies a 
significant fraction of the execution time. We presented 
the architectural characteristics of crypto operations by 
analyzing CPI, path length and frequently used 
instructions. Finally we presented our inferences on 
ISA/hardware support to improve the SSL processing. 
Our future work involves investigating the design and 
performance of architectural support for security 
protocols further. 
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