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Abstract 
Network processors are application specific 
programmable processors and will become critical 
components of next-generation networking equipment. As 
Internet expands exponentially, the need for secure 
communication increases very quickly. The performance 
of communication applications including packet 
processing and cryptographic applications on network 
processors thus becomes an important issue of network 
processor system design.  
In this paper, we compare and analyze the architectural 
characteristics of many widespread cryptographic 
algorithms and their implementations through simulation 
on a MIPS-like architecture. We find that the instruction 
mix is different from SPEC95 programs; and that the 
average size of basic blocks is 2~3 times larger than that 
of common applications. Only 7% of instructions are 
conditional branches and most of them are taken. Most of 
the cryptographic applications have an ILP of 8. Most of 
the applications have small kernels of less than 16KB. 
Memory system has much less important effect on the 
overall performance. We find that only a small direct-map 
instruction cache and data cache are needed to achieve 
comparable performance. Cache replacement strategy is 
not important to the overall performance. The results in 
this paper are helpful to the design of network processors.  
 
 
1. Introduction 
 

As Internet expands exponentially, the need for secure 
communication and electronic commerce increases very 
quickly. The Internet has been used as a trusted medium, 
which made cryptography a crucial component of modern 
information infrastructure. A collection of cryptography 
applications such as secure IP (IPSEC) and virtual private 
networks (VPNs) has been widely deployed in both 
routers and end systems. This trend will further emphasize 

the importance of cryptographic applications among all 
types of communication. Security related applications are 
all computational intensive applications that can consume 
as much as 95 percent of an application server’s 
processing capacity [10]. As the demands for and 
deployment of secure communication grow, cryptographic 
processing may become a bottleneck to the system 
performance. 

On the other hand, the emerging Network Processors 
(NPs), which are application specific programmable 
processors, will become fundamental building blocks of 
next generation networking equipments. Network 
processors can provide high and flexible packet 
processing and have been targeted for diverse application 
domains. Network processors are mainly designed and 
improved for high and flexible packet processing such as 
packet forwarding based on routing tables at wire speed. 
However, they are targeted not only for packet processing 
applications. As demands for communication security 
grow, cryptographic processing becomes another type of 
application domain. To make network processors flexible 
for diverse application domains, we need study the 
architectural requirements of each domain, especially 
cryptographic application domain. 

The bandwidth of Internet links and the packet 
processing power of network processors have been 
increasing very quickly in the past few years. To meet the 
increasing demands for secure communication, the 
network processors have to performance cryptographic 
functions at the full speed to achieve comparable 
performance of security processing. There have been a lot 
of commercial products, the so-called security processors, 
for example, HIPP 8154 security processor by Hifn, which 
is claimed to support up to a full duplex OC-48 link [7], 
BCM 5840 security processor by Broadcom [2], and NSP-
series security processors by NetOctave [12], etc. The 
fastest security processor can sustain the wirespeed of 
multi-gigabit per second. However, the impact of security 
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related functions performed on the network processors is 
still not clearly known to us. 

Compared to studies on architectures and applications 
of packet processing power provided by network 
processors, little research has been conducted on the 
architectural requirements of cryptographic applications 
for processor designs. Our motivation to study the 
cryptographic applications is that we believe that these 
computationally intensive applications have great 
differences in the architectural properties from other 
applications such as packet processing; therefore, the 
design of cryptographic application specific processors 
should be different from that of packet processing 
application specific processors. 

In this paper, we consider three types of cryptographic 
applications: hash algorithms, and two types of private-
key ciphers, namely, block ciphers and stream ciphers. 
The other form of cryptography, public-key ciphers, is not 
studied in this paper. Although the advantage of public-
key algorithms is being able to establish a secure 
communication channel without an unsafe exchange of 
keys, its execution is quite slow which is about 1000 times 
slower than that of comparable secret-key algorithms. To 
secure the maximum security and high speed [11], public-
key ciphers are mainly used at the start of a secure session 
to authenticate communicating parties and to securely 
establish and manage a shared private key, while using 
secret-key ciphers as the cryptography algorithm for the 
remaining session. The performance of public-key ciphers 
is critical for very short sessions, while that of private-key 
ciphers is critical for longer sessions. We focus our effort 
on performance of secret-key ciphers, not on that of the 
public-key ciphers. 

Through detailed timing simulation and profiling, we 
find that cryptographic applications demonstrate quite 
different architectural properties as expected. The 
architectural properties we studied include instruction set 
characteristics, instruction level parallelism (ILP), and 
cache performance. We find that the instruction mix of 
these applications consists of much higher percentage of 
arithmetic instructions (68% in average), lower percentage 
of memory reference instructions (23% in average), and 
much lower percentage of unconditional and conditional 
branch instructions (2% and 7% in average respectively), 
compared to SPECint95 [19] and CommBench [20] 
benchmarks. Most of the conditional branches are taken. 
That facts that the percentage of conditional branch 
instructions is very low and that most of the branches are 
taken mean that complicated and high precision branch 
prediction mechanism will not do much good to the 
performance, as is proved by the simulation results. The 
average size of basic blocks is 2~3 times larger than that 
of SPECint benchmark programs, which means it is 
possible to take advantage of instruction level parallelism 
much better. We find that most of the cryptographic 
applications have an ILP of 8. Compared to instruction 

level parallelism, cache architectures have much less 
important effect on the overall performance. We find that 
all the applications have small kernels of no more than 16 
KB, and that a small direct mapped instruction cache and 
a similar data cache are enough for most of the 
applications to achieve comparable performance. Cache 
replacement strategy is not important to the overall 
performance. 

The above results are helpful to the design of network 
processors. Based on the above architectural properties of 
the widely used cryptographic applications we have 
chosen to study, it seems a good idea to use a standalone 
cryptographic application specific chip attached to the 
network processor to effectively meet the high throughput 
demands in secure communication environments.  

The rest of this paper is structured as follows. Section 
2 details the selection of cryptographic algorithms. 
Section 3 describes the simulation environment and 
methodology. Section 4 presents the instruction set 
characteristics and instruction mix profile of these 
applications. Section 5 describes the computational 
complexity of cryptographic programs measured by the 
number of cycles spent in processing one byte data. 
Section 6 presents the instruction level parallelism 
properties. Section 7 shows the branch prediction 
properties. Section 8 deals with the cache behavior. 
Section 9 summarizes the contributions of this work and 
concludes this paper. 
 
2. Selection of Cryptographic Applications 
 

The most important criteria of selection of 
cryptographic algorithms and their implementations for 
architectural analysis is the representativeness of a wider 
application class in the domain of interest. There are two 
such application domains: hash algorithms and private-
key ciphers, the latter of which includes block ciphers and 
stream ciphers. Cryptographic applications in these 
domains are all widely used in Internet applications. The 
only exception is AES because it was taken as the 
advanced encryption standard not a long time ago. AES 
will take place of DES in the future. The second criteria is 
the popularity and availability of the algorithms. Widely 
used algorithms favor over less used ones. Most of these 
cryptographic algorithms are employed in popular 
protocol suites such as SSL and applications such as PGP. 
With these in mind, we choose 9 algorithms and their 
implementations for analysis. Five of them are block 
ciphers; two of them are data stream processing; another 
two implements hash algorithms. 
 
2.1 Block Ciphers 
 

The majority of the encryption algorithms in use today 
are block ciphers. They take blocks of data (typically 64 



bits or 128 bits) as input and only encrypt the blocks 
separately. The summaries of selected block ciphers are 
shown in Table 1. 
 
· AES, which is also named as Rijndael [5], is the 
standard of AES [1].  It has a variable key size of 128, 192 
or 256 bits. The symmetric and parallel structure of this 
algorithm gives implementers a lot of flexibility, and has 
not allowed effective cryptanalytic attacks. AES can be 
well adapted to a wide range of modern processors such as 
Pentium, RISC and parallel processors. AES has been put 
into wide use up to now. One of the examples is 
DMSEnvoy developed by Distributed Management 
System Ltd. 
·Blowfish [4] is one of the most secure algorithms 
available. It combines a key-dependent S-Boxes, a Feistel 
network and a non-invertible F function to generate cipher 
text that none existing attacks ever break it. Another 
advantage of this algorithm is its simplicity to implement. 
· 3DES [6] achieves a high level of security by 
encrypting the data three times using DES with three 
different, unrelated keys. Therefore, 3DES use a larger 
size of key to encrypt than that of DES. The larger the key, 
the harder the cipher can be broken. 
·IDEA [8] is generally regarded as one of the best and 
the most secure block ciphers available to the public today.  
It uses 128-bit keys and operates on 64-bit data blocks. 
Another reason for us to select IDEA is that it is, on 
average, much faster than many other ciphers. 
·RC6 [15] is an AES candidate designed by Ronald 
Rivest. It operates on 128-bit blocks and can accept keys 
of variable length. RC6 is a secure, compact and simple 
block cipher. It offers good performance and considerable 
flexibility.  

Table 1. Selection of block ciphers 
 Designer Key 

Length 
(bits) 

Block 
Size 
(bytes) 

Application 
Example  

AES J. Daemen,  
V. Rijmen 

128, 192 
or 256  

16 DMSEnvoy 

Blowfish B. Schneier <=448 8 Nortron 
Utilities 

3DES D. Coppersmith 168 8 SSL, SSH 
IDEA X. Lai,  

J. Massey 
128 8 PGP, SSH, 

SSL 
RC6 R. Rivest,  

M. Robshaw,  
et al 

128,192, 
or 256 

16 AES 
candidate 

 
2.2 Stream Ciphers 
 

Compared with block ciphers, stream ciphers take data 
of variable length as operation objects. They use random 
numbers as the keys, which are combined with the 
plaintext to generate the cipher text. The better the keys 
are randomly generated, the more secure the stream cipher 

is. The summaries of selected stream ciphers are presented 
in Table 2. 
·RC4 [18] is a variable key-size (up to 2048 bits) stream 
cipher developed by Ron Rivest for RSA Data Security, 
Inc. The algorithm is very fast. Its security is unknown, 
but breaking it does not seem trivial either. Because of its 
speed, it may have uses in certain applications such as 
Lotus Notes and Oracle Secure SQL.    
· SEAL [17] is probably the fastest secure cipher 
available. Although it uses SHA1 in the key setup process, 
requiring several kilobytes of space and very intensive 
computation, it only needs five operations per byte to 
generate the key stream. The main application for SEAL 
is disk encryption and similar applications where data 
must be read from the middle of a cipher text stream. 
 

Table 2. Selection of stream ciphers 
 Designer Key Length (bits) Application 

Example  
RC4 R. Rivest Minimum 8, 

maximum 2048, 
multiple of 8 bits; 
default 128 bits 

SSL 

SEAL P. Rogaway Variable, 
default 160 

Disk 
encryption 

 
2.3 Hash Algorithms 
 

Table 3 gives the summaries of selected hash 
algorithms. 
·MD5 [16] is an accepted standard for message digest. It 
generates an output of 128-bit message digest of the input. 
It is conjectured that it is computationally infeasible to 
produce two messages having the same message digest. 
The MD5 algorithm is commonly used for digital 
signature applications, where a large file must be 
"compressed" in a secure manner before being encrypted 
with a private key under a public-key cryptosystem. MD5 
is much more reliable than checksum and many other 
commonly used methods. 
·SHA1 [9] is specified within the Secure Hash Standard 
(SHS) for using with Digital Signature Standard (DSS). It 
has a greater hash size than MD5, so it is more secure. It 
generates 160-bit digest, which is large enough to protect 
against “birthday” attacks. 
 

Table 3. Selection of hash functions 
 Designer Block 

Size 
(bits) 

Digest 
Size 
(bits) 

Output 
Size 
(bits) 

Application 
Example  

MD5 R. Rivest 512 128 128 digital 
signature 

SHA1 U.S. National 
Security 
Agency 

512 160 160 digital 
signature 

 



3. Methodology 
 

What we focus on in this paper is the generalized 
architectural properties of the selected cryptography 
applications that are applicable to all network processor 
architectures. To study the architectural characteristics of 
these applications, we port and run them in the execution 
driven simulator, SimpleScalar [3]. The SimpleScalar tool 
set is a suite of publicly available simulation tools that 
provides fast, flexible, and accurate simulation of modern 
processors that implement the SimpleScalar architecture, 
which is a close derivative of the MIPS architecture [14].  

The reasons we choose SimpleScalar tool set, version 
2.0, as the simulation environment include the problems 
with measurement and unavailability of simulators 
designed for network processors specifically. We can only 
get very limited information from measurement because 
we are unable to verify the architectures to see the 
corresponding performance. We need such a simulation 
environment as SimpleScalar in which we can verify 
various architectural parameters such as the number of 
function units, cache sizes, and branch prediction 
mechanisms, etc. On the other hand, the unavailability of 
simulators designed for network processors specifically 
make us unavoidably resort to such simulators as designed 
for general-purpose processor architectures. However, we 
are able to obtain most of the architectural features for the 
applications even with SimpleScalar which simulates a 
close derivative of MIPS architecture, although MIPS 
architecture is quite different from most of network 
processors.  

By means of simulation, we obtain such characteristics 
as instruction level parallelism, instruction mix profile, 
and cache performance for the applications as a function 
of various architectural parameters. The C compiler used 
is gcc 2.6.3 (optimization level O2) coming with 
SimpleScalar. The O2 optimization level is selected for 
the resason that the compiler only performs optimizations 
that are independent of the target processors and does not 
exploit particular architectural features. 

The programs are executed with a relatively large text 
file of 260 KB as the input. A key of 128 bits is used with 
all the block and stream ciphers except 3DES and SEAL, 
which are executed with a key of 168 bits and 160 bits 
respectively. 

The default configuration of the simulated processor 
architecture has a L1 instruction cache and a L1 data 
cache, a unified L2 cache, an ILP of 4, and bimod as the 
branch prediction algorithm. The L1 caches have 4-way 
set associative, 32-byte line size, LRU replacement 
strategy, and 16KB in size. The unified L2 cache has 4-
way set associative, LRU replacement strategy, 64-byte 
line size, and 512KB in size. This L1 and L2 cache 
configuration are the same as that of PentiumII 
microprocessors. 

 
4. Instruction Set Characteristics 
 

The instruction set characteristics give an indication on 
the types of instructions executed and their frequencies in 
the programs. Figure 1 presents the instruction mix profile 
and frequencies for the implementations of all the selected 
algorithms, averages for these algorithms, and SPECint95 
programs. 

The average instruction mix of these cryptographic 
programs shows great differences from that of both 
SPECint and CommBench programs. Compared to the 
CommBench, the proposed benchmark for network 
processors, the selected cryptographic programs 
demonstrate quite different instruction mix properties;  
The differences between these selected programs and 
SPECint programs are even greater, as shown in Figure 
1(a). 

Figure 1(a) depicts the averages of block ciphers, 
stream ciphers, hash algorithms. The following points out 
the differences: 
(1). The cryptographic programs have much higher 
percentage of arithmetic instructions, which is 68% in 
average compared to 45% of SPECint95 [13]. They have 
23% percentage more arithmetic instructions than general 
programs. This fact proves from another aspect that these 
cryptographic applications are in nature computational 
intensive applications. Cryptographic applications are 
computation oriented; therefore, they may consume most 
of network processor’s computation power. 
(2). The cryptographic programs have much less 
percentage of memory reference instructions, which is 
23% compared to 35% of SPECint95 programs. This 
observation is very interesting. It means that 
cryptographic applications are not memory reference 
bounded and that we may not need a complicated memory 
system with very high hit rate. It may also means that high 
memory bandwidth is not necessary for good performance. 
By studying the cache behaviors of these programs, we 
find that the cache system need not be very complicated 
with high hit rate for cryptographic applications. Simple 
caches are enough for most of these programs to achieve 
comparable good performance, as is described in detail in 
the section dealing with cache behaviors. 
 (3). The cryptographic programs have much lower 
percentage of branch instructions, which is 9% in average 
compared to 20% of SPECint95. 2% of these 9% branch 
instructions are unconditional instructions compared to a 
similar 3% in SPECint95, and the other 7% are 
conditional instructions compared to 17% in SPECint95. 
The sharp difference in the conditional branch instruction 
frequencies makes it unnecessary to employ complicated 
branch prediction mechanisms. In the following sections 
we also study the branch prediction requirements for these 
cryptographic applications. 
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(a) Comparisons of average instruction mix 
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 (c) Stream and hash ciphers instruction mix 
 

Figure 1. Instruction mix characteristics 
 

Figure 1 (b) and (c) show the instruction mix profile 
for block ciphers, stream ciphers, and hash algorithms 
respectively. The instruction mix profiles of the latter two 
kinds of applications are combined into one figure for the 
sake of brevity. The following observations are important: 
(1). Among all the selected block ciphers, only AES and 
3DES have similar percentage of memory reference 
instructions (35% and 31% respectively) compared to 
SPECint95 programs (35% in average). Thus these two 
applications have higher requirements on the L1 data 
cache architectures, as is proved by the studies of cache 
behaviors. 

(2). Among all the selected block ciphers, IDEA has 
similar percentage of conditional branch instructions (16%) 
compared to SPECint95 programs (17% in average). This 
potentially means that IDEA implementation may need 
better branch prediction mechanisms with higher hit rate 
to achieve good performance. However, in later section 
dealing with branch prediction properties, it is learned that 
it is still not necessary to employ such mechanisms for 
IDEA applications. 
(3). All the selected stream ciphers and hash algorithms 
have quite different instruction mix properties from 
SPECint95. They all have much lower percentage of both 
memory reference and branch instructions, and higher 
percentage of arithmetic instructions. 
(4). Stream ciphers are more similar to hash programs in 
terms of instruction mix. Block ciphers are quite different 
from both stream ciphers and hash programs. This 
observation is proved by later studies in this paper as well. 
The above observations are very important to our further 
studies in this paper. The following sections deal with the 
points mentioned above respectively. 
 
5. Computational Complexity 
 

As deduced in the above section, the cryptographic 
programs are all computationally intensive programs. This 
section shows the computational complexity measured in 
terms of the number of cycles spent per byte of the input 
data for each of the selected programs. 

Figure 2(a) shows the average computational 
complexity per byte for each of the three types of 
applications. Block ciphers spend 84 cycles in processing 
each byte of input data in average, while stream ciphers 
and hash programs spend 20 and 15 cycles respectively. 
Stream ciphers and hash programs have more similarities. 
Block ciphers are more computationally intensive than 
both stream cipher and hash programs. 

Figure 2(b) depicts the computational complexity for 
each of the block ciphers. We can see that 3DES spends 
much more cycles (187 cycles) than all other ciphers in 
processing one byte data. This is because 3DES applies 
the same data manipulation process three times with three 
different keys. The computational complexity is thus 
tripled. AES has a relatively high computational 
complexity compared to the other 3 ciphers.  

Compared to block ciphers, stream ciphers and hash 
programs need much less cycles to process one byte data, 
as shown in Figure 2(c). Only RC4 spends more than 25 
cycles in processing one byte data, while other ciphers 
spend around 15 cycles. From this aspect, stream ciphers 
are more like hash algorithms rather than block ciphers. 
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(a) Average computational complexity 
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(b) Block ciphers computational complexity 
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(c) Stream and hash ciphers 

Figure 2. Computational complexity 
 

From the computational complexity measured by 
cycles per byte shown in Figure 2, we are able to derive 
the maximal security processing power of this simulated 
MIPS architectures. The average number of cycles needed 
to process one byte for block cipher, stream cipher, and 
hash functions are approximately 80, 20, and 15 
respectively. If this simulated MIPS-like CPU runs at 
100MHz, then the average security processing power 
measured in terms of throughput is 10Mbps, 40Mbps, and 
53Mbps respectively. Even if the CPU runs at 1GHz the 
processor still cannot sustain a full duplex OC-12 link. 
Security related functions requires much more processing 
power from the processors than packet processing 
functions, therefore, they will become the performance 
bottleneck of network processors. The processing power 

of a general-purpose processor is not sufficient for a 
network processor to sustain the high bandwidth links. 
Novel architectures optimized for security functions are 
needed in order for the network processors to have 
sufficient security processing power. 
 
6. Instruction Level Parallelisms 
 

Instruction level parallelism is a crucial issue for 
consideration. We can exploit instruction level 
parallelisms to achieve high performance for these 
computationally intensive cryptographic applications.  

To study the ILP properties of these applications, we 
varify the number of ALUs, the size of instruction fetch 
queue, and both, to see the separate and combined 
contributions of each component. We did not consider the 
decoder and issue units and we simply set the number of 
these resources to their maximum value so that they do 
not have any impact on the performance. 

Figure 3 shows the impact of changing the number of 
ALUs. The size of instruction fetch queue is set to its 
maximum number available to eliminate the affect. It is 
observed that the number of instructions that can be 
executed in one cycle increases by 64%, 56%, and 85% 
for all the three kinds of applications respectively when 
the number of ALUs increases from 1 to 2, and by 23%, 
18%, and 26% when the number of ALUs increases from 
2 to 4. However, with more than 4 ALUs, the number of 
instructions executed in one cycle increases only less than 
1%.  
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Figure 3. Impact of ALU on average ILP 

 
Figure 4 shows the separate contribution of instruction 

fetch queue to the overall performance measured by 
instructions executed per cycle. The number of ALUs is 
set to its maximum value in order to eliminate the affect 
of ALUs. From the figure it is observed that an instruction 
fetch queue of size 4 is enough for all cryptographic 
applications. The number of instructions executed per 
cycle increase by 25%, 20%, and 26% after the size of the 
instruction fetch queue changes from 2 to 4. After that, the 
performance improvement is less than 3% when we 
double the size of the queue. 



Figure 5 depicts the overall impact of functional unit 
resources available, that is, the number of ALUs and the 
size of instruction fetch queue. We use ILP to represent 
the changes of functional unit resources, for example, an 
ILP of 8 means that the processor has an instruction fetch 
queue of size 8 and 8 ALUs available. It has been seen 
that the performance measured by the number of 
instructions executed per cycles increases linearly as ILP 
increases from 1 to 2 to 4. The performance improvement 
is 6% when ILP increases from 4 to 8. From these figures 
we conclude that an ILP of 4 is enough and the most cost-
effective for achieving the best performance for the 
selected cryptographic applications. 
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Figure 4. Impact of IFQ on average ILP 
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 Figure 5. Overall impact of ILP 
 

Another observation is that there exist high data 
dependences in the instruction sequences of these 
programs.  

Figure 6 shows the average size of basic blocks for 
these three kinds of applications. Both block and stream 
ciphers have large basic blocks of 12 instructions, which 
is nearly 2 times larger than that of SPECint95 in average. 
Hash programs have very large basic blocks of 60 
instructions. Since there are only a small amount of 
branch instructions in cryptographic programs, there are 
less control dependences in the instruction sequences. 
Generally speaking, programs with larger basic blocks 
have more instruction level parallelism provided that the 

data dependences are not too high. However, this is not 
the case with these cryptographic applications. All the 
programs have high data dependences in the instruction 
sequences that make the best exploitable ILP 4. 
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Figure 6. Average basic block size 

 
7. Branch Prediction 
 

Branch prediction does not seem to be so important as 
instruction level parallelisms. One of the reasons has been 
stated in Section 4: the percentage of conditional branch 
instructions (7% in average) is so low in cryptographic 
applications. Even if the miss prediction rate is high, the 
effect of this miss prediction is still not so serious to the 
overall performance. 

Another consideration is what kind of branch 
prediction mechanism is best suitable to cryptographic 
programs. Figure 7 presents the prediction hit rate of each 
prediction mechanism available in the simulator for the 
three types of applications. 

It can be observed from Figure 7 that most of the 
conditional branches are taken, namely, 80%, 98%, and 
90% of the branches are taken for block ciphers, stream 
ciphers, and hash programs respectively. Therefore, 
sophisticated branch prediction mechanisms are not cost-
effective for cryptographic programs. A simple static 
branch prediction mechanism with the branches being 
predicted always taken is sufficient. 

Average Branch Prediction Hit Rate

0

20

40

60

80

100

block  stream  hash

H
i
t
 
R
a
t
e
 
% nottaken

taken

2lev

bimod

comb

 
Figure 7. Average branch prediction hit rate 

 



8. Cache Behaviors 
 

Cache behaviors are another important consideration 
for the design of network processors. However, as found 
in Section 4, the memory reference instructions account 
for only 23% of all the instructions executed for 
cryptographic programs in average. This means that a 
relatively simple cache architecture is possibly enough for 
most of the security related applications.  

We measure the cache performance for each of 
selected applications. Separate instruction and data caches 
ranging from 4KB to 256KB are simulated. 
 
8.1  L1 Instruction Cache Behaviors 
 

Figure 8 shows the results for instruction cache 
behaviors by changing such cache parameters as cache 
size, line size, set associative, and replacement strategy. 

Figure 8(a) presents the simulation results of cache 
performance when the cache size is changed. It can be 
seen that 16KB instruction cache is enough to achieve 
miss rates less than 0.1% for both block ciphers and hash 
programs, and less than 1% for stream ciphers. This figure 
also shows that the miss rate of stream ciphers cannot be 
reduced even with much larger cache sizes due to 
compulsory misses. Compared to benchmark programs of 
CommBench, cryptographic programs have larger kernels. 
For CommBench programs, the instruction cache miss 
rates are lowered to under 0.5% when the instruction 
cache is increased to 8KB; however, the miss rates are as 
higher as 2% with the same cache size for the selected 
programs. Even when the cache size is 16KB, the lowest 
miss rate of the programs is still approximately 1%, which 
is 4 times higher than that of CommBench programs. The 
instruction cache behaviors of cryptographic programs are 
much more similar to that of SPECint programs, which 
have an average miss rate of 2.2% and 1% for 8KB and 
16KB instruction caches respectively. 

When the line size of instruction cache is increased, 
the miss rate is lowered for all the applications. The line 
size increase has greater impact on stream ciphers 
compared to that on block and hash ciphers. A line size of 
8 bytes is enough for block and hash ciphers to achieve 
miss rates less than 0.5%; on the contrary, a line size of 64 
bytes can only lower the miss rate to 1.2% for stream 
ciphers. 

Figure 8 (c) shows that impact of set associative on 
miss rate. For most of the applications a cache with direct 
mapping is enough to obtain less than 5% miss rate. The 
exceptions are AES and RC4. Both of these two 
exceptions need 4-way set associative cache to obtain the 
next to the best performance.  

Figure 8 (d) presents the impacts of cache replacement 
strategies. It is not surprising that FIFO has similar 
performance to LRU replacement algorithm. This is only 

true when the size of the cache is large enough to avoid 
the compulsory misses. 
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(d) Impact of replacement strategy 

Figure 8. Instruction cache behavior 
 



From the four figures we can also find that all the 
cryptographic programs have rather small kernels which 
are less than 16KB. This observation is important in that 
we can easily store the kernels of cryptographic 
applications in a reserved area in the cache so that 
instruction cache miss will be reduced. 

Combining the above four observations into one, we 
can safely conclude that a direct-mapped 16KB 
instruction cache with line size as 8 bytes is enough for 
most of the cryptographic applications to obtain next to 
the best performance. The exceptions are AES and RC4, 
which need a 4-way instruction cache of 16KB and larger 
line size to achieve comparable performance. FIFO 
replacement strategy contributes almost the same as LRU; 
therefore, sophisticated replacement strategy is not 
necessary. 
 
8.2  L1 Data Cache Behaviors 
 

The cryptographic applications have similar data cache 
behaviors to instruction cache behaviors. Figure 9 shows 
the simulation results by changing cache size, line size, set 
associative, and replacement strategy.  

Figure 9(a) shows the impact of cache size on the miss 
rate. A cache of 8KB can reduce miss rates of block and 
hash ciphers to less than 1%; while stream ciphers need 
32KB cache to achieve miss rates less than 3%, which is 
the best achievable, in average.  The miss rate cannot be 
reduced any more even with larger cache sizes for stream 
ciphers. This is because there exist too many compulsory 
misses. Stream ciphers take the input data as continuously 
streamed data, which leads to high compulsory miss rate. 
Line sizes have different impacts on miss rates for the 
three types of applications, as shown in Figure 9(b). A 4-
way 16KB data cache with a line size of 8 bytes has less 
than 1% miss rate for hash and most of block ciphers 
except 3DES. The larger the line size is, the lower miss 
rates for stream ciphers and 3DES are. 

The data cache behaviors of the selected cryptographic 
programs are more similar to that of CommBench rather 
than SPECint benchmark programs. The average data 
miss rates are lowered to less than 1% with 8KB data 
cache for selected program except block ciphers, while the 
miss rates of SPECint and CommBench benchmark 
programs (except for ZIP, FRAG, and DRR applications) 
are approximately 4% and below 1%, respectively. 

Hash programs and most of the block ciphers do not 
have high demands for set associativity, as shown in 
Figure 9(c). A direct-mapped cache of 16KB is enough to 
achieve miss rate lower than 1% for both hash and block 
ciphers with 3DES as the only exception. Compulsory 
miss dominates cache miss rate of RC4 and 3DES. SEAL 
needs 2-way set associative data cache to obtain miss rate 
lower than 1%. 
 

Impact of Cache Size on Miss Rate

0

1

2

3

4

5

6

4 8 16 32 64 128 256
cache size (KB)

M
i
s
s
 
r
a
t
e
 
(
%
)

block cipher

stream cipher

hash

 
(a) Impact of cache size 

Impact of Line Size

0

5

10

15

20

8 16 32 64
Line Size (Byte)

m
i
s
s
 
r
a
t
e

block

stream

hash

(b) Impact of line size 

Impact of Set Associativity

0

1

2

3

4

5

6

7

1 2 4 8 16
number of sets

M
i
s
s
 
R
a
t
e
 
%

aes

blowfish

3des

idea

rc6

rc4

seal

md5

sha

 (c) Impact of set associativity 

Impact of Replacement Strategy

0

1

2

3

4

5

6

block  stream  hash

M
i
s
s
 
R
a
t
e
 
%

FIFO

LRU

Random

(c) Impact of replacement strategy 
Figure 9. Data cache behavior 

 



Cache replacement strategy does not have greater 
impact on the cache miss rate. LRU replacement strategy 
can be replaced with FIFO for block and hash ciphers and 
Random replacement for stream ciphers without 
increasing miss rate by more than 3%. 
 
8.3 L2 Unified Cache Behaviors 
 

We have simulated the L2 unified cache behaviors for 
all the applications as well, the results of which are shown 
in Figure 10.  

Due to most of the memory references are absorbed by 
L1 caches, the miss rate of L2 cache is high, as shown in 
Figure 10(a). Figure 10(a) indicates that only a very small 
L2 cache of 64KB is needed to achieve the lowest miss 
rate. L2 cache is also used to decrease the latency of 
memory references. Figure 10(b) shows the impact of 
different replacement strategies on cache miss rate. All the 
three replacement strategies, FIFO, LRU, Random, have 
nearly the identical impacts.  
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Figure 10. L2 unified cache behavior 

 
9. Conclusions  
 

The performance of cryptographic processing has 
become a critical factor of good system design as the 
Internet expands as the primary medium for secure 
communication. In this paper we selected nine widely 

used cryptographic programs and analyzed their 
architectural demands for network processors. We focus 
on the generalized architectural properties of the selected 
cryptography applications that are applicable to all 
network processor architectures. Impacts of individual 
network processor architectures are not considered in this 
paper. We take advantage of the SimpleScalar tool set to 
simulate the MIPS-like processor architecture to learn the 
performance of these selected algorithm implementations.  

Security related functions requires much more 
processing power from the processors than packet 
processing functions. Based on the computational 
complexity we have observed, we see that the security 
functions would become the performance bottleneck of 
network processors with security functions. The 
processing power of a general-purpose processor 
embedded in a network processor is not sufficient to 
sustain the high bandwidth links. Novel architectures 
optimized for security functions are needed in order for 
the network processors to have sufficient security 
processing power. 

We studied the architectural properties including 
instruction set characteristics, instruction level 
parallelisms, branch prediction, and cache behaviors for 
these nine programs. We find that the instruction mix of 
these programs has major differences from that of 
SPECint95 benchmark programs. Cryptographic 
algorithm implementations have much higher percentage 
of arithmetic instruction, much lower percentage of 
branch instructions and memory reference instructions. 
Stream ciphers are much more similar to hash ciphers than 
to block ciphers in terms of computational complexity. 
We find that the average size of basic blocks is 2~3 times 
larger than common applications. Most of the branches 
are taken. A simple branch prediction with all the 
branches being predicted taken is enough for comparable 
performance. Most of the cryptographic applications have 
an ILP of 8. The high data dependence is the main 
limitation to exploit more ILPs. Memory system has much 
less important effect on the overall performance. We find 
that most of the applications have small kernels of less 
than 16KB. We only need a small direct-map instruction 
cache and data cache to achieve comparable performance. 
Cache replacement strategy is not important to the overall 
performance. The results in this paper are helpful to the 
design of network processors. It is a good idea to use a 
standalone cryptographic application specific chip 
multiprocessor attached to the network processor to 
effectively meet high throughput demands in secure 
communication. 
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