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AbstractÐInput buffered switch architecture has become attractive for implementing high performance routers and expanding use of

the Internet sees an increasing need for quality of service. It is challenging to provide a scheduling technique that is both highly efficient

and fair in resource allocation. In this paper, we first introduce an iterative fair scheduling(i FS) scheme for input buffered switches that

supports fair bandwidth distribution among the flows and achieves asymptotically 100 percent throughput. The iFS is evaluated both

under synthetic workload and with Web traces from the Internet. Compared to the commonly used synthetic input, our simulation

results reveal significant difference in performance when the real network traffic is employed. We then consider fair scheduling under

various buffer management mechanisms and analyze their impact on the fairness in bandwidth allocation. Our studies indicate that

early packet discard in anticipation of congestion is necessary and per-flow based buffering is effective for protecting benign users from

being adversely affected by misbehaved traffic. Buffer allocation according to bandwidth reservation is especially helpful when the

input traffic is highly bursty.

Index TermsÐQuality of service, fair bandwidth allocation, switch scheduling, buffer management, decongestion mechanism, web

traffic.
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1 INTRODUCTION

THE exponential growth of the Internet has put increasing
demands on the routers and switches in the network for

high bandwidth and low latency. In addition, as networks
provide new services supporting multicast, voice, security,
and bandwidth reservation, quality of service (QoS) is
becoming a major issue in the design of routers [25], [18].
Fairness in resource allocation is very important to support
the need for diverse applications. Fair queuing algorithms
have been developed [8], [38] to schedule packets at an
output link of a router. However, little research has been
done to address QoS issues inside the router operation
itself. In fact, this is crucial because the router is the one
responsible for forwarding packets down the stream.
Without the router taking action, fair queuing at output is
left to the mercy of traffic flow from upstream and the
resource may not be distributed as fairly as desired. The
purpose of this paper is to develop fair scheduling and
buffer management schemes for Internet routers and to
demonstrate their superiority using actual Web traces from
NLANR [27] and UCB [37].

A router consists of three parts, namely, 1) line cards that
connect to datalinks, 2) a router processor that runs routing
protocols, and 3) a backplane crossbar switch that actually
transfers the packets or cells from inputs to outputs. In this
paper, we are mainly concerned with QoS issues of the
backplane switch design in a router. The switch has buffers
either at the input or output to store the packets temporarily
during transmission. Although output buffering can
achieve better throughput, it is known to suffer from poor

scalability [17]. The reason is that the output port of an
N �N switch has to operate N times faster than the input
in order to accommodate requests on all possible inputs.
Consequently, most high-performance routers employ
input queues with their crossbar backplanes [24], [30]. Also
noticable is that these crossbars operate in a cyclic fashion,
arbitrating and transfering fixed sized packets (also called
cells) in each cycle. The cell-based switch is chosen in the
high performance router for its potentially high throughput.
On the QoS side, unlike switches with variable length
packets where a large packet from an ill-willed source could
dominate for a substantial period of time, the cell-based
switch is suitable for fine tuning for fairness. For these
reasons, we will assume a cell-based switch unless other-
wise stated.

In this research, we develop fair scheduling schemes for
input-buffered switches. High throughput and fairness in
resource allocation are contradictory goals in a switch
design. Due to the fact that only a single cell can be
transmitted from each input of the crossbar in a given slot,
cells forwarded based on a maximal set of input-output
match may not coincide with those satisfying fairness. On
the other hand, passing cells based on fair resource
allocation may not produce the highest throughput and
may give rise to underutilization of the crossbar switch. The
aim of this research is to find scheduling and buffer
management techniques that are both fair and highly
efficient for link utilization.

According to [8], bandwidth allocation of a link is fair if,
for each flow, the received bandwidth is proportional to its
share of reservation. We know that the fluid flow queuing
(or Generalized Processor Sharing (GPS) [29]) algorithm,
which sends packets in a bit-by-bit round-robin fashion, is
absolutely fair but unrealistic. Numerous fair queuing
algorithms have been developed to approximate the GPS
algorithm in units of packets (see [38] for a survey).
However, most work on fair queuing has been conducted
in the context of output queuing due to its conceptual
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simplicity. The situation becomes complicated in the case of
an input buffered switch, where flows not only contend for
output link bandwidth but also have to compete to access
the crossbar. Nevertheless, in order to achieve high
performance as well as to provide quality of service, it is
imperative to maintain fairness in input buffered switch
scheduling.

In the first part of this paper, we propose an iterative fair
scheduling (iFS) scheme which provides high throughput,
low latency, as well as fair bandwidth distribution among
the contesting flows. As with other iterative approaches, iFS
tries to increase the number of input-output matches during
each iteration, but the major difference is that, instead of
picking a cell from each input in a probabilistic ([1], [13]) or
round-robin ([22], [34]) fashion, a cell is chosen based on the
bandwidth requirement of the flows. In this way, we are
able to allocate bandwidth to various flows in proportion to
their reservation and prevent misbehaving flows from
taking advantage at the expense of others. The iFS is
compared with iSLIP [22] and WPIM [36] for throughput
and fairness.

In a real deployment of a network with finite buffering
space, packets are dropped in the presence of congestion. In
order to support fair bandwidth allocation, it is crucial to
determine when to drop and which packet to drop. Thus,
the fairness in scheduling issue should be considered in
conjunction with the decongestion mechanism. In this
paper, four decongestion mechanisms are studied and their
impact on the fair sharing of bandwidth is examined.

The effectiveness of our fair scheduling approaches is
demonstrated by simulations using a cycle-based simulator.
Experiments are conducted with different types of input
workload. Investigation has shown that Internet traffic is
very bursty in nature [31], [7] and, therefore, cannot be
characterized very well by the commonly employed
Bernoulli or geometrically distributed on/off traffic model.
While distributional models have been developed for the
Internet workload [4], traffic traces are widely applied for
evaluating web servers [2], proxy caches [6], [21], and
packet forwarding methods [16]. The use of real traffic
traces can offer direct validation of the network components
under study. Hence, we incorporate the traffic pattern
directly from the Internet, in addition to employing
synthetic workload, and we are not aware of any existing
application of traces in the context of router design or
switch scheduling.

To summarize, we have the following original contribu-
tions in the paper:

. We propose an iterative fair scheduling (iFS) scheme
for unicast traffic. It supports fair bandwidth
allocation and achieves asymptotically 100 percent
throughput with uniform traffic.

. We analyze various buffer allocation policies, along
with fair scheduling, and pinpoint their effect on fair
bandwidth allocation.

. Ours is the first attempt to evaluate switch schedul-
ing schemes using real traffic from the Internet. It
gives some insight into the difference in perfor-
mance compared to the common practice of evaluat-
ing through synthetic workload.

The rest of the paper is organized as follows: Section 2

gives an overview of the related work on scheduling for

input buffered switches. In Section 3, we propose the

iterative fair scheduling (iFS) for unicast traffic. Extensive

simulation results with synthetic workload, as well as traces

from the Internet, are presented in Section 4. Buffer

management schemes are examined in Section 5. Finally,

Section 6 concludes the paper.

2 RELATED WORK

Input queuing is subject to the head of line (HOL) problem

with maximum throughput of 58.6 percent using the FIFO

input queue [17]. A solution has been found which

constructs separate queues at each input so that a packet

will not be blocked by packets going to other destinations.

Major issues in the input buffered switch architecture

design include buffer management and scheduling. We

have studied various queuing and buffer allocation

schemes in our previous research [9], [33]. In this paper,

we seek to address the issue of fairness in scheduling (i.e.,

input to output matching) for quality of service. Fig. 1 gives

a block diagram of the cell-based switch architecture we

consider throughout the paper. It consists of four compo-

nents: input ports, output ports, crossbar switching fabric,

and a scheduler. At any given switch cycle (slot), at most

one cell from each input can be routed to the output side

and each output can only accept at most one cell. As a

result, the scheduling is more intricate than that for the

output queued switch. Most existing work on scheduling

for input buffered switch attempts to achieve high

throughput by looking for maximum bipartite matching

between inputs and outputs. Schemes such as PIM [1], iSLIP

[22], and Shakeup [13] repeatedly search for matches at each

time of scheduling. Some approaches can achieve 100 per-

cent throughput asymptotically [23].
An iterative scheduling algorithm essentially consists of

three major steps in each iteration, as illustrated in Fig. 2.
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1. Request stage: An input may have several requests.
Each unmatched input sends requests to the outputs
for which it has cells for.

2. Grant stage: There may be several requests to an
output. Each unmatched output chooses one from
several received requests and sends a grant signal to
one of the inputs.

3. Accept stage: Each unmatched input may receive
grant signals from several outputs. Upon receiving
grant signals, each input sends an accept signal to
only one of the outputs offering the grants.

Probabilistic Iterative Matching (PIM), suggested by
Anderson et al. [1], is the first switch scheduling algorithm
that employs an iterative approach. At the grant stage, each
output sends out a grant signal to a randomly selected
requesting input. Again, at the accept stage, each input
accepts one output from several grant signals at random. It
takes an average of O�logN� iterations for the PIM to
converge. The consequence of random selection in the grant
and accept stage of PIM is that an input could possibly end
up not being served for a long time. Thus, this scheme is not
starvation free. Moreover, implementation of random
selection among the members of a time-varying set is not
an easy task.

The iSLIP scheme proposed by McKeown [22] uses
rotating priority (round-robin) arbitration to schedule active
inputs and outputs in turn. A grant pointer is kept for each
output to track the input with the highest priority.
Similarly, there is an accept pointer for each input which
tells the output with the highest priority. Whenever a match
is found, the corresponding grant/accept pointers are
incremented (modulo the number of ports). Compared to
PIM, iSLIP is simpler in implementation [15] and achieves
higher throughput [22].

Matches are irrevocable in both PIM and iSLIP, which
means that later iterations can only add upon previously
made matches, but cannot change them even if better
matches can be found. To escape this ªlocal maximumº,
Goudreau et al. offer a Shakeup technique in [13] where
each unmatched input is allowed to force a match for itself
randomly even though an existing match has to be knocked
off. In other words, Shakeup attempts to find the global
maximum, but the feasibility of its implementation in a real
system is unknown because it takes more iterations to
converge.

The issue of fair resource allocation is not considered in
the above-mentioned approaches. Iterative schemes that do
address the fairness issue include statistical matching [1]
and Weighted Probabilistic Iterative Matching (WPIM) [36].
Statistical matching is similar to PIM except that the

matching process is now initiated by the outputs, each
generating a grant signal to a randomly selected input
based on the reserved proportion of bandwidth. It can
happen that an input is picked when its queue is empty and
the switch is poorly utilized. WPIM is also built upon PIM,
where, based on the reservation, every input flow is
assigned a quota that can be used in a frame of a constant
number of slots. During each frame, flows that have not
reached their quotas secure an equal share of bandwidth by
random selection, as is done in PIM. To accomplish this, an
additional masking stage is added to the 3-step procedure
to exclude those inputs that have consumed their quotas in
the current frame.

Scheduling fairness is also addressed in other work
under assumptions not relevant to this paper. Stephens and
Zhang [35] considered a switch that has an effectively fully
connected crossbar [33] and processes packets of variable
length. There, the inputs and outputs are decoupled so that
each output independently reads from any input with a
packet for it. Li and Ansari gave an end-to-end delay bound
provided that incoming flows conform to the �r; T � traffic
model [19]. Recent efforts in designing scheduling algo-
rithms capable of providing QoS for input queued switches
is presented by Nong and Hamdi in [28].

Among the packet discarding schemes, some assume a
queuing discipline of FCFS, others are designed with per-
flow queuing. The most basic one among the FCFS
disciplines is the ªdo nothingº policy, which is a complete
buffer sharing with a drop-tail (DT) mechanism, where cells
are dropped when they arrive to find the buffer full.
Generally, network systems do not support cell level
retransmission, so a partially received packet is of no value.
In partial packet discard (PPD) [3], after a cell from a packet is
dropped, all subsequent cells of the same packet are
dropped as well. In early packet discard (EPD) [11], the entire
packet (i.e., all the cells constituting a new packet) is
dropped whenever congestion is anticipated because the
buffer occupancy exceeds a certain threshold. A more
sophisticated policy by Floyd and Jacobson is random early
discard (RED) [10], whose primary goal is to avoid
performance degradation and unfairness caused by DT. It
does so by maintaining average buffer occupancy at a level
significantly below the total number of buffers. To achieve
this, packets are dropped with a certain probability when
the average buffer occupancy reaches a certain level. Drop
probability increases with the average queue occupancy
and, once the queue occupancy exceeds a maximum buffer
threshold, all arriving packets are discarded. All these
schemes assume an FCFS scheduler, each arriving packet is
treated identically, and all the flows see the same loss rate.

Examples of per-flow discarding include longest queue
drop (LQD) [12] and fair buffer allocation (FBA) [26]. The
justification behind LQD is that if flows are given equal
weights, the ones that use the link more tend to have longer
queues. Hence, biasing packet discarding such that flows
with longer queues have a higher drop rate should make
the bandwidth sharing more fair. In FBA, buffer share for
each flow is computed as a function of the number of free
buffers and the number of active connections. Once the
aggregate occupancy is above the specified threshold,
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packets arriving for flows that have occupied more than the
fair shares are thrown away.

3 ITERATIVE FAIR SCHEDULING SCHEME

In this section, we first introduce a definition of fairness in
input buffered switch scheduling and then propose an
iterative fair scheduling (iFS) scheme that can be used to
achieve fair bandwidth allocation.

Let f�i; j� denote the jth flow from input i. It goes to
output di;j and reserves a bandwidth of Bi;j. The number of
flows from input i is ni. Let ti;j�t1; t2� be the amount of traffic
(in bits) reaching the output from flow f�i; j� in time
interval �t1; t2�. We say that two flows f�i1; j1� and f�i2; j2�
are in contention if i1 � i2 or di1;j1

� di2;j2
. Note that we do

not define precisely what a flow is because we would like
our iFS scheme to be applied in a broad sense: Depending
on the desired granularity of QoS and scalability concern, a
flow can be as fine as a TCP connection or as coarse as a
class of aggregated connections with a similar bandwidth
requirement.

Following the definition of the GPS server for a single
shared resource in [29], we consider a scheduling scheme
for input buffered switches to be fair as follows:

Definition 1. For any two back logged flows f�i1; j1� and
f�i2; j2� that are in contention, a scheduling scheme is fair in
�t1; t2� if

ti1;j1
�t1; t2�

ti2;j2
�t1; t2� �

Bi1;j1

Bi2;j2

:

This definition specifies the ideal situation, but if the
output link bandwidth is to be best utilized (i.e., work
conserving), it is possible that the equation may not be held
under all the combinations of bandwidth reservations. The
discrepancy of this definition from the one of GPS [29] is
that, here, the flows are contesting to access the crossbar as
well as to access the output links. In other words, we are
trying to allocate correlated resources because a cell must
first make its way out of the input buffer before going to the
intended output.

Nevertheless, we find that the existing fair queuing
algorithms, which have been successful in allocating a
single shared resource, can be applied here to facilitate our
effort to support fair bandwidth distribution. In a fair
queuing algorithm, a virtual system time V �t� (correspond-
ing to the number of rounds made till time t in GPS) is
maintained. Every incoming packet is assigned a virtual
starting time and a virtual finishing time, depending on its
bandwidth requirement. Virtual starting time and virtual
finishing time denote the virtual time when a packet should
begin and finish sending if GPS were used. The transmitting
order is then regulated according to nondecreasing starting
time [14], nondecreasing finishing time [8], or a combina-
tion of both [5]. Naturally, flows with larger bandwidth
reservations will take a greater proportion of bandwidth
since they tend to have a smaller virtual starting time (or
finishing time).

Our basic idea of iFS is to enhance the iterative approaches
described in Section 2 by giving out grant signals from the

individual outputs based on virtual time and then trying to
resolve input contention in the accept stage.

For each output link, we maintain a fair queuing engine,
which assigns a virtual time to every incoming cell based on
bandwidth reservation of the flow. Note that the arriving
cells are queued in the input buffer first-in-first-out on a per
flow basis. This is required for implementing a fair queuing
algorithm where each output must keep track of the active
flows to compute the virtual time. It is different from other
iterative approaches where input queues are arranged on a
per output basis. Also note that, by applying the fair
queuing algorithm, each output has the knowledge of the
active flows destined to it, so we can initiate the scheduling
from the outputs and save the request stage in the common
3-step procedure (Section 2).

In each iteration, the first step in our scheme is for every
unmatched output to independently send a grant signal to
one of the unmatched inputs which has the cell with the
minimal virtual time corresponding to that output. Such a
cell is marked as a ªcandidateº with respect to its input. It
may so happen that an input receives multiple grants from
different outputs and has multiple candidates, which means
that several flows from this input have a minimal value of
virtual time with their relevant outputs. Then, each
unmatched input selects among its candidates a cell (called
ªwinnerº), with the oldest age at the switch, and sends an
accept signal to its desired output. That is, in the accept
stage, an input resolves the contention on a first-come-first-
served (FCFS) basis. The justification is that, since these
candidate cells are from the same upstream node, the fact
that the cell arrives first among the contending cells implies
that it has the smallest virtual time among them at the
previous node and, naturally, should be the first one to
depart from the current node.

In summary, the iFS scheme can be formalized as the
following:

. Initially, all inputs and outputs are considered as
unmatched and none of the inputs have any
candidates.

. Then, in each iteration:

1. Grant stage: Each unmatched output selects a
flow with the smallest virtual time for its head-
of-line cell and marks the cell as a candidate for
the corresponding input. A grant signal is then
given to the input.

2. Accept stage: Each unmatched input examines its
candidate set, selects a winner according to age,
and sends an accept signal to its output. The
input and output are then considered as
matched. Reset the candidate set to empty.

. At the end of each switch cycle, the winning cells
are transferred from the input side to the output
side.

Notice that, although a fair queuing algorithm is applied in
iFS, the access order to an output ruled by the fair queuing
algorithm is not strictly followed due to performance
concerns. Consider the example in Fig. 3, where flows
f�1; 1�, f�1; 2�, and f�2; 1� are going to output 1, 2, and 1,
respectively. Suppose that, at a certain time t, the head-of-line
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cell from f�2; 1� has greater virtual time than that from
f�1; 1�. In the first iteration, output 1 gives grant to flow
f�1; 1� and output 2 gives grant to f�1; 2� according to the
fair queuing algorithm. Also assume that the head-of-line
cell of f�1; 2� has older age than that of f�1; 1�. Hence,
input 1 sends an accept signal to output 2 and both input 1
and output 2 are marked as matched. In the next iteration,
output 1 finds flow f�2; 1� with the smallest virtual time
because f�1; 1� from input 1 has been excluded. As a result,
input 2 and output 1 are matched and we see that the head-
of-line cell from flow f�2; 1� is transmitted before that of
flow f�1; 1�, even though the latter has a smaller virtual
time. This ªout-of-orderº transfer actually improves the
throughput because, otherwise, output 1 would be left idle
in the current cycle. Fortunately, this violation only has an
instant effect and will not yield unfairness. Continue with
the example. In the next time of scheduling, the cell from
f�1; 1� still has the smallest virtual time for output 1. Flow
f�2; 1� gets ªpenalizedº since the virtual time for its head-
of-line cell at this point is even greater.

Compared to other iterative scheduling schemes, we see
that iFS uses two steps in each iteration, whereas iSLIP and
WPIM use three and four steps, respectively. Grants in
iSLIP are given in round-robin manner without respect to
bandwidth reservation. WPIM guarantees fair bandwidth
sharing, but in a much coarser granularity. Before running
out of quota in WPIM, every flow has equal access to the
bandwidth. Consequently, the flows with larger reserva-
tions get more bandwidth only after other flows run out of
their quotas, which usually happens toward the end of a
frame. If we look at the bandwidth distribution within a
frame, the bandwidth share is disproportional. Statistical
matching also has only two stages. However, since grants
are given by outputs to inputs randomly, it is possible that
an input port is selected to receive a grant signal when its
queue is empty. It has been shown in [36] that statistical
matching has inferior performance to WPIM. Unlike
Shakeup where matches in prior iterations can be modified,
matched input-output pairs are ruled out in later iterations
in iFS. Although Shakeup is attractive theoretically, its
feasibility for high performance switch is unclear because
one ªknock-offº of an existing match could possibly trigger
a chain of ªknock-offsº which would take more iterations to
converge to global maximum matches.

The issue we do not consider in detail here is the
implementation feasibility. Efficient implementation of N
fair queuing engines is crucial to the iFS for an N �N
switch. It is to our advantage that the switch under
discussion is cell-based. The calculation of virtual time

can be simplified due to fixed packet length and the fair
queuing engine is boiled down to an engine for weighted
round-robin instead. In comparison, the switch proposed in
[35] needs 3N fair queuing engines to deal with variable
length packets for an N �N switch. A second advantage is
that, unlike PIM, WPIM, or Shakeup, no random number
generator is needed for iFS, which again greatly reduces the
implementation complexity.

4 PERFORMANCE EVALUATION OF iFS

Following the criteria in [32] for assessing a resource
allocation scheme, we evaluate the proposed iFS in two
aspects: efficiency and fairness. The principal metrics for
efficiency are throughput and delay. A cell-based simulator
is developed and the simulations are conducted with the
assumption of infinite buffer size. The offered load refers to
the probability that a cell arrives at an input in a given slot.
Our methodology of evaluation is as follows: We start by
examining iFS and other approaches using synthetic work-
load under cases where destinations are uniformly and
nonuniformly distributed among the outputs. Results are
presented to show that iFS can achieve average cell latency
and overall throughput close to the existing schemes. Then,
we compare the ability of various approaches to support
fair bandwidth distribution. In the second part of this
section, traces from Internet traffic are applied to the
simulator to study how iFS works in the ªreal world.º Our
results demonstrate that, under both synthetic and real
network traffic, iFS can achieve high throughput, like iSLIP,
and, at the same time, support fair bandwidth allocation.

4.1 Measurement from Synthetic Workload

We begin by evaluating the throughput and the average
delay of iFS under benign i.i.d. Bernoulli traffic, where, at
any given slot, a cell arrives with the probability deter-
mined by the offered workload. The simulation is
performed on a 16� 16 switch with 16 flows per input,
each destined for a different output, for a total of 256 flows.
In the first scenario, each input port sends cells with
destinations uniformly distributed among all the output
ports. Fig. 4 shows the delay versus the offered load for iFS
and iSLIP with the number of iterations equal to four. The
iSLIP is known to offer the lowest delay for an input
buffered switch. The delay using the output buffered switch
is also shown for comparison. Under this circumstance, we
observe that the average cell delay for iFS is almost identical
to iSLIP and both are very close to the output buffered
switch, which is the lower bound for the delay. Hence, iFS
has the potential of achieving asymptotically 100 percent
throughput for uniform traffic.

Next, we consider a nonuniform Bernoulli traffic model,
as used in [36]. The assumption is that four of the switch
ports are connected to servers and the remaining 12 to
clients. Each client sends 10 percent of its generated traffic
to each of the four servers and the remainder is uniformly
distributed among the other clients. Similarly, each server
directs 95 percent of its traffic to the clients and the
remaining 5 percent to the other servers. Fig. 5 indicates that
iFS is very close to iSLIP and WPIM in terms of average cell
latency and can reach a throughput of 78.5 percent.
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Now, we turn to examining the effectiveness of iFS to
support the fair bandwidth sharing when a link is over-
loaded. This time, we simulate a 4� 4 switch so that we can
plot the results with clarity. Assume that every input has
four flows, each going to a different output. Without loss of
generality, let the jth flow from link i go to output j and
denote it as f�i; j�, following the notation in Section 3. Also
assume that the flows to output 1, f�1; 1�, f�2; 1�, f�3; 1�,
and f�4; 1�, have reserved 10 percent, 20 percent, 30 percent,
and 40 percent of the bandwidth, respectively. But, they
always maintain the same actual arrival rate. Others are
background flows with a load of 5 percent each. We vary
the input rate of the flows to output 1 and plot the received
bandwidth share in Fig. 6 and Fig. 7 using iSLIP and iFS
scheduling. For a workload under 25 percent, the through-
put for every flow is able to keep up with the input
workload for both the schemes. However, for a workload
beyond 25 percent, all four flows are still treated equally in

iSLIP and, therefore, they obtain the same share of

bandwidth (each 25 percent) despite the variance in

bandwidth reservation. The iFS, on the other hand, is

observed to differentiate the flows according to the

promised share when the load is greater than 25 percent.

Ill-behaved flows are prevented from influencing the well-

behaved ones. For a load beyond 40 percent, each flow

receives its allocated bandwidth. Let us look closely at the

sharing when input load is between the range of 25 percent

and 40 percent. At 30 percent, for instance, flow f�4; 1� does

not consume its share of 40 percent of bandwidth. The

unused part is distributed to flow f�1; 1� and flow f�2; 1� so

that they acquire a larger fraction of bandwidth than their

reservations. Flow f�1; 1� receives 13.3 percent (versus a

reservation of 10 percent) and flow f�2; 1� receives

26.6 percent (versus a reservation of 20 percent). Such

behavior also conforms to the fairness requirement in [8],
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which states that the unused portion should be assigned
equally to other active flows.

To quantify the fairness, we define fairness index in the
following to measure the fairness of a switch for allocating
bandwidth during time �t1; t2�. Suppose there are N flows
sharing a link and let �i, xi, and ri denote the actual average
arrival rate, received bandwidth, and reserved bandwidth,
respectively, for flow i during time �t1; t2�. Without loss of
generality, we assume that the first n1 (0 � n1 < N) flows
honor their reservation, that is, �i � ri for flows 0 through
n1 ÿ 1. The rest of the n2 � N ÿ n1 flows have arrival rate
greater than their reservation. For each oversubscribing
flow i (n1 � i < N), we denote

�i �
�n1ÿ1
j�0 �rj ÿ �j�ri

�Nÿ1
k�n1

rk
: �1�

�i is the bandwidth that can be spared to the over-
subscribing flow i and the adjusted reservation for it is
ri � �i. Ideally, the unused bandwidth is distributed
proportionally to the backlogged flows and this is exactly
what is conveyed in (1). Now, we define the fairness index
(�) for a link l as

� �
�n1ÿ1
i�0 �j xiÿ�i�i

j� � �Nÿ1
i�n1
�j xiÿmin��i;ri���min��i;ri��� j�

N
: �2�

� measures how close the received bandwidth is to the
reservation for a link. The overall fairness index for a switch
is calculated as the average � value of its output links:

�switch � �l�Kÿ1
l�0 �l
K

; �3�

where K is the number of outputs for the switch.
The smaller the � is, the better the fairness is. The

fairness indices for the settings in Fig. 6 and Fig. 7 are 0:25
for iSLIP and 0:0185 for iFS at the input rate of 0.3. The �
values are 0.573 and 0 for iSLIP and iFS, respectively, under
the input rate of 0.4 or above.

The WPIM scheme also complies with the bandwidth
requirement of each flow by restricting the number of
transmitted cells during a frame within a limit determined
by its reservation. Accordingly, the bandwidth requirement
can be met and the well-behaved flows are protected.
However, a careful study reveals the drawback of WPIM,
whose mechanism rules that link bandwidth is evenly
distributed among existing flows until some use up their
quotas. Flows running out of their quotas are then excluded
from accessing the link in the current frame and the
bandwidth is again allocated equally among the remaining
flows. Let us inspect the flow with the largest bandwidth
reservation. Under WPIM, this flow shares the link
bandwidth equally with all the other flows at the beginning
of each frame. Its share increases gradually as the quotas for
other flows are exhausted. As an example, consider the four
flows going to output 1, but with bandwidth reservations of
40 percent, 20 percent, 20 percent, and 20 percent this time.
Frame length is taken as 1,000 slots, as in [36]. We observe
that every flow gets its fair share by the end of a frame
under both WPIM and iFS. But, if we break a frame into
four 250-slot subframes, we notice that the bandwidth

distribution for WPIM is not fair, as depicted in Fig. 8.
During the first 750 slots, bandwidth is almost equally
distributed (about 25 percent each), regardless of the
reservation. Toward the end of the frame, flows with less
reservation (f�2; 1�, f�3; 1�, and f�4; 1�) have used up their
quota. The flow with the highest reservation (f�1; 1�) then
consumes almost all the capacity in the last 250 slots.
Therefore, WPIM provides bandwidth guarantee at coarse
granularity of 1,000 slots. The iFS, on the other hand, can
provide fair sharing both at the coarse and fine grain levels.
The received bandwidth in iFS complies with the reserva-
tions even within subframes, as illustrated in Fig. 9. Their
ability to support fair bandwidth is also compared by
fairness indices in Table 1 for individual subframes. Some
may argue that if the length of a frame in WPIM is small
enough, it is able to support fair bandwidth sharing in finer
granularity. But, we find that the WPIM scheme is
ªmemorylessº regardless of the frame length since the
scheduler does not have the information about the flow
history except in the current frame. Imagine a scenario
where the flow with the greatest reservation actually sends
very little in the beginning; it cannot get ªcompensationº
later when it raises the traffic. If it has nothing to send in
prior frames, it loses its quota in those frames for good.
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Fig. 8. WPIM: bandwidth distribution within a frame of 1,000 slots.

Fig. 9. iFS: bandwidth distribution within a frame of 1,000 slots.



While memoryless is necessary to enforce fairness, it is not
desirable for WPIM with frames that are too short. Some
fair queuing algorithms have been devised to compensate
for such a flow to a certain extent [20].

As for all the iterative approaches, the number of
iterations required for convergence is a constraining factor
because all the iterations must be done within a single
switch cycle. In the case of a 16� 16 switch, 16 iterations are
needed in the worst case. Fig. 10 shows the effect of the
number of iterations on the average cell latency under
uniform traffic. We can see that, with two iterations, a
throughput of over 90 percent can be achieved and four
iterations are adequate to obtain a throughput of nearly
100 percent. This is consistent with the findings in [1], [36],
and [22] that log�N� iterations are enough for the algorithm
to converge.

In summary, the evaluation using uniform and nonuni-
form synthetic traffic models indicates that the iFS scheme
is very promising in supporting fair bandwidth distribu-
tion, as well as in maintaining high overall throughput.

4.2 Measurement from Real Traffic

Studies using Internet traffic traces have been extensively
reported in network research. Yet, to the best of our
knowledge, ours is the first attempt to incorporate such
traces into evaluating switch/router scheduling schemes.
We hope this practice can shed some light on the effective
use of real traces in validating the performance of different
approaches.

Traffic arrivals in the Internet have been shown to be
highly correlated (self-similar) [31], [7]. Simulations using
Poisson or Bernoulli distribution offer good judgment on

how a scheme works, but may significantly underestimate
the burstiness of the real traffic pattern and give rise to
unrealistic performance results. Geometrically distributed
ON/OFF traffic is used in [22] and [13] to model the
burstiness, but we will show later that the approach of
taking real traces is better in characterizing the impact of
traffic on switch design.

4.2.1 Measurement from NLANR Traces

The traces taken from the National Lab of Applied Network
Research (NLANR [27]) are collected using OC3mon, a
traffic monitor on an OC-3 link, at the ATM backbones on
NSF vBNS. Traces from the same site were used in [16] for
studying the packet forwarding method. The traces
considered in this paper were collected in May 2000 from
the facilities AIX, FRG, and MRT. Every line in the trace file
includes the following information: timestamp when a TCP
header arrives at the OC3mon, source IP/port, destination
IP/port, and size of the packet. We use four traces as
arriving traffic on four input links to our 4� 4 switch. The
overall average utilization for these input links is listed in
the first row of Table 2. Based on the destination IP address,
we classify traffic on each link into four flows, one for each
output port (i.e., flow f�i; j� from link i going to output j).
The link utilization for the individual flows are also listed in
Table 2. We derive each burst length from packet size as
they are segmented into ATM cells. Each idle period is
calculated as the interarrival time between two packet
headers minus the burst length of the prior packet.
Unfortunately, the traces carry no information about the
bandwidth reservation so we impose our assumption of
reserved bandwidth in the simulation.

To see how real traffic is different from geometrically
distributed on/off traffic, we give an example by plotting
cell arrival patterns for input link 1 and their corresponding
geometric counterpart in Fig. 11 and Fig. 12, respectively.
The geometrical on/off traffic is so generated that it has the
same average burst length and idle period as those from the
trace. We observe that the on time is much more clustered in
the trace and the typical number of cells coming within
1,000 cycles ranges from 100 to 600. There are also
nonnegligible times when not a single cell shows up during
a 1,000-cycle period. For a geometrically distributed on/off
arrival pattern, on the other hand, the interarrivals are more
evenly spread out, with only 100 to 350 cells incoming
within every 1,000 cycles. Studies from other links tell of
similar differences between traces and synthetically gener-
ated traffic.

To examine the impact of the distinct traffic pattern, we
feed the flows from the traces and the geometrically
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Fig. 10. Latency versus the number of iterations for iFS.

TABLE 2
Input Link Utilization for the Various Flows (NLANR)

TABLE 1
Fairness Indices for WPIM and iFS (SF for Subframe)



distributed on/off traffic to the simulator. Fig. 13 presents
the delay for flows to output 1 under both cases. The
average cell delay is substantially greater for the real traffic.
Geometrically distributed on/off traffic underestimates the
contention of the flows and therefore cannot be used very
well as a representative model.

Now, we study effectiveness of the iFS scheme for
maintaining fair bandwidth allocation for real traffic. On
top of the flows presented in Table 2, we impose a
bandwidth requirement arbitrarily. Let the bandwidth
requirement for flows f�1; 1�, f�2; 1�, f�3; 1�, and f�4; 1� be
10 percent, 20 percent, 30 percent, and 40 percent,
respectively. As the sum of the workload is well below
the capacity of output link 1, throughput for each flow is
equal to the offered input rate. However, since some flows
reserve a greater fraction of bandwidth than others, these

flows should receive a larger bandwidth and perceive less

delay. Fig. 14 shows the average cell delay for the flows to

output 1 under iFS and iSLIP schemes. Note that iSLIP does

not observe the bandwidth requirement. Flows f�1; 1� and

f�2; 1� have lower delay because their input rate is only

about 8 percent. Flow f�3; 1� experiences a much longer

delay than f�4; 1� since it has a higher input rate than the

latter (18.9 percent versus 13.1 percent). In contrast with the

situation for iSLIP, the delay for the individual flows in iFS

depends not only on the input rate, but also on the

bandwidth requirement. It is shown in Fig. 14 that flow

f�1; 1� has much greater average cell latency than that of

f�2; 1�, even though their input rates are close. This is

because f�1; 1� reserves only 10 percent of the bandwidth,

whereas 20 percent is set aside for f�2; 1�. For the same

reason, f�3; 1� suffers a larger delay than f�4; 1� since it has
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Fig. 11. The arrival pattern for traffic from link 1 (NLANR).

Fig. 12. The arrival pattern for geometric traffic from link 1.

Fig. 13. Average cell delay for trace vs. geometrically on/off traffic.

Fig. 14. Internet traffic: average cell delay for iFS and iSLIP.



a higher input rate (18.9 percent versus 13.1 percent), but
reserves less bandwidth (30 percent versus 40 percent).
However, a greater reservation itself cannot guarantee
lower delay. Look at f�2; 1� and f�3; 1� for a case in point.
Compared to f�2; 1� with a reservation of 20 percent, f�3; 1�
has a larger average cell delay even if it reserves 30 percent
of the bandwidth. The actual input workload for f�3; 1� is so
much higher than f�2; 1� that its reservation is not great
enough to bring in a lower delay.

In order to demonstrate how iFS enforces fair bandwidth
assignment, we need flows to send packets at a higher rate
than reservation. However, the highest link utilization from
the traces available at NLANR is only around 20 percent
and it becomes even lower after being split over four
outputs. We get around this problem by cutting down each
idle period to 25 percent of the original time in the
simulation. The resulting average link utilization of various
flows is listed in Table 3. We believe this manipulation on
the traces will not compromise the quality of the real traffic.
Assume the same bandwidth reservations of 10 percent,
20 percent, 30 percent, and 40 percent for f�1; 1�, f�2; 1�,
f�3; 1�, and f�4; 1�, respectively. The achieved bandwidth of
the flows is plotted in Fig. 15 for iFS and iSLIP schemes. It is
observed that iFS is capable of supporting fair bandwidth
allocation when the workload exceeds the capacity of the
shared link and the received bandwidth for the individual
flows is proportional to the reserved share. The iSLIP fails
to do so and distributes the bandwidth evenly among the
various flows due to the mechanism of rotating priority.

4.2.2 Measurement from UCB Traces

Next, we consider Web proxy traffic from HTTP traces
gathered by UC Berkeley in November 1996 from its Home
IP service [37]. The community gains IP connection across
about 600 modems (with speed from 2.4Kb/s to 28.8Kb/s)
and all their traffic ends up going through a single 10Mb/s
shared Ethernet segment on which a network monitoring
computer is placed. Interesting fields from the traces
include the time when the first byte of an HTTP response
data file was seen, the time when the last byte of data was
seen, anonymized client and server addresses, and the size
of response data file. We ignore the effect of HTTP requests
because their consumed bandwidth is negligible.

We do the following processing to the trace: According
to the maximum transmission unit of the Ethernet, we
segment each data file into a series of 1,500-byte packets.
Since our simulator is cycle-based, each packet is further
divided into cells, which are sent back-to-back as a burst.
The idle time between two consecutive bursts is determined
as if the packets belonging to a file are evenly spaced
between the time of the first byte seen and the last byte
seen. The idle period between the files is calculated directly
from the trace. The interleaving of packet transmission from
multiple files is also taken into account. Again, we assume a
4� 4 switch and classify traffic depending on the IP address
and then feed the traces into the four input links. Due to the
same reason as for NLANR traces, the idle time is cut down
to obtained higher link utilization, as shown in Table 4.

Assume the same bandwidth reservations of 10 percent,
20 percent, 30 percent, and 40 percent for f�1; 1�, f�2; 1�,
f�3; 1�, and f�4; 1�, respectively. The achieved bandwidth of
the flows from link 1 is plotted in Fig. 16 for iFS and iSLIP
schemes. As expected, with iFS scheduling, the more a
flows reserves, the more bandwidth it is entitled to. But, one
thing brought to our attention is that, although flow�1; 1�
has an average link utilization of 23.3 percent and has
reserved 10 percent of the link bandwidth, its perceived
bandwidth is only 6.8 percent. We examine the traffic
pattern for this flow and plot it in Fig. 17. It is observed that,
in approximately the first one third of the time, there are
almost no packet arrivals from flow�1; 1�. So, f�1; 1� has
nothing to send during that period. After that, its traffic
increases dramatically. However, due to the reservation of
10 percent only, flow�1; 1� is restricted by the iFS from
transmitting too much because other completing flows are
also over subscribed. Therefore, the resulting average
received bandwidth over the entire monitored interval is
only 6.8 percent. With iSLIP, flow�1; 1� grasps 25 percent of
the bandwidth in its active period and attains 15.8 percent
of the link bandwidth on average, well above the preserved
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TABLE 3
Link Utilization for the Flows after Cutting Down Idle Time

(NLANR)

Fig. 15. Internet traffic: received bandwidth distribution.

TABLE 4
Link Utilization for the Flows after Cutting Down Idle Time (UCB)



10 percent. According to the trace collector, the unchar-

acteristically low activity in the traces corresponds to

network outrages from Berkeley's ISP, rather than from

trace failures [37]. For comparison, we plot an example of a

normal flow arrival pattern in Fig. 18. We can see that, even

under such a skewed scenario, iFS is able to distribute

resources more fairly than iSLIP.

5 BUFFER MANAGEMENT FOR FAIR SCHEDULING

Section 3 focuses on the switch scheduling scheme itself,

without considering the buffer size. Yet , in practice, the

input buffer is finite. With rate-based flow control, which is

the common choice for supporting bandwidth distribution,

excessive packets are dropped when the buffer is full or

congestion is anticipated. In the following, we study four

selective packet discarding mechanisms and examine their

impact on fair bandwidth allocation.

5.1 Decongestion Mechanisms

While messages from a source node are fragmented into
fixed cells, which are transmitted individually across the
network and reassembled at the destination, cell level
retransmission is not supported. Thus, loss of a single cell in
a packet forfeits the whole packet and it has to be
retransmitted. Four decongestion mechanisms schemes are
investigated: drop tail (DT), early packet discard (EPD), equal
size per flow (ESPF), and rate based size per flow (RSPF). DT
and EPD are stateless, whereas ESPF and RSPF are on a per-
flow basis.

Drop tail: This is the basic dropping strategy: Cells are
first-in-first-out and an incoming cell is dropped if it arrives
to find the input buffer full. After a cell is shredded, the
switch still makes an effort to transmit the remaining part of
the packet, even if it turns out to be worthless at the
destination and the entire packet has to be retransmitted.
Hence, the DT scheme is poor in performance, despite its
simplicity in implementation without keeping the status for
each flow.

Early packet discard [11]: EPD overcomes the drawback
of DT by dropping all the cells constituting a new packet
when congestion is predicted. Upon receiving a header cell
of a new packet, the switch checks to see whether the buffer
occupancy exceeds a certain threshold. If so, the header cell
is dropped and so are the upcoming cells from the same
packet. Otherwise, the header is inserted into the buffer and
subsequent cells are allowed into the buffer as long as it is
not full upon their arrival. The justification behind this early
discard is that, because the buffer is almost full and the
congestion is likely to occur, the upcoming cells of the
packet are most probably dropped. So, it is better to give
up the packet that cannot be received successfully any
way sooner than later. A good side effect is that, once the
packet is dropped, it makes room in the buffer for other
upcoming packets so that they are less likely to be
discarded. Like the drop tail mechanism, EPD is also a
stateless scheme. But, we need to watch for buffer
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Fig. 16. Internet traffic: received bandwidth distribution (UCB).

Fig. 17. The arrival pattern for traffic from flow (1, 1).

Fig. 18. The arrival pattern for traffic from flow (4, 1).



occupancy constantly and keep track of the packets that
have been selected for discard so that their upcoming
cells are taken care of. Therefore, EPD is more intricate in
implementation compared to DT. It will been seen later,
with simulation, that the extra effort pays off.

Equal size per flow: Both drop tail and early packet
discard are stateless and they are very much handicapped
in the degree to which they achieve flow isolation, which is
important in order to prevent ill-behaved flow from taking
advantage of others. An EPD-based per flow queuing
approach, called ESPF, secures an equal share of the buffer
space after a certain threshold is reached. In ESPF, the share
is calculated as the total buffer size divided by the number
of concurrent active flows. Thus, this is a dynamic reserva-
tion policy in which the quota for each flow changes with
the number of active flows. When buffer occupancy is
below a certain threshold, all incoming cells are accepted.
After that, a header cell is allowed into the buffer only if the
flow's quota has not been used up. Otherwise, the entire
packet is discarded. Once the header cell is admitted,
subsequent cells can follow provided that the buffer is not
full. One concern of ESPF in terms of implementation
complexity is the necessity of computing the quota for the
active flows on-the-fly because the flows are on and off.

Rate-proportional size per flow: ESPF attempts to assign
an equal share of the buffer space to the active flows
without taking their desired bandwidth into consideration.
Intuitively, some flows may deserve a larger fraction of the
buffer than others because they reserve a greater portion of
the link bandwidth. In this sense, it is not necessarily fair to
treat all the flows equally when allotting the buffer space.
With the scheme of rate-proportional size per flow (RSPF),
the quota is assigned in proportion to the fraction of the
bandwidth reservation. As in ESPF, if buffer occupancy is
low, all incoming cells are admitted. After the threshold is
reached, a packet is allowed into the buffer only if its quota
has not been exhausted. In contrast to ESPF, the quota for
each flow is fixed by the time the reservation is made in
RSPF. Therefore, it is less computationally intensive in
implementation.

5.2 Performance Analysis

The decongestion mechanisms are evaluated based on the
simulation with a 4� 4 switch. From each of the four
inputs, there are four flows going to different outputs,
amounting to a total of 16 flows. We first examine the
various schemes using geometric on/off traffic for average
cell delay, packet loss ratio, and the ability to support fair
bandwidth allocation. Then, we extend our study to employ
real network traffic as input. The scheduling scheme used
throughout this section is iFS and the threshold is chosen to
be 80 percent of the buffer size.

Let us consider a scenario with a set of benign flows,
where each of the 16 connections reserves an equal share of
its intended link bandwidth and all the flows keep the same
actual average traffic rate all the time. The workload is
geometrically distributed on/off traffic and the average on
period is 20 consecutive cells in a burst. The buffer size for
each input block is set to 100 slots. We vary the offered
input rate by changing the mean off time and examine the
average cell delay and packet loss ratio, which is defined to

be the ratio of the number of lost packets to total number of
packets sent by the source. From the results in Fig. 19 and
Fig. 20, it is observed that, under the input rate of 0:6, there
is little difference among the four schemes. As the input rate
further increases, the delay for DT is far worse than the
others. In DT, incoming cells are dropped only when the
buffer is full. Therefore, even if a header cell has already
been discarded, constituent cells of the same packet may
still clog in the buffer and compete to pass the crossbar.
Such cells, eventually thrown away at the destination,
worthlessly obstruct the way of useful cells from other
packets and delay their transmission. The other three
schemes all employ an early packet discard technique
where useless cells are detected at an early stage and
dropped so that delivery of other packets is expedited.
Since all the flows reserve an equal share of bandwidth,
RSPF becomes almost identical to ESPF under this circum-
stance, so it is not a surprise that ESPF and RSPF give nearly
the same performance. However, careful study reveals that
ESPF offers slightly lower packet loss ratio. We trace this to
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Fig. 19. Average cell delay with average burst length of 20.

Fig. 20. Packet loss ratio with average burst length of 20.



the fact that the buffer quota is dynamically assigned to the
flows in ESPF. The active flows in ESPF can take advantage
of the off flows and allow more packets in the buffer than in
the case of RSPF.

Both ESPF and RSPF outperform EPD under heavy
workload. With EPD, a new packet is discarded when the
threshold is reached, whereas, in ESPF and RSPF, an
incoming packet can still be admitted provided that the
quota for its flow has not been exhausted. Therefore, with
the same threshold, ESPF and RSPF allow more packets into
the buffer. And, it explains why EPD has a much higher
packet loss ratio than ESPF and RSPF in Fig. 20. It is possible
to set a higher threshold in order for EPD to achieve better
buffer utilization, but, again, the same problem with DT
may occur.

In the next setting, we increase the average on period to
30 cells per burst and rerun the simulation. The resulting
delay and packet loss rate are shown in Fig. 21 and Fig. 22.
The trend is identical to the previous scenario, but, still,
differences have been observed. For this setting, the delay
under any given scheme is greater than that of the same

scheme in the previous scenario when the average burst
period is shorter. Comparing Fig. 19 and Fig. 21, the
distinction is especially clear when the input rate is in the
medium or upper higher range, within 0:4-0:8. In this range,
incoming cells in the latter case find more cells accumulated
in the buffer upon arrival, resulting in greater delay. With
shorter bursts, on the other hand, the buffer is more likely
be drained and, therefore, waiting time is less. Compared
with Fig. 20, Fig. 22 shows a greater packet loss ratio for any
given scheme. For a certain input rate, we find fewer
number of packets in the long burst case. Therefore, a one-
cell loss has greater impact on packet loss ratio in this case.
Another observation is that the DT scheme is more sensitive
to burstiness than others. At input rate 0:99, loss ratio
increases from 0:25 to 0:36, while there is only a 0:03
increase for the rest of the schemes.

The performances of the various decongestion mechan-
isms are inspected in supporting fair bandwidth distribu-
tion using geometric on/off workload. Following the
notation of the tagged flows in Section 4, it is assumed
f�1; 1�, f�2; 1�, f�3; 1�, and f�4; 1� reserve 10 percent,
20 percent, 30 percent, and 40 percent of the output link 1
bandwidth, respectively. Each of the rest of the flows
reserves a fraction of 15 percent of their intended link
bandwidth. Suppose that the tagged flows fail to keep the
contract and each sends at a rate of 0.4, but others abide
their promises. The perceived bandwidth for the flows is
presented in Fig. 23. Without flow isolation, DT performs
the worst and cannot support bandwidth distribution
according to the reservation. For example, compared to
their respective reservation of 10 percent and 20 percent,
f�1; 1� receives 7.6 percent and f�2; 1� gets 4.4 percent. Yet,
the figure shows that the various flows do receive some-
what different bandwidth using DT. This is attributed to the
fair scheduling scheme being used, which attempts to favor
flows with greater reservation. EPD improves over DT by
supporting fair bandwidth distribution among the tagged
flows. However, if we look at untagged flows from input
links 1 and 2, they receive bandwidth well below the
reservation. The reason is that the actual sending rate from
tagged flows of input 1 and 2 is so much higher than their
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Fig. 21. Average cell delay with average burst length of 30.

Fig. 22. Packet loss ratio with average burst length of 30.

Fig. 23. The ability for fair bandwidth allocation under synthetic

workload.



reservation that many of their packets are backlogged. Since
EPD is not per-flow based, such packets clog the buffer and
prevent cells from the untagged flows from getting in.
Eventually, packets from the untagged flows are discarded,
resulting in underutilization of their allocated bandwidth.
With per-flow queuing, ESPF and RSPF sucessfully protect
the benign flows in this scenario. The fairness indices for the
four policies are given in Table 5. One may wonder why
ESPF, without taking any reservations, works almost
equally as well as RSPF. It is difficult to derive the
distribution for queue length analytically since it is a
G=G=1 queuing system from the point of view of each flow.
But, intuitively, because fair scheduling is employed, flows
reserving a greater fraction of bandwidth also receive a
higher service rate and cells are drained more quickly. As a
result, such flows do not necessarily require a buffer size in
proportion to the arrival rate. For instance, in an M=M=1
system, the average queue length is �

�ÿ� , where � and � are
arrival and service rate, respectively.

Finally, the various decongestion mechanisms are com-
pared using the Web traces, as in Section 4.2. For NLANR
packet header traces, the link utilization can be found in
Table 3. The bandwidth reservation imposed is assumed to
be the same with the last setting, i.e., 10 percent, 20 percent,
30 percent, and 40 percent for the tagged flows and
15 percent otherwise. The perceived bandwidth for the
individual flows under different schemes is plotted in
Fig. 24. A significant difference between ESPF and RSPF is
seen, especially for flow f�3; 1�, whose traffic is the most
intensive and clustered. Rate-based buffer space allocation

gives better results under real traffic when the incoming
packets are highly bursty. Although flows with greater
bandwidth reservation drain their cells faster under fair
bandwidth scheduling, it may not be fast enough to offset
the fact that their cells arrive in a dramatically clustered
fashion. The fact that EPD provides a more fair bandwidth
allocation than ESPF for output link 1 (� value 0.14 versus
0.22 in the first row of Table 6) also proves this to be true
since flows with a higher input rate are allowed to take
more buffer space in EPD but not in ESPF. Therefore, an
equal share of the buffer is not capable of maintaining
fairness for such flows and it is beneficial to provide a larger
buffer for those with a highly bursty arrival pattern.

We assume the same bandwidth requirement for the
flows in the UCB Web proxy traces and rerun the
simulation using various decongestion policies. The results
are presented in Fig. 25 and Table 7. We again found that
both RSPF and ESPF offer better performance than EPD.
RSPF outperforms ESPF for some flows and is a little bit
inferior for others. We attribute this to the traffic character-
istics of the individual flows.

The above experiments indicate that the decongestion
mechanism can significantly affect the switch performance
and fair scheduling scheme alone cannot guarantee fairness.
Early packet discard, which drops worthless packets at an
earlier stage and relieves the network congestion, is a must.
Flow isolation is important to support fair link bandwidth
distribution. Under situations when the traffic is not highly
bursty, equal sharing of buffer space is sufficient if the fair
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TABLE 5
Effect of Decongestion Mechanism on Fairness

under Synthetic Workload

Fig. 24. The ability for fair bandwidth allocation for Internet traffic

(NLANR).

TABLE 6
Effect of Decongestion Mechanism on Fairness

under Real Workload (NLANR)

Fig. 25. The ability for fair bandwidth allocation for Internet traffic (UCB).



scheduling scheme is used. However, when cell arrival is

highly clustered, equal buffer sharing will force the flows

with high input rate to drop more packets. This can be

avoided to a large extent if buffer allocation is in proportion

to the bandwidth reservation.

6 CONCLUDING REMARKS

In this paper, we explored the scheduling schemes for input

buffered switches to support fair bandwidth allocation. We

first proposed an iterative fair scheduling (iFS) algorithm

capable of scheduling cells so that each flow receives

bandwidth proportional to its reservation under heavy

traffic. We showed that fairness support does not compro-

mise the average cell latency when compared with other

iterative scheduling schemes. We examined four deconges-

tion mechanisms and studied their impact on supporting

fair bandwidth scheduling. With the extensive experimental

results, we showed that early packet discard is necessary to

relieve congestion. Our simulation also tells us that the fair

scheduling scheme alone cannot ensure fair bandwidth

allocation and per flow buffering is needed to protect well-

behaved flows. Buffer allocation based on the bandwidth

reservation offers better fairness, especially when the

workload is highly clustered. It is worth mentioning that

we explored the issues of switch design by incorporating

the Web traffic traces in the study. Although it has been

applied in other aspects of network research, it has not been

used in the study of this area before. Results from a real

trace workload provide further validation in addition to the

commonly employed traffic model.
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