
Architectural Analysis of Cryptographic Applications for Network Processors

Haiyong Xie, Li Zhou, and Laxmi Bhuyan
Department of Computer Science & Engineering

University of California, Riverside
Riverside, CA 92521

yong@cs.ucr.edu

Abstract
Network processors are application specific
programmable processors and will become critical
components of next-generation networking equipment. As
Internet expands exponentially, the need for secure
communication increases very quickly. The performance
of communication applications including packet
processing and cryptographic applications on network
processors thus becomes an important issue of network
processor system design.
In this paper, we compare and analyze the architectural
characteristics of many widespread cryptographic
algorithms and their implementations through simulation
on a MIPS-like architecture. We find that the instruction
mix is different from SPEC95 programs; and that the
average size of basic blocks is 2~3 times larger than that
of common applications. Only 7% of instructions are
conditional branches and most of them are taken. Most of
the cryptographic applications have an ILP of 8. Most of
the applications have small kernels of less than 16KB.
Memory system has much less important effect on the
overall performance. We find that only a small direct-map
instruction cache and data cache are needed to achieve
comparable performance. Cache replacement strategy is
not important to the overall performance. The results in
this paper are helpful to the design of network processors.

1. Introduction

As Internet expands exponentially, the need for secure
communication and electronic commerce increases very
quickly. The Internet has been used as a trusted medium,
which made cryptography a crucial component of modern
information infrastructure. A collection of cryptography
applications such as secure IP (IPSEC) and virtual private
networks (VPNs) has been widely deployed in both
routers and end systems. This trend will further emphasize

the importance of cryptographic applications among all
types of communication. Security related applications are
all computational intensive applications that can consume
as much as 95 percent of an application server’s
processing capacity [10]. As the demands for and
deployment of secure communication grow, cryptographic
processing may become a bottleneck to the system
performance.

On the other hand, the emerging Network Processors
(NPs), which are application specific programmable
processors, will become fundamental building blocks of
next generation networking equipments. Network
processors can provide high and flexible packet
processing and have been targeted for diverse application
domains. Network processors are mainly designed and
improved for high and flexible packet processing such as
packet forwarding based on routing tables at wire speed.
However, they are targeted not only for packet processing
applications. As demands for communication security
grow, cryptographic processing becomes another type of
application domain. To make network processors flexible
for diverse application domains, we need study the
architectural requirements of each domain, especially
cryptographic application domain.

The bandwidth of Internet links and the packet
processing power of network processors have been
increasing very quickly in the past few years. To meet the
increasing demands for secure communication, the
network processors have to performance cryptographic
functions at the full speed to achieve comparable
performance of security processing. There have been a lot
of commercial products, the so-called security processors,
for example, HIPP 8154 security processor by Hifn, which
is claimed to support up to a full duplex OC-48 link [7],
BCM 5840 security processor by Broadcom [2], and NSP-
series security processors by NetOctave [12], etc. The
fastest security processor can sustain the wirespeed of
multi-gigabit per second. However, the impact of security

mailto:yong@cs.ucr.edu

related functions performed on the network processors is
still not clearly known to us.

Compared to studies on architectures and applications
of packet processing power provided by network
processors, little research has been conducted on the
architectural requirements of cryptographic applications
for processor designs. Our motivation to study the
cryptographic applications is that we believe that these
computationally intensive applications have great
differences in the architectural properties from other
applications such as packet processing; therefore, the
design of cryptographic application specific processors
should be different from that of packet processing
application specific processors.

In this paper, we consider three types of cryptographic
applications: hash algorithms, and two types of private-
key ciphers, namely, block ciphers and stream ciphers.
The other form of cryptography, public-key ciphers, is not
studied in this paper. Although the advantage of public-
key algorithms is being able to establish a secure
communication channel without an unsafe exchange of
keys, its execution is quite slow which is about 1000 times
slower than that of comparable secret-key algorithms. To
secure the maximum security and high speed [11], public-
key ciphers are mainly used at the start of a secure session
to authenticate communicating parties and to securely
establish and manage a shared private key, while using
secret-key ciphers as the cryptography algorithm for the
remaining session. The performance of public-key ciphers
is critical for very short sessions, while that of private-key
ciphers is critical for longer sessions. We focus our effort
on performance of secret-key ciphers, not on that of the
public-key ciphers.

Through detailed timing simulation and profiling, we
find that cryptographic applications demonstrate quite
different architectural properties as expected. The
architectural properties we studied include instruction set
characteristics, instruction level parallelism (ILP), and
cache performance. We find that the instruction mix of
these applications consists of much higher percentage of
arithmetic instructions (68% in average), lower percentage
of memory reference instructions (23% in average), and
much lower percentage of unconditional and conditional
branch instructions (2% and 7% in average respectively),
compared to SPECint95 [19] and CommBench [20]
benchmarks. Most of the conditional branches are taken.
That facts that the percentage of conditional branch
instructions is very low and that most of the branches are
taken mean that complicated and high precision branch
prediction mechanism will not do much good to the
performance, as is proved by the simulation results. The
average size of basic blocks is 2~3 times larger than that
of SPECint benchmark programs, which means it is
possible to take advantage of instruction level parallelism
much better. We find that most of the cryptographic
applications have an ILP of 8. Compared to instruction

level parallelism, cache architectures have much less
important effect on the overall performance. We find that
all the applications have small kernels of no more than 16
KB, and that a small direct mapped instruction cache and
a similar data cache are enough for most of the
applications to achieve comparable performance. Cache
replacement strategy is not important to the overall
performance.

The above results are helpful to the design of network
processors. Based on the above architectural properties of
the widely used cryptographic applications we have
chosen to study, it seems a good idea to use a standalone
cryptographic application specific chip attached to the
network processor to effectively meet the high throughput
demands in secure communication environments.

The rest of this paper is structured as follows. Section
2 details the selection of cryptographic algorithms.
Section 3 describes the simulation environment and
methodology. Section 4 presents the instruction set
characteristics and instruction mix profile of these
applications. Section 5 describes the computational
complexity of cryptographic programs measured by the
number of cycles spent in processing one byte data.
Section 6 presents the instruction level parallelism
properties. Section 7 shows the branch prediction
properties. Section 8 deals with the cache behavior.
Section 9 summarizes the contributions of this work and
concludes this paper.

2. Selection of Cryptographic Applications

The most important criteria of selection of
cryptographic algorithms and their implementations for
architectural analysis is the representativeness of a wider
application class in the domain of interest. There are two
such application domains: hash algorithms and private-
key ciphers, the latter of which includes block ciphers and
stream ciphers. Cryptographic applications in these
domains are all widely used in Internet applications. The
only exception is AES because it was taken as the
advanced encryption standard not a long time ago. AES
will take place of DES in the future. The second criteria is
the popularity and availability of the algorithms. Widely
used algorithms favor over less used ones. Most of these
cryptographic algorithms are employed in popular
protocol suites such as SSL and applications such as PGP.
With these in mind, we choose 9 algorithms and their
implementations for analysis. Five of them are block
ciphers; two of them are data stream processing; another
two implements hash algorithms.

2.1 Block Ciphers

The majority of the encryption algorithms in use today
are block ciphers. They take blocks of data (typically 64

bits or 128 bits) as input and only encrypt the blocks
separately. The summaries of selected block ciphers are
shown in Table 1.

· AES, which is also named as Rijndael [5], is the
standard of AES [1]. It has a variable key size of 128, 192
or 256 bits. The symmetric and parallel structure of this
algorithm gives implementers a lot of flexibility, and has
not allowed effective cryptanalytic attacks. AES can be
well adapted to a wide range of modern processors such as
Pentium, RISC and parallel processors. AES has been put
into wide use up to now. One of the examples is
DMSEnvoy developed by Distributed Management
System Ltd.
·Blowfish [4] is one of the most secure algorithms
available. It combines a key-dependent S-Boxes, a Feistel
network and a non-invertible F function to generate cipher
text that none existing attacks ever break it. Another
advantage of this algorithm is its simplicity to implement.
· 3DES [6] achieves a high level of security by
encrypting the data three times using DES with three
different, unrelated keys. Therefore, 3DES use a larger
size of key to encrypt than that of DES. The larger the key,
the harder the cipher can be broken.
·IDEA [8] is generally regarded as one of the best and
the most secure block ciphers available to the public today.
It uses 128-bit keys and operates on 64-bit data blocks.
Another reason for us to select IDEA is that it is, on
average, much faster than many other ciphers.
·RC6 [15] is an AES candidate designed by Ronald
Rivest. It operates on 128-bit blocks and can accept keys
of variable length. RC6 is a secure, compact and simple
block cipher. It offers good performance and considerable
flexibility.

Table 1. Selection of block ciphers
 Designer Key

Length
(bits)

Block
Size
(bytes)

Application
Example

AES J. Daemen,
V. Rijmen

128, 192
or 256

16 DMSEnvoy

Blowfish B. Schneier <=448 8 Nortron
Utilities

3DES D. Coppersmith 168 8 SSL, SSH
IDEA X. Lai,

J. Massey
128 8 PGP, SSH,

SSL
RC6 R. Rivest,

M. Robshaw,
et al

128,192,
or 256

16 AES
candidate

2.2 Stream Ciphers

Compared with block ciphers, stream ciphers take data
of variable length as operation objects. They use random
numbers as the keys, which are combined with the
plaintext to generate the cipher text. The better the keys
are randomly generated, the more secure the stream cipher

is. The summaries of selected stream ciphers are presented
in Table 2.
·RC4 [18] is a variable key-size (up to 2048 bits) stream
cipher developed by Ron Rivest for RSA Data Security,
Inc. The algorithm is very fast. Its security is unknown,
but breaking it does not seem trivial either. Because of its
speed, it may have uses in certain applications such as
Lotus Notes and Oracle Secure SQL.
· SEAL [17] is probably the fastest secure cipher
available. Although it uses SHA1 in the key setup process,
requiring several kilobytes of space and very intensive
computation, it only needs five operations per byte to
generate the key stream. The main application for SEAL
is disk encryption and similar applications where data
must be read from the middle of a cipher text stream.

Table 2. Selection of stream ciphers
 Designer Key Length (bits) Application

Example
RC4 R. Rivest Minimum 8,

maximum 2048,
multiple of 8 bits;
default 128 bits

SSL

SEAL P. Rogaway Variable,
default 160

Disk
encryption

2.3 Hash Algorithms

Table 3 gives the summaries of selected hash
algorithms.
·MD5 [16] is an accepted standard for message digest. It
generates an output of 128-bit message digest of the input.
It is conjectured that it is computationally infeasible to
produce two messages having the same message digest.
The MD5 algorithm is commonly used for digital
signature applications, where a large file must be
"compressed" in a secure manner before being encrypted
with a private key under a public-key cryptosystem. MD5
is much more reliable than checksum and many other
commonly used methods.
·SHA1 [9] is specified within the Secure Hash Standard
(SHS) for using with Digital Signature Standard (DSS). It
has a greater hash size than MD5, so it is more secure. It
generates 160-bit digest, which is large enough to protect
against “birthday” attacks.

Table 3. Selection of hash functions
 Designer Block

Size
(bits)

Digest
Size
(bits)

Output
Size
(bits)

Application
Example

MD5 R. Rivest 512 128 128 digital
signature

SHA1 U.S. National
Security
Agency

512 160 160 digital
signature

3. Methodology

What we focus on in this paper is the generalized
architectural properties of the selected cryptography
applications that are applicable to all network processor
architectures. To study the architectural characteristics of
these applications, we port and run them in the execution
driven simulator, SimpleScalar [3]. The SimpleScalar tool
set is a suite of publicly available simulation tools that
provides fast, flexible, and accurate simulation of modern
processors that implement the SimpleScalar architecture,
which is a close derivative of the MIPS architecture [14].

The reasons we choose SimpleScalar tool set, version
2.0, as the simulation environment include the problems
with measurement and unavailability of simulators
designed for network processors specifically. We can only
get very limited information from measurement because
we are unable to verify the architectures to see the
corresponding performance. We need such a simulation
environment as SimpleScalar in which we can verify
various architectural parameters such as the number of
function units, cache sizes, and branch prediction
mechanisms, etc. On the other hand, the unavailability of
simulators designed for network processors specifically
make us unavoidably resort to such simulators as designed
for general-purpose processor architectures. However, we
are able to obtain most of the architectural features for the
applications even with SimpleScalar which simulates a
close derivative of MIPS architecture, although MIPS
architecture is quite different from most of network
processors.

By means of simulation, we obtain such characteristics
as instruction level parallelism, instruction mix profile,
and cache performance for the applications as a function
of various architectural parameters. The C compiler used
is gcc 2.6.3 (optimization level O2) coming with
SimpleScalar. The O2 optimization level is selected for
the resason that the compiler only performs optimizations
that are independent of the target processors and does not
exploit particular architectural features.

The programs are executed with a relatively large text
file of 260 KB as the input. A key of 128 bits is used with
all the block and stream ciphers except 3DES and SEAL,
which are executed with a key of 168 bits and 160 bits
respectively.

The default configuration of the simulated processor
architecture has a L1 instruction cache and a L1 data
cache, a unified L2 cache, an ILP of 4, and bimod as the
branch prediction algorithm. The L1 caches have 4-way
set associative, 32-byte line size, LRU replacement
strategy, and 16KB in size. The unified L2 cache has 4-
way set associative, LRU replacement strategy, 64-byte
line size, and 512KB in size. This L1 and L2 cache
configuration are the same as that of PentiumII
microprocessors.

4. Instruction Set Characteristics

The instruction set characteristics give an indication on
the types of instructions executed and their frequencies in
the programs. Figure 1 presents the instruction mix profile
and frequencies for the implementations of all the selected
algorithms, averages for these algorithms, and SPECint95
programs.

The average instruction mix of these cryptographic
programs shows great differences from that of both
SPECint and CommBench programs. Compared to the
CommBench, the proposed benchmark for network
processors, the selected cryptographic programs
demonstrate quite different instruction mix properties;
The differences between these selected programs and
SPECint programs are even greater, as shown in Figure
1(a).

Figure 1(a) depicts the averages of block ciphers,
stream ciphers, hash algorithms. The following points out
the differences:
(1). The cryptographic programs have much higher
percentage of arithmetic instructions, which is 68% in
average compared to 45% of SPECint95 [13]. They have
23% percentage more arithmetic instructions than general
programs. This fact proves from another aspect that these
cryptographic applications are in nature computational
intensive applications. Cryptographic applications are
computation oriented; therefore, they may consume most
of network processor’s computation power.
(2). The cryptographic programs have much less
percentage of memory reference instructions, which is
23% compared to 35% of SPECint95 programs. This
observation is very interesting. It means that
cryptographic applications are not memory reference
bounded and that we may not need a complicated memory
system with very high hit rate. It may also means that high
memory bandwidth is not necessary for good performance.
By studying the cache behaviors of these programs, we
find that the cache system need not be very complicated
with high hit rate for cryptographic applications. Simple
caches are enough for most of these programs to achieve
comparable good performance, as is described in detail in
the section dealing with cache behaviors.
 (3). The cryptographic programs have much lower
percentage of branch instructions, which is 9% in average
compared to 20% of SPECint95. 2% of these 9% branch
instructions are unconditional instructions compared to a
similar 3% in SPECint95, and the other 7% are
conditional instructions compared to 17% in SPECint95.
The sharp difference in the conditional branch instruction
frequencies makes it unnecessary to employ complicated
branch prediction mechanisms. In the following sections
we also study the branch prediction requirements for these
cryptographic applications.

Instruction Mix Comparison

0%

20%

40%

60%

80%

100%

Average SPECint CommBench

Pe
rc

en
ta

ge
 %

load store uncond. branch cond. branch int computation

(a) Comparisons of average instruction mix

Block Ciphers Instruction Mix

0%

20%
40%

60%
80%

100%

aes blowfish 3des idea rc6

P
e
r
c
e
n
t
a
g
e

%

load store uncond branch cond branch int computation

(b) Block ciphers instruction mix

Stream Ciphers And Hash Algorithms
Instruction Mix

0%

20%

40%

60%

80%

100%

rc4 seal md5 sha

Pe
rc

en
ta

ge
 %

load store uncond branch cond branch int computation

 (c) Stream and hash ciphers instruction mix

Figure 1. Instruction mix characteristics

Figure 1 (b) and (c) show the instruction mix profile
for block ciphers, stream ciphers, and hash algorithms
respectively. The instruction mix profiles of the latter two
kinds of applications are combined into one figure for the
sake of brevity. The following observations are important:
(1). Among all the selected block ciphers, only AES and
3DES have similar percentage of memory reference
instructions (35% and 31% respectively) compared to
SPECint95 programs (35% in average). Thus these two
applications have higher requirements on the L1 data
cache architectures, as is proved by the studies of cache
behaviors.

(2). Among all the selected block ciphers, IDEA has
similar percentage of conditional branch instructions (16%)
compared to SPECint95 programs (17% in average). This
potentially means that IDEA implementation may need
better branch prediction mechanisms with higher hit rate
to achieve good performance. However, in later section
dealing with branch prediction properties, it is learned that
it is still not necessary to employ such mechanisms for
IDEA applications.
(3). All the selected stream ciphers and hash algorithms
have quite different instruction mix properties from
SPECint95. They all have much lower percentage of both
memory reference and branch instructions, and higher
percentage of arithmetic instructions.
(4). Stream ciphers are more similar to hash programs in
terms of instruction mix. Block ciphers are quite different
from both stream ciphers and hash programs. This
observation is proved by later studies in this paper as well.
The above observations are very important to our further
studies in this paper. The following sections deal with the
points mentioned above respectively.

5. Computational Complexity

As deduced in the above section, the cryptographic
programs are all computationally intensive programs. This
section shows the computational complexity measured in
terms of the number of cycles spent per byte of the input
data for each of the selected programs.

Figure 2(a) shows the average computational
complexity per byte for each of the three types of
applications. Block ciphers spend 84 cycles in processing
each byte of input data in average, while stream ciphers
and hash programs spend 20 and 15 cycles respectively.
Stream ciphers and hash programs have more similarities.
Block ciphers are more computationally intensive than
both stream cipher and hash programs.

Figure 2(b) depicts the computational complexity for
each of the block ciphers. We can see that 3DES spends
much more cycles (187 cycles) than all other ciphers in
processing one byte data. This is because 3DES applies
the same data manipulation process three times with three
different keys. The computational complexity is thus
tripled. AES has a relatively high computational
complexity compared to the other 3 ciphers.

Compared to block ciphers, stream ciphers and hash
programs need much less cycles to process one byte data,
as shown in Figure 2(c). Only RC4 spends more than 25
cycles in processing one byte data, while other ciphers
spend around 15 cycles. From this aspect, stream ciphers
are more like hash algorithms rather than block ciphers.

Average Computational Complexity Per
Byte

0

20

40

60

80

100

block stream hash

Cy
cl
es

(a) Average computational complexity

Block Ciphers Computational Complexity

Per Byte

0

50

100

150

200

aes blowfish 3des idea rc6

Cy
cl
es

(b) Block ciphers computational complexity

Stream And Hash Ciphers Computational

Complexity Per Byte

0

5

10

15

20

25

30

rc4 seal md5 sha

C
y
c
l
e
s

(c) Stream and hash ciphers

Figure 2. Computational complexity

From the computational complexity measured by
cycles per byte shown in Figure 2, we are able to derive
the maximal security processing power of this simulated
MIPS architectures. The average number of cycles needed
to process one byte for block cipher, stream cipher, and
hash functions are approximately 80, 20, and 15
respectively. If this simulated MIPS-like CPU runs at
100MHz, then the average security processing power
measured in terms of throughput is 10Mbps, 40Mbps, and
53Mbps respectively. Even if the CPU runs at 1GHz the
processor still cannot sustain a full duplex OC-12 link.
Security related functions requires much more processing
power from the processors than packet processing
functions, therefore, they will become the performance
bottleneck of network processors. The processing power

of a general-purpose processor is not sufficient for a
network processor to sustain the high bandwidth links.
Novel architectures optimized for security functions are
needed in order for the network processors to have
sufficient security processing power.

6. Instruction Level Parallelisms

Instruction level parallelism is a crucial issue for
consideration. We can exploit instruction level
parallelisms to achieve high performance for these
computationally intensive cryptographic applications.

To study the ILP properties of these applications, we
varify the number of ALUs, the size of instruction fetch
queue, and both, to see the separate and combined
contributions of each component. We did not consider the
decoder and issue units and we simply set the number of
these resources to their maximum value so that they do
not have any impact on the performance.

Figure 3 shows the impact of changing the number of
ALUs. The size of instruction fetch queue is set to its
maximum number available to eliminate the affect. It is
observed that the number of instructions that can be
executed in one cycle increases by 64%, 56%, and 85%
for all the three kinds of applications respectively when
the number of ALUs increases from 1 to 2, and by 23%,
18%, and 26% when the number of ALUs increases from
2 to 4. However, with more than 4 ALUs, the number of
instructions executed in one cycle increases only less than
1%.

Average ILP with Different Number of ALUs

0

0.5

1

1.5

2

2.5

1 2 4 8
ALU

I
n
s
t
r
u
c
t
i
o
n

P
e
r

C
y
c
l
e

block
stream
hash

Figure 3. Impact of ALU on average ILP

Figure 4 shows the separate contribution of instruction

fetch queue to the overall performance measured by
instructions executed per cycle. The number of ALUs is
set to its maximum value in order to eliminate the affect
of ALUs. From the figure it is observed that an instruction
fetch queue of size 4 is enough for all cryptographic
applications. The number of instructions executed per
cycle increase by 25%, 20%, and 26% after the size of the
instruction fetch queue changes from 2 to 4. After that, the
performance improvement is less than 3% when we
double the size of the queue.

Figure 5 depicts the overall impact of functional unit
resources available, that is, the number of ALUs and the
size of instruction fetch queue. We use ILP to represent
the changes of functional unit resources, for example, an
ILP of 8 means that the processor has an instruction fetch
queue of size 8 and 8 ALUs available. It has been seen
that the performance measured by the number of
instructions executed per cycles increases linearly as ILP
increases from 1 to 2 to 4. The performance improvement
is 6% when ILP increases from 4 to 8. From these figures
we conclude that an ILP of 4 is enough and the most cost-
effective for achieving the best performance for the
selected cryptographic applications.

Impact of Instruction Fetch Queue on Average ILP

0

0.5

1

1.5

2

2.5

2 4 8 16
IFQ Size

I
n
s
t
r
u
c
t
i
o
n

P
e
r

C
y
c
l
e

block

stream

hash

Figure 4. Impact of IFQ on average ILP

Overall Impact of ILP

0

0.5

1

1.5

2

2.5

1 2 4 8ILP

In
st
ru
ct
io
n
Pe
r

Cy
cl
e

block

stream

hash

 Figure 5. Overall impact of ILP

Another observation is that there exist high data
dependences in the instruction sequences of these
programs.

Figure 6 shows the average size of basic blocks for
these three kinds of applications. Both block and stream
ciphers have large basic blocks of 12 instructions, which
is nearly 2 times larger than that of SPECint95 in average.
Hash programs have very large basic blocks of 60
instructions. Since there are only a small amount of
branch instructions in cryptographic programs, there are
less control dependences in the instruction sequences.
Generally speaking, programs with larger basic blocks
have more instruction level parallelism provided that the

data dependences are not too high. However, this is not
the case with these cryptographic applications. All the
programs have high data dependences in the instruction
sequences that make the best exploitable ILP 4.

Average Basic Block Size

0

10

20

30

40

50

60

70

block stream hash

I
n
s
t
r
u
c
t
i
o
n
s

P
e
r

B
r
a
n
c
h

Figure 6. Average basic block size

7. Branch Prediction

Branch prediction does not seem to be so important as
instruction level parallelisms. One of the reasons has been
stated in Section 4: the percentage of conditional branch
instructions (7% in average) is so low in cryptographic
applications. Even if the miss prediction rate is high, the
effect of this miss prediction is still not so serious to the
overall performance.

Another consideration is what kind of branch
prediction mechanism is best suitable to cryptographic
programs. Figure 7 presents the prediction hit rate of each
prediction mechanism available in the simulator for the
three types of applications.

It can be observed from Figure 7 that most of the
conditional branches are taken, namely, 80%, 98%, and
90% of the branches are taken for block ciphers, stream
ciphers, and hash programs respectively. Therefore,
sophisticated branch prediction mechanisms are not cost-
effective for cryptographic programs. A simple static
branch prediction mechanism with the branches being
predicted always taken is sufficient.

Average Branch Prediction Hit Rate

0

20

40

60

80

100

block stream hash

H
i
t

R
a
t
e

% nottaken

taken

2lev

bimod

comb

Figure 7. Average branch prediction hit rate

8. Cache Behaviors

Cache behaviors are another important consideration
for the design of network processors. However, as found
in Section 4, the memory reference instructions account
for only 23% of all the instructions executed for
cryptographic programs in average. This means that a
relatively simple cache architecture is possibly enough for
most of the security related applications.

We measure the cache performance for each of
selected applications. Separate instruction and data caches
ranging from 4KB to 256KB are simulated.

8.1 L1 Instruction Cache Behaviors

Figure 8 shows the results for instruction cache
behaviors by changing such cache parameters as cache
size, line size, set associative, and replacement strategy.

Figure 8(a) presents the simulation results of cache
performance when the cache size is changed. It can be
seen that 16KB instruction cache is enough to achieve
miss rates less than 0.1% for both block ciphers and hash
programs, and less than 1% for stream ciphers. This figure
also shows that the miss rate of stream ciphers cannot be
reduced even with much larger cache sizes due to
compulsory misses. Compared to benchmark programs of
CommBench, cryptographic programs have larger kernels.
For CommBench programs, the instruction cache miss
rates are lowered to under 0.5% when the instruction
cache is increased to 8KB; however, the miss rates are as
higher as 2% with the same cache size for the selected
programs. Even when the cache size is 16KB, the lowest
miss rate of the programs is still approximately 1%, which
is 4 times higher than that of CommBench programs. The
instruction cache behaviors of cryptographic programs are
much more similar to that of SPECint programs, which
have an average miss rate of 2.2% and 1% for 8KB and
16KB instruction caches respectively.

When the line size of instruction cache is increased,
the miss rate is lowered for all the applications. The line
size increase has greater impact on stream ciphers
compared to that on block and hash ciphers. A line size of
8 bytes is enough for block and hash ciphers to achieve
miss rates less than 0.5%; on the contrary, a line size of 64
bytes can only lower the miss rate to 1.2% for stream
ciphers.

Figure 8 (c) shows that impact of set associative on
miss rate. For most of the applications a cache with direct
mapping is enough to obtain less than 5% miss rate. The
exceptions are AES and RC4. Both of these two
exceptions need 4-way set associative cache to obtain the
next to the best performance.

Figure 8 (d) presents the impacts of cache replacement
strategies. It is not surprising that FIFO has similar
performance to LRU replacement algorithm. This is only

true when the size of the cache is large enough to avoid
the compulsory misses.

Impact of Cache Size on Miss Rate

0

5

10

15

20

4 8 16 32 64 128 256

cache size (KB)

m
i
s
s

r
a
t
e

%

block

stream

hash

(a) Impact of cache size

Impact of Line Size on Miss Rate

0

0.5
1

1.5

2

2.5
3

3.5

4

8 16 32 64
Line Size (Bytes)

mi
ss
 r
at
e
%

block

stream

hash

(b) Impact of line size

Impact of Set Associativity

0
1
2
3
4
5
6
7
8
9

1 2 4 8 16
number of sets

M
i
s
s

R
a
t
e

%

aes blowfish

3des idea

rc6 rc4

seal md5

sha

(c) Impact of set associativity

Impact of Replacement Strategy

0

0.5

1

1.5

block stream hash

Mi
ss
 R
at
e
%

FIFO

LRU

Random

(d) Impact of replacement strategy

Figure 8. Instruction cache behavior

From the four figures we can also find that all the
cryptographic programs have rather small kernels which
are less than 16KB. This observation is important in that
we can easily store the kernels of cryptographic
applications in a reserved area in the cache so that
instruction cache miss will be reduced.

Combining the above four observations into one, we
can safely conclude that a direct-mapped 16KB
instruction cache with line size as 8 bytes is enough for
most of the cryptographic applications to obtain next to
the best performance. The exceptions are AES and RC4,
which need a 4-way instruction cache of 16KB and larger
line size to achieve comparable performance. FIFO
replacement strategy contributes almost the same as LRU;
therefore, sophisticated replacement strategy is not
necessary.

8.2 L1 Data Cache Behaviors

The cryptographic applications have similar data cache
behaviors to instruction cache behaviors. Figure 9 shows
the simulation results by changing cache size, line size, set
associative, and replacement strategy.

Figure 9(a) shows the impact of cache size on the miss
rate. A cache of 8KB can reduce miss rates of block and
hash ciphers to less than 1%; while stream ciphers need
32KB cache to achieve miss rates less than 3%, which is
the best achievable, in average. The miss rate cannot be
reduced any more even with larger cache sizes for stream
ciphers. This is because there exist too many compulsory
misses. Stream ciphers take the input data as continuously
streamed data, which leads to high compulsory miss rate.
Line sizes have different impacts on miss rates for the
three types of applications, as shown in Figure 9(b). A 4-
way 16KB data cache with a line size of 8 bytes has less
than 1% miss rate for hash and most of block ciphers
except 3DES. The larger the line size is, the lower miss
rates for stream ciphers and 3DES are.

The data cache behaviors of the selected cryptographic
programs are more similar to that of CommBench rather
than SPECint benchmark programs. The average data
miss rates are lowered to less than 1% with 8KB data
cache for selected program except block ciphers, while the
miss rates of SPECint and CommBench benchmark
programs (except for ZIP, FRAG, and DRR applications)
are approximately 4% and below 1%, respectively.

Hash programs and most of the block ciphers do not
have high demands for set associativity, as shown in
Figure 9(c). A direct-mapped cache of 16KB is enough to
achieve miss rate lower than 1% for both hash and block
ciphers with 3DES as the only exception. Compulsory
miss dominates cache miss rate of RC4 and 3DES. SEAL
needs 2-way set associative data cache to obtain miss rate
lower than 1%.

Impact of Cache Size on Miss Rate

0

1

2

3

4

5

6

4 8 16 32 64 128 256
cache size (KB)

M
i
s
s

r
a
t
e

(
%
)

block cipher

stream cipher

hash

(a) Impact of cache size

Impact of Line Size

0

5

10

15

20

8 16 32 64
Line Size (Byte)

m
i
s
s

r
a
t
e

block

stream

hash

(b) Impact of line size

Impact of Set Associativity

0

1

2

3

4

5

6

7

1 2 4 8 16
number of sets

M
i
s
s

R
a
t
e

%

aes

blowfish

3des

idea

rc6

rc4

seal

md5

sha

 (c) Impact of set associativity

Impact of Replacement Strategy

0

1

2

3

4

5

6

block stream hash

M
i
s
s

R
a
t
e

%

FIFO

LRU

Random

(c) Impact of replacement strategy
Figure 9. Data cache behavior

Cache replacement strategy does not have greater
impact on the cache miss rate. LRU replacement strategy
can be replaced with FIFO for block and hash ciphers and
Random replacement for stream ciphers without
increasing miss rate by more than 3%.

8.3 L2 Unified Cache Behaviors

We have simulated the L2 unified cache behaviors for
all the applications as well, the results of which are shown
in Figure 10.

Due to most of the memory references are absorbed by
L1 caches, the miss rate of L2 cache is high, as shown in
Figure 10(a). Figure 10(a) indicates that only a very small
L2 cache of 64KB is needed to achieve the lowest miss
rate. L2 cache is also used to decrease the latency of
memory references. Figure 10(b) shows the impact of
different replacement strategies on cache miss rate. All the
three replacement strategies, FIFO, LRU, Random, have
nearly the identical impacts.

Impact of Cache Size

0

10

20

30

40

32 64 128 256 512 1024

cache size (KB)

m
i
s
s

r
a
t
e

%

block stream hash

(a) Impact of cache size

Impact of Replacement Strategy

0

5

10

15

20

25

30

block stream hash

m
i
s
s

r
a
t
e

%

FIFO
LRU
Random

(b) Impact of replacement strategy
Figure 10. L2 unified cache behavior

9. Conclusions

The performance of cryptographic processing has
become a critical factor of good system design as the
Internet expands as the primary medium for secure
communication. In this paper we selected nine widely

used cryptographic programs and analyzed their
architectural demands for network processors. We focus
on the generalized architectural properties of the selected
cryptography applications that are applicable to all
network processor architectures. Impacts of individual
network processor architectures are not considered in this
paper. We take advantage of the SimpleScalar tool set to
simulate the MIPS-like processor architecture to learn the
performance of these selected algorithm implementations.

Security related functions requires much more
processing power from the processors than packet
processing functions. Based on the computational
complexity we have observed, we see that the security
functions would become the performance bottleneck of
network processors with security functions. The
processing power of a general-purpose processor
embedded in a network processor is not sufficient to
sustain the high bandwidth links. Novel architectures
optimized for security functions are needed in order for
the network processors to have sufficient security
processing power.

We studied the architectural properties including
instruction set characteristics, instruction level
parallelisms, branch prediction, and cache behaviors for
these nine programs. We find that the instruction mix of
these programs has major differences from that of
SPECint95 benchmark programs. Cryptographic
algorithm implementations have much higher percentage
of arithmetic instruction, much lower percentage of
branch instructions and memory reference instructions.
Stream ciphers are much more similar to hash ciphers than
to block ciphers in terms of computational complexity.
We find that the average size of basic blocks is 2~3 times
larger than common applications. Most of the branches
are taken. A simple branch prediction with all the
branches being predicted taken is enough for comparable
performance. Most of the cryptographic applications have
an ILP of 8. The high data dependence is the main
limitation to exploit more ILPs. Memory system has much
less important effect on the overall performance. We find
that most of the applications have small kernels of less
than 16KB. We only need a small direct-map instruction
cache and data cache to achieve comparable performance.
Cache replacement strategy is not important to the overall
performance. The results in this paper are helpful to the
design of network processors. It is a good idea to use a
standalone cryptographic application specific chip
multiprocessor attached to the network processor to
effectively meet high throughput demands in secure
communication.

References

[1] Advanced Encryption Standard (AES) Development Effort,
US Government, http://csrc.nist.gov/encryption/aes/

[2] Broadcom Corporation, http://www.broadcom.com/
[3] D. Burger, T. Austin, The SimpleScalar Tool Set, Version
2.0, Technical Report, Computer Science Department,
University of Wisconsin-Madison, June 1997
[4] CryptSoft Technologies, http://www.cryptsoft.com, 2000
[5] J. Daemen, V. Rijmen, AES Proposal: Rijndael,
http://csrc.mist.gov/encryption/aes/round2/AESAlgs/Rijndael,
1999
[6] D. Davis, W. Price, Security for Computer Networks, Wiley,
1989
[7] Hifn, Inc., http://www.hifn.com/
[8] X. Lai, On the Design and Security of Block Ciphers,
Hartung-Gorre Veerlag, 1992
[9] A. Menezes, P. van Oorschot, S. Vanstone, Algorithm 9.53
Secure Hash Algorithm - revised (SHA-1), Handbook of Applied
Cryptography, CRC Press, 1997
[10] M. Merkow, J. Breithaupt, J. Breithaupt, The Complete
Guide to Internet Security, AMACOM, 2000
[11] R. Mollin, An Introduction to Cryptography, CRC Press,
1999
[12] NetOctave, Inc., http://www.netoctave.com/

[13] D. Patterson, J. hennessy, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers, Inc.,
1996
[14] C. Price, MIPS IV Instruction Set, Revision 3.1, MIPS
Technologies, Inc., January 1995
[15] R. Rivest, M. Robshaw, R. Sidney, Y. Yin, The RC6 block
Cipher, RSA Security,
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/RC6.
[16] R. Rivest,The MD5 Message-Digest Algorithm, RFC 1321,
April 1992
[17] P. Rogaway, D. Coppersmith, A Software-Optimized
Encryption Algorithm, Journal of Cryptology, vol. 11, num. 4,
pp. 273-287, 1998.
[18] RSA Security, http://www.rsa.com
[19] Standard Performance Evaluation Corporation, SPEC
CPU95 Version 1.10, August 21, 1995
[20] T. Wolf, M. Franklin, CommBench – A Telecommunication
Benchmark for Network Processors, Proceedings of IEEE
International Symposium on Performance Analysis of Systems
and Software, Austin, TX, Apr. 2000

	Architectural Analysis of Cryptographic Applications for Network Processors
	Abstract
	Table 1. Selection of block ciphers
	Figure 8. Instruction cache behavior

