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Abstract—L7-filter is a significant deep packet inspection (DPI)
extension to Netfilter in Linux’s QoS framework. It classifies net-
work traffic based on information hidden in the packet payload.
Although the computationally intensive payload classification can
be accelerated with multiple processors, the default OS scheduler
is oblivious to both the software characteristics and the underlying
multicore architecture. In this paper, we present a parallelized
L7-filter algorithm and an efficient scheduler technique for mul-
ticore servers. Our multithreaded L7-filter algorithm can process
the incoming packets on multiple servers boosting the throughput
tremendously. Our scheduling algorithm is based on Highest
Random Weight (HRW), which maintains the connection locality
for the incoming traffic, but only guarantees load balance at the
connection level. We present an Adapted Highest Random Weight
(AHRW) algorithm that enhances HRW by applying packet-level
load balancing with an additional feedback vector corresponding
to the queue length at each processor. We further introduce
a Hierarchical AHRW (AHRW-tree) algorithm that considers
characteristics of the multicore architecture such as cache and
hardware topology by developing a hash tree architecture. The
algorithm reduces the scheduling overhead to instead
of and produces a better balance between locality and
load balancing. Results show that the AHRW-tree scheduler can
improve the L7-filter throughput by about 50% on a Sun-Ni-
agara-2-based server compared to a connection locality-based
scheduler. Although extensively tested for L7-filter traces, our
technique is applicable to many other packet processing applica-
tions, where connection locality and load balancing are important
while executing on multiple processors. With these speedups
and inherent software flexibility, our design and implementation
provide a cost-effective alternative to the traffic monitoring and
filtering ASICs.

Index Terms—Cache topology, connection locality, deep packet
inspection (DPI), L7-filter, load balance, multicore processors,
multithreading.
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I. INTRODUCTION

D EEP packet inspection (DPI) is being increasingly
required in network devices to identify and process

sophisticated application-specific network flows. Among much
DPI software, L7-filter is most widely used as an extension
to Netfilter in Linux [1], [10], [11], [14], [20]. It was initially
deployed to control spiraling volumes of P2P traffic, but its use
has widened because of its proven relevancy in a number of
other contexts, including network security, service packaging,
and service management. Despite DPI’s increasing popularity,
research in both academia [14], [20], [32], [35], [40] and
industry [9], [15], [18] has shown that its performance terribly
lags behind wire speed. The emergence of high-speed networks,
such as 10 Gigabit Ethernet (10 GbE), increases the intensity
of network traffic, which further elevates the demand for faster
DPI processing.
Extensive research has been conducted to accelerate DPI

processing using special-purpose hardware, such as Network
Processor [19], [20], FPGA [24], [27], TCAM [23], [28] and
ASIC [3], [7], [8], [14]. While hardware solutions provide
satisfactory performance, software techniques are more flex-
ible and cost-effective. They can adapt easily to changes in
algorithm and application characteristics. Also, development
of hardware including testing, fabrication, and reconfig-
uration is expensive and time-consuming. Some existing
research [20], [32], [38], [40] optimizes signature represen-
tations, i.e., regular expression, for fast and memory-efficient
DPI. However, none of these approaches addresses DPI op-
timization in the context of general-purpose multicore-based
servers, which are being increasingly employed in the main-
stream network devices.
Developing efficient multithreaded programs for efficient use

of multicore servers involves studies in both the software algo-
rithm and the underlying hardware architecture. The design of
the parallelized DPI algorithm should create multiple threads
to explore the intrinsic data sharing in the DPI program and
schedule these threads efficiently considering both architecture
and communication characteristics. Packet processing is a nat-
ural candidate for multiprocessing because abundant packet-
level parallelism is available. However, a multithreaded pro-
gram with necessary synchronization must be designed to take
advantage of this parallelism.
Previous research [1], [3], [10], [11], [14], [20] has demon-

strated that the performance of DPI is bounded by the cost of
pattern matching. We developed a decoupled model to separate
the packet arrival handling from pattern matching and focused
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on optimizing the pattern matching operations at the applica-
tion layer [11]. For L7-filter, the classification of one connection
might require multiple connection buffers, with different num-
bers of packets. Because packets in the same connection share
the packet header information, it is intuitively beneficial to keep
the processing of the same connection on the same processing
unit (PU). Maintaining such connection locality warms up the
cache with reusable packet data, so that future classifications
of the same connection benefit from reusing the shared data.
This results in a cache hit without accessing the memory, which
is an order of magnitude more expensive. Our previous results
showed that this affinity-based multithreading mechanism sig-
nificantly increases performance scalability for the L7-filter on
an Intel Xeon-based server [11].
The benefits of connection locality may, however, be offset

by load imbalance due to network flow characteristics, where
the connections have different number of packets. On highly
threaded hierarchical multicore servers, e.g., Sun Niagara 2 or
Intel Xeon, the accumulative load imbalance further deteriorates
the performance. As shown in Section V, the benefits of connec-
tion locality can be outweighed by load imbalance in this case.
Previous approaches have been proposed to balance the work-
load at the connection level so that each core shares a similar
number of connections [30], [36]. In this realm of work, a ro-
bust hash function called Highest Random Weight (HRW) was
proposed [36], which strikes a balance between locality and con-
nection-level load balancing. Given an object name and a set
of servers, HRW assigns a weight to each server and maps the
request to the server with the maximum weight. HRW is a ro-
bust hash function and was originally proposed to map object
requests to a cluster of servers. However, given the commercial
multicore processors today, the mapping needs to consider the
asymmetrical distribution and topology of cores. Furthermore,
the load balance problem cannot be addressed at the connec-
tion level alone due to the difference in connection length in
L7-filter. The extreme case happens when there are more cores
than connections. Thus, a good load-balanced system should be
able to use all the cores by distributing workload at packet level
instead of connection level, while also trying to maintain the
connection locality.
To strike a balance between connection locality and

packet-level load balancing, we design an Adapted Highest
Random Weight (AHRW) hash scheduling mechanism and
verify our scheduler using real machine measurements. AHRW
enhances HRW by introducing an additional feedback vector
that is multiplied by the weight generated by HRW for each PU.
Our hash adjustment technique follows the heterogeneous ro-
bust hash theory described in a previous work [30] to maintain
the HRW minimum disruption property. This theory guarantees
a good balance between connection locality and load balancing
by going through a recursive computation. However, because
of the high complexity of the computation, we propose and
verify a simplified but effective alternative technique. In our
solution, the HRW weight for each PU is updated directly
based on the runqueue length of each PU. Our results show
that the loss of accuracy is negligible, while the improvement

in performance is significantly enhanced. A similar technique
was adopted to develop an adaptive load balance technique
for URL requests based on processor utilization [19], but
was verified through simulation. Also, designing a feedback
system based on processor utilization is difficult to implement
on a per-packet basis in a real system. Next, we develop a
solution for a hierarchical environment, where the resources on
a multicore server form a virtual “tree” structure. By extending
our scheduler into these tree structures rather than running a
linear scheduling, we can reduce the scheduling overhead from

to , where is the number of scheduling
candidates. The above hierarchical scheduling technique is a
major difference of our contribution compared to the previous
work [13], [19], [30], [36].
We verify our AHRW hash tree scheduler by executing some

real traces on a Sun Niagara 2 server. We show that the system
throughput can be improved by about 50% compared to the
heuristic based on pure connection locality. Although we exper-
iment only with the Niagara 2 machine, our hash tree scheduler
can be extended to different multicore servers with hierarchical
cache locality, such as Intel Xeon servers.
The major contributions of this paper can be summarized as

follows:
• design and implementation a parallelized L7-filter algo-
rithm at the connection and packet levels;

• development of AHRW for L7-filter to strike a balance
between connection locality and packet-level load balance;

• design of a Hierarchical HRW (AHRW-tree) scheduler as
suitable for the underlying multicore architecture with dif-
ferent thread or cache topologies;

• verification the results through actual execution of real
traces on a highly threaded hierarchical multicore server,
i.e., Sun Niagara 2.

The remainder of the paper is organized as follows: In
Section II, we provide background information on DPI
and L7-filter and related work on multicore scheduling. In
Section III, we design a parallelized L7-filter and present the
details of AHRW and its theoretical background. In Section IV,
we provide the enhanced tree version of this schedule, called
AHRW-tree. In Section V, we describe experimental method-
ology based on real traces and implementation on SUNNiagara.
In Section VI, we present the performance measurements and
various sensitivity studies to show the superiority of our de-
sign. In Section VII, we discuss the scope of our scheduler
for general packet processing on other architectures. Finally,
in Section VIII, we conclude the paper and propose future
research directions.

II. RELATED WORK

A. L7-Filter and DPI Optimizations

The intensity of network resource competition increases as
more applications demand higher bandwidth and more com-
puting capability. Traditional packet classification software,
such as Netfilter in Linux, identifies and controls packet flows
based on layer-3 and layer-4 information, i.e., IP addresses
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Fig. 1. L7-filter in OSI model.

and port numbers. Many recent applications, such as P2P and
HTTP, however, hide their port numbers in the payload or
require dynamic allocation for port numbers during connection
establishment. Under such circumstances, DPI plays a key role
in bandwidth management and traffic reshaping. It is increas-
ingly used to augment network security and underpin service
creation and service management tools.
Fig. 1 illustrates the structure of a Linux networking system

with L7-filter in an OSI model. It sits on top of the transport
layer, monitoring network traffic based on protocol features
represented in packet payloads. While Netfilter relies on
iptables to accept/forward/drop incoming packets, L7-filter
further marks all the accepted packets with their protocol IDs.
Potential process/application managers can easily pick up the
packet protocol IDs and reshape the traffic for security and
management concerns.
By matching against signature fields of various protocols,

L7-filter uses GNU regular expression matching to obtain the
protocol type associated with the application layer data in the
packet. Different from signature-based intrusion detection sys-
tems (IDSs), which have thousands of complex network security
regulation sets, signature-based protocol parsing schemes are
comparatively simple with only hundreds of protocol matching
rule sets. They can be easily implemented and deployed in soft-
ware without any specific hardware accelerators. Even then, the
computation cost of the L7-filter software still remains high
for real-time processing of packets [1], [20] in high-bandwidth
networks.
The pattern matching in DPI programs has been studied

extensively at the sequential program level. Major research in
this domain falls into three categories: 1) reducing the alphabet
size [3]; 2) increasing throughput by processing multiple input
characters per clock cycle [14], [20]; and 3) balancing between
the memory bandwidth and memory size requirement [39].
Another direction of the research studies the deployment of
DPI programs, i.e., how to use hardware accelerators. In this
domain, both FPGA [27] and Network Processor [19] solutions
have been proposed to explore the packet-level parallelism in-
side DPI program. For example, [34] proposed a “bit-splitting”

architecture to explore the internal parallelism inside of the
state machines.
However, there is no work on parallel execution of L7-filter

using off-the-shelf multicore processors.

B. Load Balance and Flow-Based Scheduling

Load balance and flow-based packet scheduling are two or-
thogonal directions in packet scheduling because of their in-
herent incompatibility with each other. Since the advent of mul-
ticore-based servers, both techniques have been well studied.
Load balance guarantees no single bottleneck in the multicore
environment andwas recently evaluated using Nash equilibrium
[6] and ranked elections [16] models. As link speed reaches the
multigigabit era, the server is loaded with more simultaneous
connection requests. If all the CPUs on the servers are constantly
saturated, we would not worry about workload imbalance as no
CPU could be idle. However, load balance has been proven to
be a significant problem in network packet scheduling [9], [36].
This is because under most practical circumstances, servers re-
ceive traffic in bursts, i.e., at times, the servers are not fully uti-
lized. In this paper, we choose to discuss how to resolve the load
imbalance issue from theworkload scheduling point of view and
propose a scheduler that uses given resources more efficiently.
The connection-based DPI programs are gaining publicity

in both academic studies [11], [20], [34], [40] and industrial
products [7], [15], [18]. In L7-filter, incoming packets are pre-
processed and then placed in a reassembling buffer. Each con-
nection has a registered entry in the reassembling buffer. A
preprocessed packet is appended to the corresponding connec-
tion entry in the buffer, and the entire new entry triggers the
matching engine for classification. Upon receiving the classifi-
cation result, any further packets of the current connection will
be marked with the matched protocol ID and bypass the classi-
fication engine. If the matching engine cannot find a match, the
classification for this connection will be triggered every time a
new packet of this connection comes in, and this new packet
is reassembled into a new connection buffer. An entry in the
reassembling buffer can hold up to eight packets for each con-
nection. If a connection cannot be classified with eight packets
in the buffer, any further packets for this connection will be ex-
cluded from matching.
As multicore processors have become the de facto server plat-

forms, a recent trend is moving toward the deployment of mul-
tithreaded DPI programs on multicore servers. As we presented
in our previous paper [11], a multithreaded L7-filter program
could achieve a speedup of 7.6 in TCP throughput using an
8-core Intel Xeon server. The reason behind this gain is to main-
tain the connection locality for incoming traffic to benefit from
cache locality. Our research result is in line with the widespread
Receive Side Scaling (RSS) technique implemented in NIC [29]
as well as findings from an Intel Research group [37].
However, this paper explores opportunities to strike a bal-

ance between load balance and connection locality. In addition,
our scheduler provides packet-level load balancing instead of
the traditional connection-level balancing. This is particularly
useful when network traffic follows the “packet train” arrival
pattern, as described in [17].
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C. Hash-Based Packet Scheduling

Hash functions generate independent, uniformly distributed
variables. They provide theoretical load balance over the input
key-value mappings. In the client–server model, hash functions
are a favorable choice to map client-requested objects into
the Web cache [36]. HRW [19], [30], [36] and Toeplitz [29]
hash have been shown to be are very suitable for network
applications.
HRW is a robust hash function and was originally proposed to

map object requests to a cluster of servers [30], [36]. HRW has
been popular in the areas of servers, Web caching, and clustered
digital libraries [10], [17], [30], [36]. Given an object name and
a set of servers, HRW assigns a weight to each server and maps
the request to the server with the maximum weight. Because
connection buffers of the same connection share the same con-
nection ID, HRW guarantees the connection locality when the
object name is represented by the connection ID. The term “ro-
bust” refers to the efficient maintenance of connection locality,
i.e., it requires only a minimum amount of remapping when the
connection locality is relaxed for packet-level load balance.
The major drawback of hash mappings is that they are not

adaptive to real-time performance variation and therefore are
potentially vulnerable to traffic imbalance. In our proposed
scheduler, it takes advantage of the randomness of the HRW
hash, meanwhile adjusting the weight function by a feedback
vector to provide load balance at the packet level. The work
presented in paper [19] is the closest to the scheduler in this
paper. However, our research differs from that paper in that: 1)
we choose a low-overhead feedback metric, runqueue length, to
provide better load balance rather than to poll values from the
hardware counter, which is infeasible to do at a per-packet basis
in a high-speed network; and 2) we design and implement a
hash-tree scheduler that is well suited to work in a hierarchical
general-purpose multicore environment, which is increasingly
popular in server deployment. The architecture of the under-
lying multicore processor is considered while designing our
scheduling algorithm.

III. MULTITHREADED L7-FILTER DESIGN WITH AHRW
SCHEDULER

In this section, we first present the design of a multithreaded
L7-filter that can classify the packets in parallel using a multi-
processor, analyze a robust hash function HRW [30], [36] that
forms the basis of scheduling, and then propose the new hash
function AHRW.

A. Parallelized L7-Filter Algorithm

In order to accelerate the costly pattern matching in L7-filter
as we have discussed in Section II-A, we proposed the first par-
allelized algorithm for L7-filter. This algorithm has been ac-
cepted as an important show case for DPI optimizations using
multicore architecture [4]. Algorithm 1 illustrates the data flow
in the parallelized L7-filter algorithm. In this algorithm, the
original online L7-filter is substituted by a combination of a pre-
processing thread (PT) and a set of matching threads (MTs). The
PT works as a real network stack in the kernel and schedules the
packets. MTs, on the other hand, focus on the classification of

packets. EachMT has a runqueue that carries connection buffers
yet to be classified. The scheduler decides whether an incoming
packet needs to be classified based on current classification re-
sult of its connection. If the connection has not been classified,
the incoming packet will be used to assemble a new connection
buffer for the connection, and the scheduler will schedule the
connection buffer to an MT accordingly.

Algorithm 1: The Multithreaded L7-Filter Algorithm

Specifically, we maintain a connection table (to record clas-
sification status for each connection) and a reassembly buffer
(to save up to eight packets of any given connection) for the
RE matching. It is a stateless matching in the sense that any
connection that has not been classified will be reclassified from
the beginning of the connection buffer, as long as a new packet
of the same connection arrives. Of course, the new packet will
be reassembled to the buffer for the connection. At any point of
processing, a connection can only have one of the three statuses:
1)MATCHED; 2) NO_MATCH; and 3) NO_MATCH_YET. For
any incoming packet, L7-filter first decides the host connection
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based on the 5-tuple of this packet. It is then preprocessed based
on the connection status in one of the following two ways.

For 1) or 2): L7-filter already marks a final result to the
connection. No further action is necessary.
For 3): This packet is appended to the corresponding con-
nection in the assembling buffer, and the new buffer is
placed in the runqueue of an MT.

For both cases, the PT goes back to fetch the next packet from
the trace file only after the current packet has been preprocessed.
On the other hand, the MT keeps matching the connection in its
runqueue until the queue is empty. If the number of packets in
a connection exceeds a predefined threshold before the connec-
tion is classified, the connection is marked as “NO_MATCH.”
Note that the first packets in the connection buffer can be clas-
sified multiple times, which increases processing in MT and has
impact to the measured throughput. As a result, the throughput
with stateful matching, i.e., matching first packet of a connec-
tion only once and record the matching state, could probably be
higher. However, the additional data structure for storing tem-
porary matching states is not only a separate complicated issue
to discuss; it might introduce higher memory requirement.
Interested readers can refer to our previous paper [11] for

more details of the parallelized algorithm.

B. Baseline Robust Hash Function HRW

To measure the maintenance of connection locality, let us de-
fine disruption coefficient (DC) as the fraction of updated map-
pings, i.e., the fraction of packets that loses connection locality.
The reasoning behind minimum remapping in HRW is to re-
duce the DC by dividing the server cluster into small partitions.
For simple modulo-M hash functions, the entire mapping set
needs to be changed whenever the number of servers changes,
and hence the DC value is close to one. However, we partition
the servers (hash space) into sets, assuming that these sets are
contiguous and of equal size.
The original partitions are

Without loss of generality, assume that the hash space is the
interval [0, 1]. Now, suppose we add a server to the space, in-
creasing the number of servers to .
The new partitions are

The overlapping intervals represent a fraction of (1-DC) new
mappings that agree with the original mappings

Adding the lengths of these intervals gives

Therefore, by partitioning the hash space, the DC is reduced
by almost half. In HRW, each server ID is combined with the
requested object for a mapping to the hash space, further re-
ducing the DC value. Interested readers may find a formal proof
in paper [30].
In addition to minimum DC, i.e., efficient maintenance of

the connection locality, HRW also provides load balance at the
connection level. However, in case of traffic-to-PU mappings,
coarse-grained load balance at the connection level is not
enough to guarantee system performance. Take the following
extreme example. Assume that the incoming packets are dis-
tributed over connections and with probabilities and
, respectively. Under the original HRW, only two PUs can be

used to process and , leaving the other six PUs idle. Again,
and are not the same, or the connections do not contain

the same number of packets for L7-filter, causing further load
imbalance. It is necessary to relax the connection locality
requirement to provide packet-level load balance so that no PU
is idling while runqueues of other PUs are nonempty.

C. Adaptive HRW Theory

In [30], the author addressed the modification of the HRW
hashing schemes so as to map connection buffers to various
servers with the desired target probabilities. We can directly
apply that theory to our packet scheduler on servers based on
multicore chips, where packets correspond to URL requests. Let

be given arbitrary target probabilities for each PU for
and . If a PU has target probability ,

we desire the fraction of connection buffers in the L7-filter to
be mapped to it.
In the robust hashing scheme, for a given connection

buffer , we calculate a hash value for each of
PUs. We then map the connection buffer to the PU that has
the highest value. This scheme will map of the connec-
tion buffers to each PU. To deal with target probabilities, we
introduce multipliers and multiply each with the
respective and map the connection buffer to the PU that has
the largest value. If the multipliers are different, the
fractions of connection buffer routed to the PU will no longer
be the same.
Given the capacity/probability for PU , the weight multi-

plier can be derived recursively as follows:

(1)

Then, the robust hash algorithm with multipliers
will route the fraction of the connection buffers to the th PU
for . Interested readers can find a formal proof
of (1) in a previous paper [30].
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The question now is how to determine to reflect different
probability of each PU. Recall that the goal of adaptive sched-
uling is to relax connection locality for better load balancing.
Therefore, an intuitive way to incorporate “load” information
into the multiplier is to measure the CPU utilization, as done
in a previous work [19]. However, such a technique is compli-
cated and costly to implement and needs a syscall mechanism.
Rather, we choose the runqueue length as the feedback metric
because it is based on the lightweight data structure in the ap-
plication layer. Our method is in line with [13], which applies
the runqueue metrics for many adaptive scheduling algorithms.
Note that , so we need to get a fraction of the mea-
surement results for each node. In case of the runqueue metrics,
we need to calculate the ratio between the runqueue length of a
node over the total runqueue length of all nodes and use that as
the .
This computation is very intensive on a per-packet basis.

When we feed real-time measurement results for and calcu-
late the corresponding for each server, the scheduler stalls at
the iterative update process. Hence, we propose an alternative
feedback mechanism that relaxes the influence vector accuracy,
but significantly reduces the scheduler overhead. As our result
later shows, our simplified AHRW scheme achieves compa-
rable performance in terms of load balance and throughput to
the theoretical derivation.

D. AHRW Scheduler

We introduce a multiplier vector as an adjustment to the orig-
inal HRW. The new AHRW has properties to maintain the con-
nection locality and only relaxes it for packet-level load balance.
Before starting to discuss the validity of AHRW, let us recall the
scheduling requirement for L7-filter. From Section III, we know
that an incoming packet is first “preprocessed” in the connection
reassembly buffer based on its 4-tuple (Source IP, Destination
IP, Source port #, Destination port #) information. Therefore,
the output of preprocessing, which is also the input to the sched-
uler, is in the form of a connection buffer, distinguished by the
connection ID. At any given point, there could be multiple con-
nection buffers for the same connection because classification
for some connection requires multiple packets, leading to mul-
tiple connection buffers of different sizes. The scheduler should
evenly distribute the connection buffers over the available PU
resources and put as many connection buffers with the same
connection ID to the same PU as possible. This will preserve
connection locality to reduce packet reordering and increase the
reuse of shared packet data in the cache. We present the AHRW
hash function as follows.
Adaptive HRW Hash : Let

be the original HRW hash function
, where is the set of possible identifier vectors,

i.e., connection IDs; is the ID of a PU; and is the
number of PUs. Here is a pseudorandom function that gener-
ates a random variable in with uniform distribu-
tion for each incoming connection buffer with identifier vector

and the PU ID . We denote as the ratio

between the minimum runqueue length of all the PUs and the
runqueue length of PU at the point of scheduling. Then

where .
As we discussed in Section III-B, the theoretical multiplier

based on runqueue length should be derived from the recursive
algorithm in (1), where

s.t.

The AHRW hash function always reduces the weight on the
PU whose runqueue length is greater than the minimum run-
queue length. The weight adjustment becomes more aggres-
sive as the runqueue length difference increases. When ,
the current PU has the shortest runqueue length, the AHRW
function falls back to the traditional HRW. When the runqueue
length of is 0, we set . In this case, is idle, and it
should be assigned the original HRW weight. Thus, the connec-
tion locality will not be sacrificed.
Scheduler :

For any given connection buffer, the scheduler decision per-
forms load balance at the packet level by relaxing connection
locality. We apply adaptations to all the PUs rather than a subset
of them to guarantee fairness. The AHRW-based scheduler pos-
sesses the following properties:
Optimized Connection Locality: Connection buffers with the

same connection ID are initially scheduled to the same PU. Then
the runqueue length ratio is applied by the scheduler. The
connection locality maintenance is only affected to a minimum
extent, i.e., although the generated weight for each PU changes,
the selection of the maximum weight PU is affected only when
necessary. Note that connection locality and the DC value are
directly related: maintaining perfect connection locality as de-
fined in our model. It is equivalent to the case when .
Because it is impossible to maintain perfect connection locality
while applying a feedback system, we only need to justify that
the relaxation coefficient DC is minimal for all the connections.
When , the AHRW falls back to the original HRW, whose
property of minimal DC value is proved in [36]. In [19], the au-
thors proved that for a single constant multiplier , the minimal
DC property holds true for an adjustment to the original
HRW weight. Because our adjustment is a dynamic process, we
expect queue lengths to be similar to achieve load balance. As
a result, gradually approximates the value 1 after the system
becomes stabilized. When , our AHRW scheduler
also possesses the minimum DC property.
Load Balance: If necessary, the scheduler relaxes the con-

nection locality by applying the runqueue length ratio . It is
necessary to discuss the load balance at both the coarse-grained
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Fig. 2. Hierarchy of PUs on a Sun Niagara 2 chip. Each of the eight cores (C)
on chip contains two pipelines (P), with four threads (T) in each pipeline. The
solid arrows represent a scheduler-selected path.

and fine-grained levels. For the coarse-grained connection-level
load balance, we simply need to consider the original HRW. The
original HRW hash function is a pseudorandom function that
generates a random variable in with independent
uniform distribution. The load balance at the connection level
is intuitively proved. For the fine-grained packet-level load bal-
ance, we should consider the impact of . At the conceptual
level, fixes the load imbalance caused by HRW to maintain
the connection locality, i.e., minimum DC. Thus, hash func-
tion provides better load balance on top of . As we pointed
out in the previous proof, the value of gradually approxi-
mates 1 after system warmup. If is a constant multiplier, then

generates approximately random
variables that are independent and uniformly distributed over

. Thus, we can see AHRW as a theoretical
load-balanced mapping model when approximates to 1.

IV. HIERARCHICAL AHRW HASH-TREE SCHEDULER
(AHRW-TREE)

Although the proposed AHRW-based scheduler provides
load balance and connection locality, it does not exploit the
architectural locality. For example, the communication time
between two threads that do not share the same cache will
be much higher compared to when they share a cache. Also,
the AHRW scheduler requires a nonnegligible amount of
scheduling overhead, which delays the DPI processing and
potentially causes undesirable packet drops. The mainstream
multicore servers usually possess extensive parallelization and
sharing of resources that naturally form a hierarchical structure.
The highly threaded multicore chip Sun Niagara 2 usually has
multiple hardware threads organized hierarchically, forming a
core-pipeline-thread architecture, as shown in Fig. 2. Similarly,
the Xeon server can be represented as a tree consisting of L2
caches at intermediate level and cores at the leaf level. Thus,
a scheduler based on a blindly linear hash for all the PUs is
not only inefficient due to the large candidate pool, but also
unsuitable for a hierarchical multicore server due to the work-
load imbalance at each level of the parallelization. The theory
behind the AHRW-tree scheduler is that traversal through a tree
structure will guide the processing to the proper core, where the
locality can be exploited. Also, the scheduling time is bounded
by the depth of the tree (logarithmic), which is much shorter
compared to the number of leaf nodes as in a linear search.

A. AHRW-Tree Scheduler Design

Hash-Tree Scheduler :

Given a hierarchical multicore architecture, we can apply the
AHRW hash scheduler repeatedly along the traversal of the tree
hierarchy. For nodes at the same depth of the tree, we can pick an
internal node by the AHRW scheduler at that depth and continue
the traversal from that node. The ultimate goal of the hash-tree
scheduler is to select a candidate PU among the leave nodes by
traversing through the tree

As an example, for any given connection buffer and the SUN
Niagara architecture, the hash-tree scheduler first picks a core
with the maximum weight generated by the AHRW at the core
level. Then, we apply the AHRW at the pipeline level for the
selected core and pick a pipeline . Finally, at the thread
level, on the selected pipeline , the AHRW picks the desired
thread with the maximum weight. We can use a three-di-
mensional array indexed by the core ID, pipeline ID, and thread
ID, respectively. This data structure clearly manages the internal
hierarchical relationship between each PU.
The properties of connection locality and packet-level load

balance hold true at each level in the tree because the corre-
sponding hash functions at each level are the same as the linear
case. In addition to these two properties, the hash-tree scheduler
also provides the following benefit.
Reduced Computation Cost: Suppose the complexity of

HRW hash and the adjustment ratio computation is a con-
stant . The complexity of the original linear AHRW hash
scheduler is for connection buffers and
PUs. On the other hand, the hash-tree scheduler selects a PU
by a three-level tree traversal. Thus, with the same denotation,
the complexity is reduced to . Note that the
number of PUs could be large if the user defines more
threads (virtual PUs) than the number of physical PUs. While
the hash space remains the same as , the hash-tree
scheduler reduces the schedule space from to . Thus,
the randomness of the hash function remains the same, but the
size of the adjustment target set is reduced, leading to faster
computation for the adjustments at each layer. In addition, the
hash-tree scheduler essentially uses multiple hashes per key
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input. This behavior not only reduces the possibility of hash
collision, but also progressively improves the effect of load
balance for the overall system performance.
As to this point, we have presented our scheduler in full detail.

Recall that the hash values are used as a baseline to serve our
Markov mesh model. In Section V, we will validate our model
based on the performance measurement of our scheduler.

B. Hash Parameters

The major implementation issue of the AHRW-based
hash-tree scheduler is how to provide a fast computable pseu-
dorandom function . In our experiment, we follow the
definition of HRW hash function proposed in [35] as follows.
The HRW hash function:

where and . is a 31-bit
digest of the object name , and is the ID of the th server in
the cluster. This function generates a pseudorandom weight in
the range . In our case, the object name is the
4-tuple header information of a connection buffer. Each is
represented by a PU ID. In the AHRW-based hash-tree case,
represents the cores, where ; the pipelines, where

; and the hardware threads, where , respectively
for the hash at each level of the tree.

V. EXPERIMENTAL SETUP

A. Trace-Driven Offline Model for Linux L7-Filter Operations

Network traffic in the original L7-filter is captured by Net-
filter, which consists of a set of hooks inside the Linux kernel
that allows kernel modules to register callback functions with
the network stack.
To concentrate on optimizing the pattern matching operation,

we developed an offline trace-driven model in our study. We
chose libnids [22] as a userspace module to read tcpdump trace
files and simulated kernel network stack behaviors in userspace.
In the real world, packet arrival and pattern matching operations
are tightly coupled. However, in our study, we used an offline
trace input to replace the handling of network packet arrival.
Once a packet is processed by libnids, L7-filter classifies the
packet following the steps described in Fig. 3. Packets are fed
into the system at the optimal speed (as in a TCP connection
with no packet drop).
This decoupled model has the following advantages.
1) It frees us from dealing with complex and corner case op-
erations in the lower-layer networking and kernel stacks so
that we can concentrate on optimizing the hotspot pattern
matching operations.

2) It provides repeatable and well-controlled research en-
vironment, enabling testing and validation on various
approaches.

3) It also allows us to simulate and measure L7-filter perfor-
mance on reliable connections without any packet loss or
retransmission.

The baseline userspace sequential L7-filter is of version 0.6
with protocol definition updated by May 19, 2009. Because the

Fig. 3. Trace-driven L7-filter data flow.

original L7-filter was written for Linux OS, we make some
changes in the Makefile and header files to direct the program
to link to the corresponding libraries in Solaris.

B. Traces for the Experiment

In this paper, we adopt the same trace driven model proposed
in [11]. The decoupled model proposed in that work separates
the packet processing from the pattern matching operations at
the application layer. We choose the most recent version 1.23
libnids [22] as the preprocessing component, which parses the
4-tuple information in the incoming packet and places it into the
corresponding entry in the connection reassembling buffer.
In regards to the packet trace, we selected the traces that were

used for L7-filter classification in previous publications [2], [21]
and that we could get hold of. The traces that we selected are
representative of different connection lengths, packet sizes, and
packet rate. Our trace-driven model feeds packets as fast as they
can be processed regardless of the interpacket latency in the
packet trace. Thus, the original packet rate in the trace does not
matter for the evaluation of our scheduler. Our throughput is
determined by the packet processing rate instead of the original
rate of the traces.
We would like to point out here that previous papers on HRW

have only considered synthetic workload and simulated using
a generic multiprocessor model (M/M/m) without considering
any particular application or architecture. We therefore chose
L7-filter as a real application and actually implemented on a
multicore architecture SUN Niagara 2 chip to obtain experi-
mental results.
In our experiment, we used three different packet trace files:

1) a 4-h tcpdump file from the Massachusetts Institute of Tech-
nology, Cambridge (“MIT”) [2], [21], [26]; 2) a tcpdump file
from Tsinghua University, Beijing, China, which records a sec-
tion of 4 min and 19 s Internet traffic (“TU”); and 3) a seg-
mentation of tcpdump from New York Polytechnic University,
New York (“NYP”). The key features of the traces are sum-
marized in Table I. The “Conn. Length” column shows the av-
erage number of packet in a connection. The “Distro. Disparity”
column shows the degree of difference of the number of packets
among different connections. As this value increases, we see the
disparity among the number of packets in the connections varies
more in the trace file.
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TABLE I
KEY FEATURES OF THE TRACE FILES

Fig. 4. (a) Sun Niagara 2 Chip architecture and the parallelism inside each
SPARC core. (b) Scheduler topology in the Niagara 2-Solaris system.

C. Multicore Platform

In the experiments, we used a Sun-Niagara-2-based T5120
server as our testbed. The hierarchical processor architecture
contains eight in-order cores (1.2 GHz). Each of the eight cores
embeds two independent integer pipelines that enable real mul-
tithreading without causing resource contention. Each pipeline
is shared by four hardware threads, totaling 64 hardware threads
in the system. The eight cores are connected to share a 4-MB L2
cache through an 8 8 crossbar switch. Our testbed server in-
stalls 16 GB of 667-MHz DDR2 memory. Fig. 4(a) illustrates
the system architecture of a Sun Niagara 2 processor.
We use Solaris 10 as our default OS. Fig. 4(b) demonstrates

the scheduler topology in the Niagara 2-Solaris system archi-
tecture. The kernel software thread scheduler spreads software
threads first across cores, one thread per core until every core
has one, then two threads per core until every core has two, and
so on. Within each core, the kernel software thread scheduler
balances the software threads onto the eight hardware threads
on the core’s two integer pipelines [31].
However, neither of these two schedulers distributes the

incoming network traffic to the software thread. This kind of
scheduling is defined in the application by the programmer.
A round-robin distribution of the workload to the software
threads is a common and simple default implementation. The
scheduler proposed in this paper belongs to this category. The
hierarchical architecture of the Niagara 2 is a virtual organi-
zation of the software threads. In order to avoid the influence

of the kernel software thread scheduler, we use a system call
(processor_bind) to affinitize each software thread to a hard-
ware thread. By doing this 1-to-1 pinning, we can focus on the
scheduling of workload distribution at the software level.

VI. PERFORMANCE RESULTS

In this section, we present the experimental results using
different schedulers. The performance evaluation verifies the
benefits of the proposed optimizations. In our experiments,
we provide measurements from a real machine rather than
simulators.
We compare the AHRW hash-tree scheduler to the following:

1) pure connection locality technique proposed in [8]; 2) pure
HRW hash function that provides connection locality and load
balance at the connection level; 3) our prototype AHRW sched-
uler, which is more efficient compared to the idea proposed
in [19]; and 4) the hierarchical AHRW-based hash tree sched-
uler (AHRW-tree).
Throughput is a direct reflection of any packet processing

system. We calculate the throughput in our system by dividing
the overall packet length (bytes) by the execution time of our
trace driven model. For system utilizations, we present results
for physical core utilization (using a Perl script “corestat”). We
additionally profile the life of a packet in the system to illustrate
the overhead of scheduling versus the cost of pattern matching.

A. System Throughput for Connection-Based Scheduling

Here, we show that the applicability of a purely connection-
based scheduling technique may vary depending on the par-
ticular multicore architecture. Previously, we have introduced
a connection locality with cache affinity-based scheduler for
L7-filter on a general-purpose Intel Xeon server [11]. We mod-
ified the cache affinity to be replaced by thread affinity, but
observed that the benefits of connection locality are offset by
two major challenges on highly threaded hierarchical multicore
server Sun Niagra 2.
Fig. 5(a) shows the L7-filter system throughput as a function

of the number of threads. We plot results for four existing sched-
uling policies.
1) “pckt os” is the default setup without any optimization.
2) “conn affinity” applies the connection locality and thread
affinity optimizations proposed in [11].

3) “conn os” substitutes the thread affinity option to use the
default Solaris kernel software thread scheduler, which re-
distributes the threads to pipelines on different cores to im-
prove load balancing. This is because two pipelines share
the same core and each core has its own first-level cache.

4) “ideal” is the ideal throughput based on a linear expectation
to the number of independent processing units.

The throughput can only be increased at most by a factor of
10.1 (“conn os” versus “pckt os” ) rather than the
ideal 16 . Note that we conservatively choose 16 to be
the maximum speedup for “ideal” because the 64 threads only
share 16 pipelines. Fig. 5(b) illustrates the imbalanced system
utilization at each level in the Niagara 2 system. The cross on
each vertical bar shows the average utilization (%) at each level
in the core topology; the lines represent the range of peak high
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Fig. 5. L7-filter performance on a Sun Niagara 2 chip. (a) Throughput inefficiency. (b) Workload imbalance at different levels (%).

Fig. 6. System throughput comparison using different schedulers for all the
traces.

and peak low values (%). This observation raises the concern of
load balancing in addition to cache locality.
A highly threaded hierarchical multicore server suffers from

accumulative workload imbalance when connection locality is
applied. The hierarchical Sun Niagara 2 multicore processor
features 64 hardware threads on 16 independent pipelines
across eight SPARC cores. Each pipeline is shared between
four threads, which needs proper distribution of software
threads to balance the workload at the pipeline level. Main-
taining connection locality sacrifices the fairness in workload
scheduling when packet distribution is nonuniform. In an
extreme case, there may be more cores than connections giving
rise to some idle servers. A load-balanced system should be
able to use all the cores by relaxing the connection locality. It
is clear from Fig. 5 a that the Solaris OS (conn os) performs
better than (conn affinity) by considering load balancing
among threads by placing them in appropriate cores because
of its knowledge of the underlying architecture. The problem
is how to balance the tradeoff between the connection locality
and load balance to maximize the throughput.

B. System Throughput for HRW Based Schedulers

Fig. 6 compares the throughput of the baseline connection-
based scheduler and various versions of the HRW scheduler. It
is observed that the AHRW-tree scheduler improves the system
throughput by an average of 50% compared to the connection

locality alone (“conn”) [11], 20% compared to the single-layer
AHRW scheduler (“AHRW”), and 22% compared to the base-
line HRW. We also find that for different traces, the system
throughput increases as the average connection length increases.
This is because L7-filter only processes the first eight packets in
a connection.When the connection length is large, more packets
could be directly marked by L7-filter without going through
pattern matching. Another observation is that the AHRW-tree
scheduler is more efficient for a larger disparity between the
connection distribution and packet distribution. Specifically, we
saw the AHRW andAHRW-tree schedulers have the best results
for the TU trace. Recall in Table I that the number of packets in
each connection in the TU traces varies the most.

C. Life-of-Packet Analysis

Here, we decompose the processing of L7-filter to different
components to study the individual contribution. For the rest
of the paper, unless otherwise noted, we show the results for
only one trace (TU) due to space limit. The execution time for
each experiment is scaled to 100% to better represent the frac-
tional contribution. Note that all the measurements in Figs. 7
and 8 are based on the lifetime of one packet rather than the
complete trace file because of the timing overlap in PT and
MT. While the PT runs the libnids routines, it also dispatches
packets to the proper MT runqueue. In the meantime, the de-
sired MT is also classifying connections in its runqueue in a
first-in–first-out (FIFO)manner. Therefore, it is necessary to use
per-packet profiles to explain the interrelations among different
components in the system. We present the average values ob-
tained from all the three trace files.
Fig. 7 shows the contribution of the major processing com-

ponents. From the point a packet arrives in the system to the
packet being processed, we divide the processing of a packet
into: 1) reading trace file from the disk (“disk I/O”); 2) lib-
nids stack operations (“TCP/IP”); 3) buffer management in-
cluding reassemble packet buffers (“buffer”); 4) scheduling cost
(“scheduler”); and 5) pattern matching (“MT”). We observe that
the overhead of the scheduler is permissible (under 9% on av-
erage), even in the more complicated AHRW hash-tree sched-
uler. The overhead in AHRW hash-tree scheduler is greater than
the single-layer AHRW by only a negligible amount. We also
observe a decreased timeshare ofMT execution timewhenmore
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Fig. 7. Life-of-a-packet analysis for the TU trace.

Fig. 8. Absolute execution time comparison between the scheduler and
matching thread for the TU trace.

optimizations are applied. A large timeshare for MT in Fig. 7
means it either gets more opportunity for connection classifica-
tion, or it sleeps frequently because it runs so fast that its run-
queue is empty very often. Fig. 8 shows that for each packet, it
always takes longer to match than scheduling, which dismisses
the chance of MT sleeping. Therefore, we conclude that the
system distributes more time for pattern matching in MT and
reduces the latency of scheduling stall. This observation is in
line with the throughput results demonstrated in Fig. 6.

D. Scheduler Overhead

Fig. 8 shows the scheduler overhead in terms of the absolute
execution time for a packet. Clearly, each matching thread
runs much longer than the scheduler does, even though the
scheduling time increases as we move from simple scheduling
strategy (connection-based) to complex AHRW-tree scheduler.
Therefore, the reduced MT execution percentage in Fig. 7 is
due to the reduction in MT execution time than the increased
scheduler cost (from 0.49 to 0.57 s). This observation verifies
our theoretical analysis in Section III. The average per-packet
execution time for the MTs is reduced because workloads are
more balanced on the available threads. Also, the execution
time is reduced because of the cache hits and preservation
of locality while allocating threads to the pipelines in the
Sun Niagara architecture. The workload balance also reduces

blocking time by scheduling those connection buffers from
a deeper location in a busy thread to a relatively free thread,
hence increasing the overall system throughput.

E. Load Balance

Fig. 9 verifies that AHRW-tree scheduler provides the best
load balance for all the three traces. The star on each vertical bar
represents the average system utilization, and the vertical bars
represent the range (min-max) of the system utilization. With
AHRW-tree, the load imbalance among all the cores is reduced
from 89% to 7%.As the distribution disparity increases, the ben-
efits of our scheduler become more pronounced. Specifically,
the TU trace, in Fig. 9(b), has the best load balancing among all
the traces. This result shows that our scheduler can efficiently
balance the uneven workload across the multicore platform. An-
other interesting observation is that as the workload becomes
more evenly distributed among the PUs, the system utilization
increases. This is because PUs have less opportunity to be idle in
a more balanced environment. As a result, more PU time is dedi-
cated to the DPI processing, leading to higher system throughput
as presented in Fig. 6.
We also present the runqueue length at the thread level in

Fig. 10 to directly illustrate the changes in workload balance.
As we can see from Fig. 10, it is quite straightforward that
the runqueue length becomes much smoother when our sched-
uling optimizations are applied. Another observation from the
same figure shows the average runqueue length of the thread de-
creases as we further optimize our scheduler. This observation
means the overall matching time is reduced in the system, which
is in line with the observation in Fig. 9.

F. Comparison to Theoretical Adjustment

Recall that, in theory, we should use (1) to derive the weight
on each thread in our scheduler, and its hierarchical heuristic is
a tradeoff between effectiveness and efficiency. In this section,
we compare the cost-effectiveness of AHRW and the theoretical
solution. Again, we only show the results for the TU trace due
to space limit.
In Fig. 11(a), we show that AHRW-tree achieves a 3% im-

provement in system throughput compared to the theoretical ad-
justment using (1). This is quite surprising because the theory
derivation provides a more accurate weight calculation, which
guarantees perfect load balancing. In Fig. 11(b) and (c), we fur-
ther investigate the load balancing and overhead comparison. As
expected, the theoretical method balances the workload better
than our simplified version. However, as we have shown in the
previous section, the AHRW-tree already achieves good load
balancing performance (7% imbalanced workload). Therefore,
this gain from the accurate derivation is negligible. In addition,
when we separate the scheduling time from the normal execu-
tion time for each packet, we find that the scheduler using theo-
retical adjustment incurs 50% more time on the calculation in-
side the scheduler. In conclusion, the AHRW and AHRW-tree
are cost-effective alternatives to the theoretical adjustment for
robust hash algorithms.
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Fig. 9. System utilization (%): (a) MIT; (b) TU; (c) NYP.

Fig. 10. Runqueue length on all the 63 matching threads for the TU trace. Note that thread #0 runs the preprocessing thread exclusively.

Fig. 11. Comparison to theoretical adjustment for the TU trace.

VII. DISCUSSION ON THE SCOPE OF OUR SCHEDULER

In this paper, we proposed a hierarchical scheduler for
L7-filter on a multicore CPU with extensive parallel thread
resources. In this section, we would like to discuss the potential
applicability of the scheduler on other network applications
and other CPU architectures.

A. Applicability to Other Applications

A key observation of scheduling in L7-filter is the interde-
pendency between packets belonging to the same connection.
In addition to the packet headers (source and destination IP
addresses, source and destination port numbers, etc.) that are
shared by all the packets, L7-filter classifies a buffer of packets.
The minimum scheduling unit is not just one packet or one
connection, but a connection buffer filled with several packets.
During the scheduling, the in-flight connections can be sched-
uled to different cores depending on the workload on each core.

Fig. 12 summarizes the multicore scheduling characteristics
of our L7-filter system. It can be interpreted as a generic model
for a multicore scheduler for packet processing—any applica-
tion with a packet-connection interdependency can potentially
be scheduled using our proposed scheduler. All the incoming re-
quest streams are first stored in a global queue in the FIFO order.
Each stream consists of many buffers of packets, which are the
minimal scheduling units and can be scheduled to any core in-
dependently. For each scheduling cycle, the scheduler fetches a
buffer from the FIFO global queue, makes the scheduling deci-
sion, and then dispatches the buffer into the local queue of the
scheduled core for processing.
All streaming applications including multimedia FFmpeg

transcoding falls into this category. Some scheduling tech-
niques of multimedia packets on a workstation cluster were
presented in [13], where the QoS aspects were emphasized.
This paper develops a hash-based scheduling technique consid-
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Fig. 12. Generic model of the scheduling process.

ering the cache and thread locality in a multicore architecture.
Recently, we developed a QoS-based HRW scheduler for
FFmpeg application [12]. Compared to L7-filter, FFmpeg has
the same hierarchy—we just need to substitute “packet buffer”
with “GOP” and “request stream” with “stream”. Each core
runs a transcoding thread, which iteratively fetches a GOP from
its local queue and executes the task. In fact, the technique here
is applicable to any packet processing system.

B. Applicability to Other Architectures

By applying a scheduler at each level of the topology, it is
expected to achieve the global optimal scheduling decision. In
Fig. 2, we have illustrated the hierarchical AHRW scheduler
and how it works on the Sun Niagara 2 CPU. With some minor
changes of the scheduler at each layer, we can easily port our
scheduler onto servers with different CPU architectures. Our
technique is also applicable to a modern multicore CPU that
generally has a hierarchical core/cache topology. For example,
Intel’s Xeon series (Nehalem, Westmere, Sandy Bridge, etc.)
all possess a hierarchical cache topology, although the detailed
architectures could be different for different models. The cache
topology saves hardware area by sharing last-level cache among
different core groups. It also leaves potential optimization op-
portunities to fully utilize the cache topology. We have pre-
sented the results for a QoS-aware hierarchical scheduler on an
Intel Xeon server in a recent paper [12]. Finally, the scheduler
can be extended to any cluster-based multiprocessors, where
the CPUs inside a cluster have much lower communication cost
compared to the intercluster communication. Basically, we are
exploiting the locality in communication while scheduling the
packets of the same connection instead of distributing them
randomly.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we designed a multithreaded L7-filter algorithm
to execute on an off-the-shelf multicore architecture. Our par-
allelized L7-filter design can efficiently explore the resources
on a highly threaded hierarchical multicore server, such as Sun
Niagra 2. We first showed that the benefits of pure connection
locality-based scheduling are offset by load imbalance in the
server. After thorough analysis, we found that the load balance
should be enforced at the packet level rather than connection
level. We proposed an adaptive hash-based scheduler AHRW
using runqueue length to strike a balance between connection
locality and load balancing at the packet level. We also de-
signed a Hierarchical AHRW (HAHRW) scheduler to be ap-
plied recursively in the hierarchical CPU architecture at the
core, the pipeline and the thread level, respectively. The hier-
archical design reduces the scheduling complexity to
from , where is the number of processors. Our exper-
imental results showed that the AHRW-tree scheduler can im-
prove the L7-fitler throughput by about 50% compared to the
existing algorithms. We also described how our scheduler can
be easily extended to other applications and other architectures.
We plan to deploy our L7-filter software on the Cisco Uni-

fied Computing System (UCS). The optimized L7-filter can pro-
vide fast deep packet inspection function in the control plane
of a UCS chassis, where QoS ability is of great importance
for client deployment in virtualization. We believe our design
and implementation can provide insights to the DPI solutions in
networking appliances. In the future, we also plan to design a
generalized hash function considering various communication
topologies.
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