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Abstract

High interprocess communication latency is detrimental to parallel and grid computing. Over the years, the network bandwidth has
increased rapidly while the end-to-end latency has not decreased much. This is because the latency is dominated by the protocol software
execution time in the kernel instead of the raw transmission time over the link. In this paper, we perform an anatomical analysis of
the complete communication path between a sender and a receiver through measurements. We present an in-depth evaluation of various
components of the UDP protocol over Fast Ethernet. Virtual Interface Architecture (VIA) protocol has been recently proposed to overcome
the software overhead of the TCP/UDP/IP protocol. We analyze M-VIA, a modular VIA implementation for Linux over Ethernet, and
compare its performance with UDP. The aim of our experiments is to present the protocol overheads in details rather than to suggest new
techniques to reduce overheads.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In cluster computing, high-bandwidth and low-latency
end-to-end communication is critical to achieve high perfor-
mance. High bandwidth is necessary because a large mount
of data is transferred among cluster nodes. In addition, to en-
able quick synchronization and coordination among cluster
nodes, a lot of small control messages must be delivered as
quickly as possible. Hence, low latency for small messages
is extremely important.

We have seen rapid increase of the network bandwidth
from 10 Mb to 10 Gb. However, the end-to-end latency did
not decrease proportionally, especially in the case of trans-
ferring small packets. For example, we measured a 23�s
minimum end-to-end latency over 100 Mb Ethernet with
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400-MHz Celeron CPU and 33-MHz PCI, while a latency
of 19�s was reported using 10 Gb Ethernet, dual 2.2-GHz
Xeon CPUs and 133-MHz PCI-X[5]. This discrepancy be-
tween bandwidth and latency motivates us to investigate the
underlying reason. While it is easy to get the end-to-end la-
tency in a particular system, a detailed analysis at the low-
est level of entire end-to-end communication path would be
more insightful as it could lead to fundamental discoveries
as to where software and hardware inefficiencies still exist.
To the best of our knowledge, no such work exists for a
send/receive operation in a parallel computing cluster envi-
ronment.

End-to-end communication latency involves both hard-
ware and software latency. The hardware includes all the net-
work components, such as network interface cards (NICs)
and switches, etc., to transmit packets from one host to an-
other. Although high-end clusters usually employ powerful
nodes and advanced network, such as Myrinet [1] and In-
finiBand [6], more and more clusters are built using PCs and
Ethernet. With the advent of 10 Gb Ethernet [5], this trend
will continue.
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The software, on the other hand, usually refers to mes-
sage processing through network protocols by the end hosts.
There are two kinds of network software architectures used
in cluster: the traditional kernel-based network architecture
and the user-level network architecture. In the traditional net-
work architecture, the protocol software usually forms part
of the kernel which is invoked by a networking API, such as
socket. The most popular protocol suite is TCP/IP designed
for transferring packets over Internet. For compatibility, it
is also heavily used in clusters. TCP[12] is a connection-
oriented protocol designed to provide reliable end-to-end
transmission over an unreliable network, and has been stud-
ied extensively in the literature [3,7]. UDP [11], as a con-
nectionless transport layer protocol in TCP/IP, provides user
applications the simplest way to send a packet to another
application. Although UDP does not guarantee reliable mes-
sage delivery, it is widely used in the cluster environment
because of the inherent reliability of the cluster hardware.
Network File System (NFS) [15], Parallel Virtual Machine
(PVM) [16] and some implementations of Message Passing
Interface (MPI), such as LAM/MPI [8] and MPICH-SCore
[10], use UDP for communications. Therefore, analyzing the
behavior and timing of UDP helps understand the minimum
communication latency of traditional network protocols.

Due to the deep protocol stack, TCP/IP imposes a large
latency for every message sent over the network, degrading
the communication performance especially in the cluster en-
vironment. The user-level network architecture has emerged
to address this issue. By removing the operating system and
its centralized networking stack from the critical communi-
cation path, the user-level network architecture provides user
applications a user-level network interface, through which
users can directly access their network interface in a pro-
tected fashion. The operating system is only involved in set-
ting up the communication. A large number of user-level
network software have been proposed. A survey of these
messaging software for Myrinet can be found in [13]. All of
these efforts finally led to an industry standard called Vir-
tual Interface Architecture (VIA) [4] by Intel, Compaq and
Microsoft. Therefore, we analyze VIA in addition to UDP
in this paper.

VIA is a connection-based protocol. It provides each user
process with a protected, directly accessible interface to the
network hardware—a Virtual Interface (VI). Each VI repre-
sents a communication endpoint. VI endpoint pairs can be
logically connected to support bi-directional, point-to-point
data transfer. VIA provides communication services by a
user-level library called VI User Agent, through which a
user application can establish a VI connection for sending
and receiving messages. VIA has also been studied to some
extent [2].

In this paper, we perform an anatomical analysis of the
UDP and VIA, and make a detailed comparison between the
two protocols. We analyze the protocol software (code) in
the kernel and perform critical-path profiling. Our analysis
differs from the existing studies in that we consider the entire
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Fig. 1. Experimental setup

path from a sender to a receiver that includes protocol pro-
cessing, operating system, NICs and network transmission.
We provide a panorama of the complete transmit/receive
path, vividly showing the time consumed by each part with
CPU clock accuracy. By doing so, we are able to (1) under-
stand the exact operations by different parts of a protocol
software; (2) identify the timing and bottleneck along the
critical path, and (3) design and optimize different parts of
network software to reduce latency.

The remainder of this paper is organized as follows.
Section2 describes our experimental setup and profiling
methodology. Sections 3 and 4 present the detailed analysis
of UDP and VIA, respectively, with a comparison and con-
trast of these results presented in Section 5. Finally, Section
6 presents our conclusion.

2. Experimental setup and profiling methodology

To evaluate the latency performance of UDP and VIA, we
setup an experimental system as shown in Fig. 1. Two PCs
are connected with cross-over cable, each equipped with a
Pentium Celeron 400-MHz CPU, 256-MB PC100 SDRAM,
and a DEC 21140 chip-based Fast Ethernet NIC. On top of
the hardware, we install RedHat Linux 9.0 (with updated
kernel version 2.4.20-30.9, TCP/IP is implemented in ker-
nel). We also install M-VIA, a high-performance modular
VIA for Linux over Ethernet [9]. M-VIA provides a driver
for DEC 21140, allowing us to make a fair comparison be-
tween UDP and VIA using the same hardware. Of course,
choosing Fast Ethernet and low-speed PCs clearly does not
match today’s technology. But in term of latency analysis, it
may still be valid because the latencies of transferring small
packets are not much different among different networks as
shown in the introduction.

To measure the end-to-end latency, we created two ping-
pong programs in which one machine sends a message to
another machine that echos the message back to the sender
(upingpong for UDP/IP, andvpingpong for M-VIA
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unreliable service). The Linux kernel is also patched to in-
clude our profiling functions (see below). To minimize the
amount of interference in our measurement, we eliminate
all other network traffic and minimize the number of pro-
cesses to the ping-pong program and a few essential Linux
services. When processing the collected data, we consider
90% of the data to minimize the unavoidable interference
such as OS context switch. Measurements run long enough
to ensure the 95% confidence interval of the average latency
with ±5% width.

The aim of this work is to measure and present a detailed
analysis of the execution profile of M-VIA and UDP/IP. We
adopt atime-stamp-based approach, where a small piece of
code is manually inserted into the points of interest. This
code records the current time-stamp of the measured point
into a buffer using the “read-time-stamp-counter” (rdtsc )
instruction, thus providing a more convenient method of
measurement with a time-stamp granularity on the order of
only 2.5 ns (i.e., 1/400 MHz). The overhead of the time-
stamp code is small (only 43 CPU cycles) and is subtracted
from the measurement.

3. UDP/IP Analysis

Before UDP analysis, it is necessary to briefly introduce
the communication process between the host CPU and the
DEC 21140 NIC used in our experiment. Fig.2 shows the
diagram of the buffer management between the host and the
NIC. The DEC 21140 chip is a PCI bus-mastering Fast Eth-
ernet controller capable of transferring frames to and from
host memory via DMA. It includes a few on-chip command
and status registers (CSRs), a DMA engine, a receive FIFO
queue (Rx_FIFO ) and a transmit FIFO queue (Tx_FIFO ).
It also maintains in the host kernel memory a circular send
ring buffer (tx_ring ) and a receive ring buffer (rx_ring )
containing descriptors which point to buffers for data trans-
mission and reception.

Linux TCP/IP implementation provides the standard BSD
socket as the user interface. Each socket contains two queues
for send and receive. Each queue entry points to an impor-
tant buffer structureskbuf where all control and data in-
formation are stored. To send a message, the send process
first copies the message from a user buffer to askbuf , as-
sembles the outgoing packet, pushes it into thetx_ring
and then sends a transmit request to the NIC, which DMAs
the packet from theskbuf to theTx_FIFO and then to the
network. At the receiver side, when the NIC detects an in-
coming packet, it first stores the packet into theRx_FIFO
and then DMAs the packet to askbuf pointed by the tail
rx_ring descriptor. Finally, the OS copies the packet from
theskbuf to a user-space buffer.

Now let us walk through the UDP/IP stack to see how
a packet is transferred from a sender to a receiver. Fig. 3
shows a detailed time line of transferring a 1-byte message.
We divide the time line into two categories:critical time
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Fig. 2. Linux TCP/UDP/IP over DEC 21140 NIC.

andnon-critical time. The former is the time that directly
contributes to the one-way, end-to-end latency along a crit-
ical path while the latter is necessary for functionality but
not in the critical path. We assume that the socket has been
created, and the connection is also made to the remote ad-
dress (Note: The UDP connection is just for the purpose of
avoiding routing lookup for each packet. It is not actually
connected to a remote host as in TCP). Since these are setup
operations, they are not included in the critical path. To get
the minimum latency, we use polling for receive, i.e., call a
non-blocking receive in a loop. Also, note that the absolute
times shown in Fig.3, may be different if a more powerful
PC is used because the execution time of the respective soft-
ware segments will be reduced. Due to page limit, we only
give a very brief description of the entire processing path.
Interested readers can refer to the extended version of this
paper [14] for more details.

3.1. UDP/IP send processing

The sending process starts from the system callsend()
(t1) which goes through the following layers: (1) the socket
layer functionsys_sendto() (t2) gets the socket and
builds a message header which contains various control in-
formation. (2) the UDP send functionudp_sendmsg()
(t3) verifies the address, gets the routing entry and builds the
UDP header. (3) the IP send functionip_build_xmit()
(t4, also shown in Fig. 4) allocates ask_buf , fills the IP
header, and then callsudp_getfrag() to copy the mes-
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sage from the user buffer to thesk_buf and compute the
checksum, and finally fills the UDP header. (4) the data link
layer (t5) prepares the Ethernet header, calls the NIC send
functiontulip_start_xmit() to putsk_buf into the
tx_ring and finally triggers the transmit by resetting the
CSR1 register on the NIC.

3.2. NIC transmit and receive processing

The NIC then engages the DMA to fetch the packet from
the host memory to theTx_FIFO and then send it onto the
wire. At the receive side, when the NIC detects an incoming
packet, it pushes the packet into theRx_FIFO , and then
DMAs the packet to the host memory, and finally raises an
interrupt to trigger the receive processing. Fig.5 shows the
DMA/transmit time as a function of message size.

3.3. UDP/IP receive processing

The receiving process is much more complex and time-
consuming than the sending process. As shown in Fig. 3,
for small messages, half of the one-way latency is spent on
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Fig. 4. IP layer processing time (t4 in Fig. 3).

receive. It consists of two threads: one is from the interrupt
(we call it bottom thread) and the other is from therecv()
system call in the user application (we call it upper thread).

The bottom thread starts from the interrupt handler
IQRn_interrupt , wheren is the IRQ number. It saves all
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the CPU registers on the stack and invokes thedo_IRQ() ,
which in turn calls the NIC interrupt service routine
tulip_interrupt() to get theskbuf pointed by the
headrx_ring descriptor, determine the packet protocol
id and raise theNET_RX_SOFTIRQsoft interrupt. The
NET_RX_SOFTIRQsoft interrupt is implemented by the
net_rx_action() function which invokes a suitable
network layer function, in our case,ip_rcv() which
in turn calls the transport layer function (in our case,
udp_rcv() ). The udp_rcv() checks the UDP header,
finds the socket that matches the address and port, pushes
the packet into the socket queue, and wakes up a sleeping
process waiting for packets if necessary.

The upper thread starts from the system callrecv() .
It eventually invokesudp_recvmsg() which checks the
socket queue. If the queue is empty and the receive is block-
ing, it sleeps; if the receive is non-blocking, it returns im-
mediately. If the queue is not empty, it dequeues the first
skbuf from the socket queue and copies the message from
the skbuf to the specified user buffer. Checksum is also
performed during copy. Fig.6 records the variation of the
processing time (t16 in Fig. 3) afterudp_recvmsg() gets
a packet as a function of message size.

After udp_recvmsg() returns, sys_recvfrom()
performs some socket layer post processing, such as copy
the sender address to the user space. Finally the system
call returns, and the whole receiving process is done.
Table 1 summarizes the CPU cycles and time spent in each
segment.

4. M-VIA Analysis

M-VIA implements the standard user interface specified
in the VIA specification [4]. End-to-end communication is
through a Virtual Interface (VI). Similar to socket, a VI con-
sists of a send queue and a receive queue. To start commu-
nication, a user program first creates a VI connection. Un-
like a socket program which usessend() and recv() ,
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Fig. 6. udp_recvmsg() processing time after getting a packet from
the socket queue (t16 in Fig. 3).

a program using VI posts requests, in the form of descrip-
tors, to the queues to send or receive messages. A descriptor
contains all information, such as pointers to data buffers,
for processing the request. To be specific, the sender first
calls VipPostSend() to post a descriptor to its send
queue and then callsVipSendWait() to wait for the
send completion. To receive a packet, the receiver first calls
VipPostRecv() to post a descriptor to its receive queue
and then callsVipRecvWait() waiting for an incoming
packet.

Fig. 7 shows the diagram of the buffer management
between the host and the NIC when M-VIA is used. A
major difference compared to UDP/IP is that there is
no additional memory copy during the send process for
M-VIA. The data buffer allocated by the user applica-
tion will be directly accessed by the NIC. This is done
by the VipRegisterMem() function, which registers
the user buffer into the kernel. What M-VIA does in
VipMemRegister() is to pin the user buffer into the
memory to avoid swap so that the physical address of the
user buffer can be obtained by the NIC for DMA oper-
ation. This memory registration is normally done during
the setup. Fig. 8 shows the detailed time line of transfer-
ring 1-byte message in M-VIA. Compared to Fig. 3, the
send/receive process in M-VIA is much simpler than that
in UDP. Note thatVipPostRecv() must be used before
VipRecvWait() to receive a packet, but it does not have
to be in the critical path because we can post a receive
descriptor at any time before a packet arrives as shown in
Fig. 8.

4.1. M-VIA send processing

The sender starts withVipPostSend() which does two
things: (1) push a send descriptor to the end of the send queue
(t1 in Fig. 8); (2) inform the NIC to send the message. For
NICs that support VIA in hardware, a doorbell mechanism
is provided to trigger the NIC. For traditional NICs, such as
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Table 1
UDP/IP critical time breakdown using Pentium Celeron 400 MHz CPU
Interval Description Time

Cycles �s
t1 System call 342 0.85
t2 Socket send processing 307 0.77
t3 UDP send processing 200 0.50
t4 IP send processing see Fig.4
t5 Device send processing 291 0.73
t6 + t7 NIC DMA/transmit see Fig.5
t8 NIC DMA receive 896 2.24
t9 Interrupt start time 1131 2.82
t10 NIC interrupt service routine 1780 4.44
t11 do_IRQ/softirq/net_rx_action processing 379+148+283 0.95+0.37+0.71
t12 IP receive processing 726 1.81
t13 UDP receive processing (in bottom thread) 470 1.17
t14 net_rx_action/softirq/interrupt return 238+100+150 0.60+0.25+0.38
t15 Polling time before getting a message (average) 432 1.10
t16 UDP receive processing (in upper thread) see Fig.6
t17 Socket receive post processing 106 0.26
t18 System call return 239 0.60
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Fig. 7. M-VIA over DEC 21 140 NIC.

those used in M-VIA, additional device-related processing is
necessary. This is done by fast trapping to a kernel function
VipkERingtulipPostSend() (t2 in Fig. 8).
VipkERingtulipPostSend() first prepares the

send header, waits for device stop, gets the next send de-
scriptor entry, and fills in the header. Then it segments
large packets if necessary. Segmentation is based on max-
imum transmit unit (MTU) and page boundary. A packet
larger than MTU or across a page boundary will be seg-
mented into chunks. For each chunk, the function first puts

the chunk address into an availabletx_ring entry, and
then triggers an immediate transmit demand by resetting
CSR1 on the NIC. Because of pipelining, the time which
VipkERingtulipPostSend() contributes to the crit-
ical path is constant (t3 in Fig. 8). Comparing Fig. 8 and
Fig. 3, it may be noticed that M-VIA reduces the send time
from 5�s to 2�s before DMA, and that the send time in
M-VIA is constant because of the copy elimination.

4.2. NIC transmit and receive processing

Fig. 9 shows that DMA/transmit time. The graph is almost
the same as that in the case of UDP. Close examination of
the measured data shows that there is a 0.5�s increase in
the latency in the case of M-VIA. This is due to the fact that
M-VIA puts header and data into two buffers, so that the
NIC needs to DMA twice to get all of them.

4.3. M-VIA receive processing

Like UDP, the M-VIA receiving process also consists
of two threads. The bottom thread is triggered by the NIC
interrupt after the NIC DMAs a packet to a buffer in the
host memory. The NIC interrupt service routine is also
tulip_interrupt() which is modified to add VIA
functionalities. Unlike UDP which raises a soft interrupt
and may postpone the receive processing, this function does
all the receiving work as follows:

(1) get the VI handle from the received packet;
(2) get the corresponding VI structure;
(3) check the sequence number of the received packet;
(4) get the VI descriptor from the VI receive queue;
(5) copy the message from the buffer pointed by the head

rx_ring descriptor to the buffer specified by the VI
descriptor;
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(6) and, if last segment, mark the VI descriptor completion
bit, increment the receive count, and wake up a block
process if necessary.

Fig. 10 shows this processing time (t8 in Fig. 8) as a
function of message size. The step shaped curves clearly
shows the impact of cache line (32 bytes) to the memory
copy. After the NIC interrupt service routine, the OS returns
to execute the interrupted program.

The upper thread starts fromVipRecvWait() which
just checks whether or not the descriptor at the head of
the receive queue is completed. It has two stages. First it
polls the completion bit for a number of times (50 000 times
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Fig. 10. M-VIA NIC interrupt receive processing time (t8 in Fig. 8)

in the current implementation). Then, if polling timeouts,
VipRecvWait() will trap to VipkRecvWait() and
sleep there, and finally be waked up by the bottom thread.
In our test,VipRecvWait() always returns in the polling
phase. One polling iteration takes very little time, about
0.04�s (t10 in Fig. 8). This conclude the whole receiving
process. Table 2 summarizes the CPU cycles and time spent
in each part.

5. Comparison between UDP and M-VIA

Based on the previous data and analysis, we now conduct
a detailed comparison between UDP and M-VIA. Fig. 11
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Table 2
M-VIA critical time breakdown using Pentium Celeron 400 MHz CPU
Interval Description Time

Cycles �s
t1 VipPostSend() processing 24 0.06
t2 Fast trap 131 0.33
t3 Device send processing 627 1.56
t4 + t5 DMA/transmit see Fig.9
t6 DMA receive time 896 2.24
t7 Interrupt starting time 1119 2.80
t8 Interrupt receive processing see Fig.10
t9 Interrupt return time 600 1.50
t10 VipRecvWait() processing (polling) 16 0.04
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shows the one-way end-to-end latency of UDP and M-VIA.
Note that the one-way latency of M-VIA for short messages
is much less than UDP. Since most of the interprocess com-
munication in parallel computing or grid environments con-
sists of small messages, M-VIA has enormous advantage
over UDP. When we move to a server workload transferring
big messages, this advantage tends to reduce.

In Table 3, we put each time interval into one of the six
categories to show the difference between UDP and M-VIA
in each category. As we can see, M-VIA has some processing
in user space before trapping to kernel. It also spends a
little more time in DMA/transmit/receive because M-VIA
stores header and data in two buffers. However, these time
increases are negligible. In other categories, the saving of
M-VIA over UDP is significant.

• First, M-VIA has less OS overhead than UDP. In send,
M-VIA uses fast trap(0.33�s) instead of normal system
call (0.85�s). In receive, M-VIA avoids soft interrupt by
handling all receive functionalities in the interrupt han-
dler. However, since M-VIA interrupt processing time
(see Fig.10) is variable, this may cause slow response
time to other processes when receiving large packets.
Note that the technique that M-VIA uses can also be ap-
plied to UDP. In addition, the main OS overhead is the

interrupt overhead (t7 + t9 in Fig. 8). This overhead can
only be eliminated by using programmable NICs which
handle all receive functionalities locally. That is what a
VIA capable NIC needs to do.

• Second, M-VIA spends 5.17�s on protocol processing
while UDP spends 15.76�s. This big saving is mainly
due to the reduction of the protocol layers. UDP, though
simple, still needs to go through a number of layers,
while M-VIA directly handles packets in the device
layer. In addition, M-VIA eliminates the data copy in
send (t3 in Fig. 8 vs. t2 − t5 in Fig. 3) and uses more
efficient polling in receive (t10 in Fig. 8 vs.t15 in Fig.
3). However, VIA achieves this at the expense of lack-
ing IP routing. It depends on the MAC address to route
packet, which means that it can only be used in LAN,
where nodes are connected by switches. UDP, on the
other hand, can be used anywhere. This implies that M-
VIA is the protocol specifically optimized for LANs.

6. Conclusion

In this paper, we performed an anatomical analysis of
UDP and M-VIA. Our analysis clearly presented different
parts of a send/receive communication used in parallel com-
puting. Our experiment shows that to transfer a 1-byte mes-
sage, the NIC spends about 13�s, which is the hardware
limit of Fast Ethernet. On top of that, UDP spends 23�s
in processing while M-VIA spends only 10�s. This signifi-
cant difference is mainly due to the protocol processing time
reduction in M-VIA. UDP has to go through a number of
layers while M-VIA directly handles packets at the device
layer. However, M-VIA lacks IP routine functionality, mak-
ing it only feasible in specific environments, such as cluster,
where nodes are connected by switches. M-VIA also incurs
less OS overhead than UDP. However, the techniques used
by M-VIA can also apply to UDP to reduce the latency. It
was also shown that the latency of both UDP and M-VIA in-
creases as the message size increases, and that the difference
in latency between the two becomes small when transfer-
ring large messages. This means that M-VIA is much more
applicable for parallel computing than server applications.
Although this conclusion is not new, our paper described
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Table 3
Critical time comparison between UDP and M-VIA for transferring a 1-byte message over Fast Ethernet using Pentium Celeron 400-MHz CPU
Categories UDP/IP M-VIA

Intervals in Fig.3 Cycles �s % Intervals in Fig.8 Cycles �s %
User application t1 + t10 40 0.10 0.43
Protocol processing (send) t2 + t3 + t4 + t5 1688 4.22 11.72 t3 627 1.56 6.75
Protocol processing (recv) t10 + t12 + t13 + t15 + t16 + t17 4616 11.54 32.04 t8 1404 3.51 15.20
OS overhead (send) t1 342 0.85 2.36 t2 131 0.33 1.43
OS overhead (recv) t9 + t11 + t14 + t18 2644 6.61 18.35 t7 + t9 1719 4.30 18.61
DMA/transmit/ receive t6 + t7 + t8 5120 12.80 35.53 t4 + t5 + t6 5320 13.30 57.58
Total 14408 36.02 9240 23.10

what exactly UDP and M-VIA differ and why M-VIA saves
time over UDP.

References

[1] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, W.-K. Su, Myrinet: a gigabit-per-second local area
network, IEEE Micro 15 (1) (January/February 1995) 29–36.

[2] P. Buonadomna, A. Geweke, D. Culler, An implementation and
analysis of the virtual interface architecture, in: Proceedings of SC
’98, Orlando, FL, November 7–13 1998.

[3] D. Clark, V. Jacobson, J. Romkey, H. Salwen, An analysis of TCP
processing overhead, IEEE Comm. Mag. 27 (6) (June 1989) 23–29.

[4] Compaq, Intel, Microsoft, Virtual interface architecture specification,
draft revision 1.0, December 4, 1997 [Online]. Available:
http://www.viarch.org.

[5] J. Hurwitz, W. Feng, End-to-end performance of 10-gigabit Ethernet
on commodity systems, IEEE Micro 24 (1) (January/February 2004)
10–22.

[6] InfiniBand Trade Association, Infiniband architecture specification,
release 1.0 [Online]. Available:http://www.infiniband.org.

[7] J. Kay, J. Pasquale, Profiling and reducing processing overheads
in TCP/IP, IEEE/ACM Trans. Networking 4 (6) (December 1996)
817–828.

[8] LAM/MPI parallel computing [Online]. Available:
http://www.lam-mpi.org/.

[9] National Energy Research Scientific Computing Center, M-VIA:
a high performance modular VIA for Linux [Online]. Available:
http://www.nersc.org/research/FTG/via.

[10] PC Cluster Consortium, SCore Cluster System Software [Online].
Available: http://www.pccluster.org/.

[11] J. Postel, User datagram protocol, RFC 768, August 1980.
[12] J. Postel, Transmission control protocol, RFC 793, September 1981.
[13] R. dos Santos, R. Bianchini, C.L. Amorim, A survey of messaging

software issues and systems for Myrinet-based clusters, Parallel
Distributed Comput. Practices, Special issue High-Performance
Comput. Clusters 2 (2) (June 1999).

[14] X. Zhang, L. Bhuyan, W. Feng, Anatomy of UDP and M-VIA
for cluster communication, UCR, Technical Report, May 2004
[Online]. Available: http://www.cs.ucr.edu/∼xzhang/publications/tr-
via-udp.pdf.

[15] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M.
Eisler, D. Noveck, {NFS} Version 4 Protocol, RFC, 3010, Dec, 2000.

[16] PVM, Parallel Virtual Machine, url:http://www.csm.ornl.gov/pvm/
pvm_home.html.

Xiao Zhang received the B.E degree in
Computer Science from the Shanghai Jiao
Tong University, Shanghai, P.R. China, in
1991, and the M.S. degree in Computer
Science from the University of California,
Riverside, in 2001. He is currently working
toward the Ph.D. degree at the University
of California, Riverside.
His research interests include high-
performance network, switch scheduling,
high availability cluster, and distributed
system.

Laxmi N. Bhuyan received the Ph.D. de-
gree in Computer Engineering from the
Wayne State University, Detroit, MI, in
1982.
He has been Professor of Computer Sci-
ence and Engineering at the University of
California, Riverside, since January 2001.
Prior to that, he was a Professor of Com-
puter Science at Texas A&M University,
College Station (1989–2000) and Program
Director of the Computer System Architec-
ture Program at the National Science Foun-
dation (1998–2000). He has also worked

as a Consultant to Intel and HP labs. His research addresses multiprocessor
architecture, network processors, Internet routers, web servers, parallel
and distributed computing, and performance evaluation.
Dr. Bhuyan is a Fellow of the IEEE, the ACM and the AAAS. He has
also been named as an ISI Highly Cited Researcher in Computer Science.

Dr. Wu-chun (Wu) Feng is a Technical
Staff Member and Team Leader of Research
& Development in Advanced Network
Technology (RADIANT) in the Computer
& Computational Sciences Division at Los
Alamos National Laboratory and a fellow
of the Los Alamos Computer Science Insti-
tute. His research interests span the areas
of high-performance networking and com-
puting.
He received a B.S. in Electrical & Com-
puter Engineering and Music (Honors) and
an M.S. in Computer Engineering from the
Pennsylvania State University in 1988 and

1990, respectively. He earned a Ph.D. in Computer Science from the
University of Illinois at Urbana-Champaign in 1996. He is a Senior
Member of the IEEE and a Member of the ACM.

http://www.viarch.org
http://www.infiniband.org
http://www.lam-mpi.org/
http://www.nersc.org/research/FTG/via
http://www.pccluster.org/
http://www.cs.ucr.edu/~xzhang/publications/tr-via-udp.pdf
http://www.csm.ornl.gov/pvm/pvmprotect LY1	extunderscore home.html
http://www.csm.ornl.gov/pvm/pvmprotect LY1	extunderscore home.html

