
J. Parallel Distrib. Comput. 72 (2012) 1442–1449
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Analyzing performance and power efficiency of network processing over 10 GbE
Guangdeng Liao ∗, Laxmi Bhuyan
Department of Computer Science and Engineering, University of California, 92507 Riverside, USA

a r t i c l e i n f o

Article history:
Received 8 July 2011
Received in revised form
15 January 2012
Accepted 23 February 2012
Available online 2 March 2012

Keywords:
10 GbE
Network processing
Instrumentation
Performance
Power
NIC

a b s t r a c t

Ethernet continues to be the most widely used network architecture today for its low cost and backward
compatibility with the existing Ethernet infrastructure. Driven by increasing networking demands of
cloud workloads, network speed rapidly migrates from 1 to 10 Gbps and beyond. Ethernet’s ubiquity
and its continuously increasing rate motivate us to fully understand high speed network processing
performance and its power efficiency.

In this paper, we begin with per-packet processing overhead breakdown on Intel Xeon servers with
10 GbE networking. We find that besides data copy, the driver and buffer release, unexpectedly take 46%
of the processing time for large I/O sizes and even 54% for small I/O sizes. To further understand the
overheads, we manually instrument the 10 GbE NIC driver and OS kernel along the packet processing
path using hardware performance counters (PMU). Our fine-grained instrumentation pinpoints the
performance bottlenecks, whichwere never reported before. In addition to detailed performance analysis,
we also examine power consumption of network processing over 10 GbE by using a power analyzer.
Then, we use an external Data Acquisition System (DAQ) to obtain a breakdown of power consumption
for individual hardware components such as CPU, memory and NIC, and obtain several interesting
observations. Our detailed performance and power analysis guides us to design a more processing- and
power-efficient server I/O architecture for high speed networks.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Ethernet continues to be the most widely used network
architecture today for its lowcost andbackward compatibilitywith
the existing Ethernet infrastructure. It dominates in large scaled
data centers and is even competing with specialized fabrics such
as InfiniBand [13], Quadrics [25], Myrinet [5] and Fiber Channel [7]
in highperformance computers. As of 2011, Gigabit Ethernet-based
clustersmake up 44.2% of the top-500 supercomputers [30]. Driven
by increasing networking demands of cloud workloads such as
video servers, Internet search, web hosting etc., network speed
rapidlymigrates from1Gbps to 10Gbps and beyond [9]. Ethernet’s
ubiquity and its continuously increasing rates require us to clearly
understand performance of network processing (or TCP/IP packet
processing) over high speed networks and its power efficiency.

It is well recognized that network processing consumes a
significant amount of time in network servers, particularly in
high speed networks [4,17–19,22,28,33]. It was reported that
network processing in the receiving side over 10 Gbps Ethernet
network (10 GbE) easily saturates two cores of an Intel Xeon
Quad-Core processor [18]. Assuming ideal scalability overmultiple
cores, network processing over upcoming 40 GbE and 100 GbE
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will saturate 8 and 20 cores, respectively. In the past decade,
a wide spectrum of research has been done in this topic to
understand its overheads [17–19,22,23,28,33]. Nahum et al. [23]
used a cache simulator to study cache behavior of the TCP/IP
protocol and showed that instruction cache has the greatest effect
on network performance. Zhao et al. [33] revealed that packets
and DMA descriptors exhibit no temporal locality. Makineni
and Iyer [22]conducted architectural characterization of TCP/IP
processing on the PentiumM with 1 GbE. However, they built their
studies on cache simulators or used low speed networks, and did
not conduct a system-wide architectural analysis for high speed
network processing on mainstream server platforms.

Besides a lack of detailed performance analysis, high speed
network processing has not been investigated carefully from
the power perspective. As the concern on power and energy
management has been arousing great interests in data centers
with thousands of interconnected servers in recent years [1,11,27],
it also becomes critical to understand the power efficiency of
network processing over high speed networks like 10 GbE on
mainstream platforms.

In this paper, we begin with per-packet processing overhead
breakdown by running a network benchmark over 10 GbE on Intel
Xeon Quad-Core processor based servers. We find that besides
data copy, the driver and buffer release, unexpectedly take 46% of
processing time for large I/O sizes and even 54% for small I/O sizes.
To understand the overheads, we manually instrument the driver
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and OS kernel along the packet processing path using hardware
performance counters (PMU) [14]. Unlike existing profiling tools
attributing CPU cost such as retired cycles or cache misses to
functions [24], our instrumentation is implemented at the fine-
grained level and can pinpoint data incurring the cost. Through
the above studies, we obtain several new findings: (1) the major
network processing bottlenecks lie in the driver (>26%), data copy
(up to 34% depending on I/O sizes) and buffer release (>20%),
rather than the TCP/IP protocol itself; (2) in contrast to the
generally accepted notion that long latencyNetwork Interface Card
(NIC) register access results in the driver overhead [3,4], our results
show that the overhead comes from memory stalls to network
buffer data structures; (3) releasing network buffers in OS results
in memory stalls to in-kernel page data structures, contributing to
the buffer release overhead; (4) besides memory stalls to packets,
data copy implemented as a series of load/store instructions, also
has significant time on L1 cache misses and instruction execution.
Moreover, keeping packets in caches after data copy, which will
not be reused, pollutes caches. Prevailing platform optimizations
for data copy like Direct Cache Access (DCA) are insufficient for
addressing the copy issue.

In addition to the above anatomized performance analysis,
we also examine power consumption of network processing over
10 GbE across a range of I/O sizes on Intel Xeon platforms by
using a power analyzer [26]. To further understand insights of
the power consumption, we set up our experimental environment
with an external Data Acquisition System (DAQ) [8] and obtain the
power consumption of individual hardware components (e.g. CPU,
main memory, NIC). We find that unlike 1 GbE NICs, which has
a typical power consumption of about 1 W, 10 GbE NICs have
almost 10 W idle power dissipation. Our measurement shows
that network processing over 10 GbE has significant dynamic
power consumption. Up to 23 W and 25 W are dissipated in the
receiving and transmitting processes without any computation
from the application. The power breakdown demonstrates that
CPU is the largest contributor to the power consumption and its
power consumption reduces as the I/O size increases. Following
CPU,memory is the second contributor but its power consumption
grows as the I/O size increases. Compared to CPU and memory,
the NIC has small dynamic power consumption. All of these point
out that: (1) improving CPU efficiency of network processing has
the highest priority, particularly for small I/O sizes; (2) a rate-
adaptive energy management scheme is needed for modern high
speed NICs.

The remainder of this paper is organized as follows. We
revisit network processing in Section 2 and then present a
detailed processing performance overhead analysis over 10 GbE in
Section 3, followed by detailed power studies in Section 4. Finally,
we cover related literature and conclude our paper in Sections 5
and 6, respectively.

2. Network processing

Unlike traditional CPU-intensive applications, network pro-
cessing is I/O-intensive. It involves several platform components
(e.g. NIC, PCI-E, I/O Controller or Bridge, memory, CPU) and sys-
tem components (e.g. NIC driver, OS). In this section, we explain
how network processing works on mainstream platforms. A high-
level overview of network receiving process is illustrated in Fig. 1.
In the receiving side, the packet processing begins when the NIC
hardware receives an Ethernet frame from the network. The NIC
extracts the packet embedded inside the frame by removing the
frame delineation information and updates a data structure, called
a descriptor, with the packet information. Then, the NIC copies the
incoming data into pre-allocated packet buffers in main memory
using DMA operation over the PCI-E interface. Once the packet
Fig. 1. Network processing overview.

is placed in memory, the NIC generates an interrupt to CPU to
kick off processing of the received packet. Then, CPU reads packets
from main memory and does protocol processing. Therefore, the
network receiving process involves various hardware components
such as NIC, memory and CPU etc.

Similarly, the packet processing in the transmit side involves
several hardware components. It starts when an application wants
to transmit data by passing a data buffer to the TCP/IP stack. The
TCP/IP stack copies data into kernel buffers and does protocol
processing. The NIC driver triggers a DMA engine in the NIC to
transfer packets from memory to NIC buffers and then the NIC
sends them over Ethernet.

3. Understanding network processing overhead over 10 GbE

In this section, we analyze prevalent I/O architecture and
present detailed CPU/NIC interaction in mainstream servers. Then
we conduct extensive experiments to obtain per-packet processing
overhead breakdown on Intel Xeon servers over 10 GbE across
a range of I/O sizes in Section 3.2. In Section 3.3, we manually
instrument the 10 GbE NIC driver and OS kernel along the packet
processing path to locate the processing bottlenecks. Since the
processing in the receiving side is more complicated than the
transmit side and consumes significant overheads, this section
presents results from the receiving side.

3.1. CPU/NIC interaction

On the receiving side, an incoming packet starts with the
CPU/NIC interaction. The RX descriptors (typically 16 bytes each),
organized in circular rings, are used as a communication channel
between the driver and the NIC. The driver tells the NIC through
these descriptors, where in the memory to copy the incoming
packets. To be able to receive a packet, a descriptor should be
in ‘‘ready’’ state, which means it has been initialized and pre-
allocated with an empty packet buffer (SKB buffer in Linux)
accessible by the NIC [31]. The SKB buffer is the in-kernel network
buffer to hold any packet up to MTU (1.5 kB). It contains an SKB
data structure of 240 bytes carrying packet metadata used by the
TCP/IP protocol and a DMA buffer of 2 kB holding the packet itself.

The detailed interaction is illustrated in Fig. 2. To transfer
received packets, the NIC needs to fetch ready descriptors from
memory over PCI-E bus to know the DMA buffer address (step
1). When the NIC receives Ethernet frames from the network
(step 2), it transfers the received packets into corresponding DMA
buffers (denoted as buf in Fig. 2) using DMA engine (step 3). Once
the data is placed in memory, the NIC updates descriptors with
packet length and marks them as used (step 4). Then, the NIC
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Fig. 2. Detailed CPU/NIC interaction.
generates an interrupt to kick off network processing in CPUs
(step 5). On the CPU side, the interrupt handler in the driver
reads the NIC register to check the interrupt cause (in step 6). If
legally, the driver reads descriptors to obtain packet’s address and
length, and then maps the packet into SKB data structures (step
7). After the driver delivers SKB buffers up to the protocol stack,
it reinitializes and refills used descriptors with new allocated SKB
buffers for incoming packets in the near future (in step 8). Finally,
the driver re-enables the interrupt by setting the NIC register (step
9). After the driver, SKB buffers are delivered up to the protocol
stack. Once the protocol stack finishes processing, applications are
scheduled to move packets to user buffers. Finally, the SKB buffers
are reclaimed into OS [6,31].

3.2. Per-packet processing overhead breakdown

To understand network processing overheads, we conducted
extensive experiments on two mainstream servers over 10 GbE
across a range of I/O sizes. Both SUT (System under Test) and
stress machines are Intel servers, which contain two Quad-Core
Intel Xeon 5335 processors [14]. Each core is running at 2.66 GHz
frequency and each processor has 2 last level caches (LLC) of 4 MB
each shared by 2 cores. The servers are directly connected by
two PCI-E based Intel 10 Gbps XF server adapters [15] without
using a switch. They ran Linux kernel 2.6.21 and Intel 10 GbE NIC
driver IXGBE version 1.3.31.We retain default settings of the Linux
network subsystem and the driver, unless stated otherwise. Note
that LRO [10], a technique to amortize the per-packet processing
overhead by combining multiple in-order packets into a large
packet, is enabled in the driver. TSO is enabled in hardware NIC to
segment large TCPpackets. Streamhardwareprefetcher employing
a memory access stride based predictive algorithm is configured
in the servers [14]. Since we aim to clearly understand network
processing behavior over 10 GbE and isolate application’s noise,
in the experiments the micro-benchmark Iperf [16] with 8 TCP
connections is run to generate network traffic between servers
(SUT is a receiver). We find from our experiments that one Xeon
core with 4 MB LLC achieves ∼5.6 Gbps throughput and two
cores equipped with two 4 MB LLCs are saturated to obtain line
rate throughput. The high processing overhead motivates us to
breakdown the per-packet processing overhead.

We use the tool Oprofile to collect system-wide function
overheads while Iperf is running over 10 GbE. We group all
functions into components along the network processing path: the
NIC driver, IP layer, TCP layer, data copy (copy data from kernel
buffers to user buffers after TCP/IP protocol processing), buffer
release (OS reclaim SKB buffers after data is copied out to user
buffers), systemcall and Iperf. All other supportive kernel functions
such as scheduling, context switches etc. are categorized as others.
Per-packet processing timebreakdown is calculated and illustrated
in Fig. 3. Note that I/O sizes are not packets over Ethernet and large
I/Os larger than MTU are segmented into several Ethernet packets
(≤MTU).

We obtain the following observations from Fig. 3: (1) the
overhead in data copy increases as the I/O size grows and becomes
a major bottleneck with large I/Os (≥256 bytes); (2) the driver and
buffer release consume∼1200 cycles and∼1100 cycles per packet,
respectively, regardless of I/O sizes. They correspond to ∼26% and
20% of processing time for large I/Os and even higher for small
I/Os; (3) the TCP/IP protocol processing overhead is substantially
reduced because LRO coalesces multiple packets into one large
packet to amortize the overhead. Fig. 3 reveals that besides data
copy, high speed network processing over mainstream servers has
another two unexpected major bottlenecks: the driver and buffer
release.

3.3. Fine-grained instrumentation

The Oprofile in Section 3.2 does profiling at the coarse-grained
level and attributes CPU cost such as retired cycles and cache
misses to functions. It is unable to identify data or macro incurring
the cost. In order to locate the cost, we manually did fine-grained
instrumentation inside functions. The environment in Section 3.2
is used. Table 1 shows one instrumentation example in the
driver. We first measured the function’s cost and then did fine-
grained instrumentation for every code segment if the function
has considerable cost. We continue to instrument each code
segment with considerable cost until we locate the bottlenecks.
Our instrumentation is applied to all functions along the processing
path. Most of events are collected including CPU cycles, instruction
anddata cachemisses, LLCmisses, ITLBmisses andDTLBmisses etc.
Since large I/Os include all three major overheads, this subsection
presents the detailed analysis for the 16 kB I/O. Notes that each
instrumentation call takes ∼70 CPU cycles in our platform and the
overhead has been considered in our results.
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Fig. 3. Per Ethernet packet processing overhead breakdown.
Table 1
Fine-grained instrumentation.

Coarse-grain Fine-grain

INSTRUMENT(Counterl) ixgbe_clean_tx_irq ()
ixgbe_clean_tx_irq () {
INSTRUMENT(Counter2) INSTRUMENT(Counter3)

Code Segment 1
INSTRUMENT(Counter4)
prefetch(skb->data - NET_IP_ALIGN);

INSTRUMENT(Counter5)
. . .

INSTRUMENT(Counter6)
}

3.3.1. Driver
The driver comprises of three main components: NIC register

access (step 6 and 9), SKB conversion (step 7) and SKB buffer
allocation (step 8), as shown in Fig. 2. Existing studies [3,4]
claimed that NIC register access contributes to the driver overhead
due to long latency traversal over PCI-E bus, and then proposed
NIC integration to reduce the overhead. In this subsection, we
architecturally breakdown the driver overhead for each packet
and present results in Fig. 4. In contrast to the general accepted
notion that the long latency NIC register access results in the
overhead [3], the breakdown reveals that the overhead comes from
SKB conversion and buffer allocation. Although NIC register access
takes ∼2500 CPU cycles on mainstream servers, ∼60 packets
are processed per interrupt over 10 GbE (∼7 packets/interrupt
over 1 GbE) substantially amortizing the overhead. In addition,
Fig. 4 also reveals that L2 cache misses mainly result in the
SKB conversion overhead and long instruction path is the largest
contributor of the SKB buffer allocation overhead.

Since L2 cache misses in SKB conversion constitute ∼50% of
the driver overhead, we do detailed instrumentation to identify
data incurring those misses. We group data in the driver into
various data types (SKB, descriptors, packet headers and other
local variables) and measure their misses. The result presented
in Fig. 5 reveals that SKB is the major source of the memory
stalls (∼1.5 L2 misses/packet on SKB). Different from prior
studies [3,4], the memory stalls to packet headers are hidden
and overlapped with computation because the recent driver
uses software prefetch instructions to preload headers before
they are accessed. Unfortunately, SKB access occurs at the very
beginning of the driver and software prefetch instructions cannot
help. Although DMA invalidates descriptors to maintain cache
coherence, the memory stalls to descriptors are negligible (∼0.04
L2misses/packet). That is because each 64 bytes cache line can host
4 descriptors of 16 bytes each and hardware prefetchers preload
Fig. 4. Architecture breakdown (RX, 16 kB I/O).

Fig. 5. L2 cache miss sources in step 7.

several consecutive descriptors with a cache miss. To understand
the SKB misses, we instrument kernel to study its reuse distance
over 10 GbE. It is observed that SKB has long reuse distance
(∼240 K L2 access), explaining the misses.

3.3.2. Data copy
After protocol processing, user applications are scheduled to

copy packets from SKB buffers to user buffers. Data copy incurs
mandatory cache misses on payload because DMA triggers cache
invalidation to maintain cache coherence, and thus consumes a
large number of CPU cycles. We study its architectural overhead
breakdown as shown in Fig. 6. 16 kB I/O is segmented into small
packets ofMTU each in the sender and they are sent to the receiver.
Fig. 6 shows that L2 cache misses are the major overhead (∼50%,
∼3.5 L2 misses/packet), followed by data cache misses (∼27%,
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Fig. 6. Data copy breakdown (RX, 16 kB I/O).

Fig. 7. Buffer release breakdown(RX, 16 kB I/O).

∼50% misses/packet) and instruction execution (∼20%). Although
DCA implemented in Intel recent platforms avoids L2 cachemisses,
it is unable to reduce overheads in L1 cache misses and a series
of load/store instructions execution (total ∼47%). Due to the small
L1 cache size, routing network data into L1 caches would pollute
caches and degrade performance [18,29]. Moreover, since packets
become obsolete after data copy [31], loading them into L1 caches
or keeping them in L2 caches may evict other valuable data to
incur cache pollution. Hence, more optimizations are needed to
fully address the data copy issue.

3.3.3. Buffer release
SKBbuffers need to be reclaimed after packets are copied to user

applications. SKB buffer allocation and release aremanaged by slab
allocator [6]. The basis for this allocator is retaining an allocated
memory that used to contain a data object of certain type and
reusing that memory for the next allocations for another object of
the same type. Buffer release consists of two phases: looking up an
object cache controller and releasing the object into the controller.
In the implementation of slab allocator, the page data structure
is used to keep cache controller information and read during the
object cache controller lookup. This technique is widely used by
mainstream OS such as FreeBSD, Solaris and Linux etc.

Fig. 7 shows architectural overhead breakdown for buffer
release. We observe from Fig. 7 that L2 cache misses are the single
largest contributor to the overhead (∼1.6 L2 cachemisses/ packet).
Similarly, we analyze data sources of L2 cache misses and present
results in Fig. 8. The figure reveals that L2 cache misses are from
the 128 bytes in-kernel page data structures. The structure reuse
distance analysis shows that it is reused after ∼255 K L2 cache
access, explaining the cache misses.
Fig. 8. L2 miss sources (RX, 16 kB I/O).

3.4. Optimization discussion

The above studies reveal that besides memory stalls to itself,
each packet incurs several cachemisses on corresponding data and
has considerable data copy overhead. Some intuitive solutions like
having larger LLC (>8 MB for 10 GbE) might help to some extent,
but it has major limitation. We extend Simics [21] by enhancing
it with detailed cache, I/O timing models and effects of network
DMA. We extend the DEC 21140 A Ethernet device with the
support of interrupt coalescing using Device Modeling language
to simulate a 10 GbE Ethernet NIC. Our simulation results based
on Simics simulating 4 cores sharing one LLC, without considering
application memory footprint, 16 MB LLC is needed to avoid those
cache misses of packet processing over 10 GbE. When network
jumps to 40GbE andbeyond, increasing LLC becomes an ineffective
solution.

In order to address the cache misses on SKB and in-kernel page
data structure, one straightforward approach is to extend existing
DCA infrastructure to deliver both packets and corresponding
missed data into caches when NIC receives a packet. But this
approach would stress PCI-E interconnect bus and thus degrade
PCI-E efficiency of packet transfers. This PCI-E issue can be
naturally avoided if the NIC is integrated into CPU die to eliminate
PCI-E bus. In contrast to redesigning hardware infrastructure, one
alternative solution is to redesign system software to change data
access pattern. We can dedicate a continues memory range to
incomingpackets and reuse themas soon as possible, thus avoiding
cache misses related to SKB buffer management (SKB access in
driver, SKB buffer release). All above approaches only aim at cache
misses. To address the data copy issue, besides with the support of
DCA, we can add one hardware on-chip cache copy engine tomove
packets insides caches. The hardware copy engine avoids a series of
load/store instructions and bypasses L1 cache misses. We believe
that a new I/O architecture including the above optimizations is
needed for high speed networks in future.

4. Understanding power efficiency of network processing

The above section performs a detailed performance analysis
of network processing on mainstream servers over 10 GbE.
In this section, we extend our studies to another important
aspect: power consumption. In Section 4.1, we present our
experimental methodology to measure power consumption of
network processing. In Section 4.2, we show extensive power
results.

4.1. Power measurement

We first use two Intel Xeon machines to conduct experiments
across various I/O sizes. The Intel server is a two-processor
platform based on the Dual Core Intel Xeon processor 5500 series
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Fig. 9. Power measurement configuration.

with 8 MB of L3 cache per processor [14]. Both of the machines are
equippedwith 4 GB DDR3 DRAM. The twomachines are connected
by twoPCI Express based Intel 10Gb/sXF server adapters [15]. Each
server has an Intel 10 GbE server adapter (a.k.a Oplin), which is
connected to hosts through PCI-E x8. This provides a 16+ 16 Gbps
full-duplex I/O fabric that is fast enough to keep up with the 10 +

10 Gbps full-duplex network port.
In our experiments, the system power consumption is mea-

sured by the tool Power Analyzer Model 380801 from Extech In-
struments [26]. The tool connects the wall power supply into its
input terminal and the tested server power leads into its out-
put terminal. The software component of this device is called
Power Analyzer (version 2.11 was used). We determine the power
consumption of network processing over 10 GbE by using a sub-
tractivemethod.We first measure the server idle power consump-
tion as baseline. Then we measure the total power while running
networking workloads. Since idle power stays the same for differ-
ent workloads, it is not workload dependent. We subtract the idle
power from the total power to get the dynamic power consump-
tion while processing TCP/IP packets (in other words, the dynamic
power consumption means the deltas above the idle).

Instead of using real world workloads, we have elected to use
widely-used network micro-benchmark Iperf for our evaluation.
The choice of the micro-benchmark gives us a more controlled
test environment and helps us easily understand the power
consumption fromnetwork processing [17–19]. In our platforms, 8
concurrent connections are run to generate 10 Gbps traffics among
the transmitter and the receiver. All the results are the average data
among five runs on each I/O size.

While the power analyzer tool gives the system total power
consumption, it is unable to provide detailed component power
information. To track the power consumed by various hardware
components involved in network processing such as CPU,memory,
NIC etc., we add sensing resistors to +12 V, +5 V, +3.3 V
power supply, as well as each DIMM and the 10 GbE PCI-E
NIC card. The 12 V rail supplies power to CPU, memory, board
components as well. We only care about the 12 V rail from
8-pin connectors since it goes to CPU and memory. After
subtracting the power consumption on each DIMM, we obtain
the CPU power consumption. We measure the VDC on each
sensing resistors, since we know the resistance value of each
sensing resistor, we compute the current from it. Based on the
power supply voltage, we are able to determine the power
consumption on each hardware component. In our experiments,
we use an external 2645 A Data Acquisition System (DAQ) [8]
that is connected to hardware components we want to measure
as shown in Fig. 9. We sample voltage value of multiple
Fig. 10. Throughput and dynamic power (RX).

channels simultaneously with 1 sample per second. Fluke DAQ
software (version 4.0) is used to configure the instrument and
monitor/collect the instrument’s online values and alarms.

4.2. Evaluation results

We start with the measurement of the system idle power
consumption. In our baseline, we find that 10 GbE NICs have
high idle power dissipation, ∼10 W in our NICs [15]. In addition,
we study the dynamic power consumption from running Iperf
over 10 GbE. The dynamic power consumption is obtained by
subtracting the idle power from the measured system power
while running TCP/IP. Fig. 10 shows the network receiving
throughput and the corresponding dynamic power consumption
along various I/O sizes. The figure shows that TCP/IP has high
power consumption in the receiving side. With large I/O sizes
(>1 kB), the server achieves a 9.49 Gbps network throughput
by dissipating ∼17 W power. When we come to small I/O sizes
(<1 kB), the server obtains much lower network throughput but
consumes significantly higher power. For instance, at the 64 Bytes
I/O size, the server only has 0.73 Gbps network throughput while
dissipating∼23Wpower. In our experiments, we notice that small
I/O sizes incurred higher kernel overheads due to more frequent
context switches among software interrupts, hardware interrupts
and applications.

To understand insights of the dynamic power consumption, we
break it down into individual hardware components involved in
the network receiving process, such as CPU, memory, NIC. The
power breakdown methodology is described in Section 4.1 and
the result is illustrated in Fig. 11. The figure demonstrates that
CPU is the largest power contributor, regardless of I/O sizes, and
takes 70%–82% of the power consumption. For the large I/O sizes
(>2 kB), CPU dissipates ∼11.5 W for packet processing. The CPU
power consumption increases to ∼18 W when we use small I/O
sizes. Following CPU, the memory is the second largest power
contributor. The percent of the memory power consumption
increases as the I/O size goes up, from 11% with the 64 Bytes I/O
size to 15% with the 64 kB I/O size. For each packet, two packet
data relevant memory accesses are required on the receiving
side: one packet memory write from the DMA engine and one
packet memory read from the CPU during packet processing (note
that as shown in Section 3, each packet also incurs two another
packet data irrelevant memory accesses on SKB and page data
structures). Large I/O sizes have more memory accesses to packets
and incur higher power consumption. Compared to CPU and
memory, while the NIC has considerable idle power dissipation, it
has much smaller dynamic power consumption, 1.09 W–1.29 W,
corresponding to 5%–8% of the whole power consumption.

In addition to the receiving side, we also study the performance
and the power dissipation of the transmit side. The results are
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Fig. 11. Dynamic power breakdown (RX).

Fig. 12. Throughput and dynamic power (TX).

Fig. 13. Dynamic power breakdown (TX).

shown in Fig. 12. Similar to the receiving side, high power
consumption is needed in the transmit side and small I/O
sizes have higher power dissipation (∼22 W) than large I/O
sizes (∼18.5 W). One power spike occurs at the I/O size 1 kB
(∼24.2 W) because the CPU utilization is highest at 1 kB among
all I/O sizes in our experiments. We breakdown the power
consumption to understand power consumption of individual
hardware components as shown in Fig. 13. The figure points out
that CPU dissipates 75%–84% of the dynamic power, corresponding
to ∼13Wwith the 64 kB I/O size and ∼18Wwith the 64 Bytes I/O
size. As the I/O size increases from 64 Bytes to 64 kB, the memory
power consumption grows from∼1.8Wto∼3.1W. That is because
large I/O sizes incur more memory accesses than small I/O sizes.
Similar to receiving packets, the NIC power consumption slightly
increases from ∼1 W to ∼1.26 W as the I/O size increases.

4.3. Optimization discussion

The above analysis shows that 10 GbE brings high power cost
including idle power consumption and dynamic power consump-
tion. We discuss several architectural power optimizations along
three dimensions: NIC, CPU andmemory. To reduce the NIC power
cost, we propose using a rate-adaption NIC into CPUs. It intel-
ligently adjusts its processing capability based on packet arriv-
ing rates. For instance, the NIC can reduce its 10 Gbps MAC
processing capability to 1 Gbps or even to 100 Mps if there are
no arriving/sending packets or low arriving/sending rates. By us-
ing the rate-adaption NIC, the server can substantially reduce its
idle power cost. Notes that the rate adaption NIC might introduce
some packet losses during its transition from low rate to high rate.
Fortunately, network stacks are able to recover those lost packets
through packet retransmission.

While CPU has become much more power efficient in recent
years, the 10 Gbps packet processing still dissipates more
than 10 W. Since the packet processing is a memory-intensive
application, using complicated out-of-order cores is not as power
efficient as using small in-order cores [27]. Therefore, we propose
a single-ISA heterogeneous multi-core architecture, where a small
set of cores are small in-order cores but share the same hardware
instruction set. All cores and memory banks are organized as
NUMA architectures. The small cores and their local memory
are dedicated to processing TCP/IP packets. By leveraging better
power efficiency of small cores, the server architecture can
avoid wasting power and behave more power efficiently. In
addition to providing better CPUpower efficiency, the performance
optimizations discussed in Section 3.4 can improve network
processing performance and also naturally translate to better
power efficiency.

We find that ∼3 W in memory are needed while processing
packets. That is mainly because that two packet data relevant
memory accesses occur for each packet in the receiving side (one
write from the DMA engine and one read from the CPU), and one
packet memory access in the transmit side. In the receiving side,
prevailing optimizations DCA and Cache Injection are able to avoid
those DMA writes by injecting network I/O data into caches, but
injected packets are in the ‘‘Modified’’ state andwill bewritten back
tomemorywhen they are replaced. In the transmit side, packets sit
in caches with the ‘‘Modified’’ state after the user-to-kernel copy.
They need to be written back to memory to keep cache coherency
while the NIC is fetching transmission data via DMA operation. In
order to avoid those packet memory accesses, we propose cache
invalidation instructions used by the protocol stack to actively
invalidate packets in caches after processing. This optimization can
fully eliminate packet data relevant memory accesses.

5. Related work

It is well documented that Internet servers spend a significant
portion of time processing packets [4,17–19,22,28,33]. In the
past decade, a wide spectrum of research has been done in
network processing to uncover its characteristics and to optimize
the processing efficiency [2–4,12,17–19,22,23,28,32,33]. Nahum
et al. [23] used a cache simulator to study cache behavior of the
TCP/IP protocol and showed that instruction cache has the greatest
effect on network performance. Zhao et al. [32,33] used a cache
simulator to study cache behavior of the TCP/IP protocol. They
showed that packets show no temporal locality and proposed a
copy engine to move packets in memory. Liao et al. [20] conducted
power studies of TCP/IP processing over Intel Xeon servers and Sun
Niagara 2 processors, but the paper focused on power analysis and
did not conduct detailed network processing performance analysis
over 10 GbE.

In addition, researchers have also proposed several architec-
tural schemes to optimize the processing efficiency. Most of
them aimed to reducing the data copy overhead. Zhao et al. [32]
designed an off-chip asynchronous DMA engine close to main
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memory to move data inside memory. The similar idea has been
implemented in Intel platforms with the Intel I/OAT technique [2],
but has been widely criticized in industry because memory stalls
are still incurred when applications read packets from memory.
To eliminate the memory stalls, Intel proposed DCA to route net-
work data into CPU caches [12], and implemented it in Intel 10 GbE
adapters and server chipsets. Its performance evaluation on real
servers has demonstrated overhead reduction in data copy [17,18].
Recently, Tang et al. [29] claimed that DCA might incur cache pol-
lution on small LLC and introduced two cache designs (a dedicated
DMA cache or limited ways of LLC) to keep packets. Binkert et al.
[3,4] integrated a redesigned NIC to reduce the processing over-
head by implementing zero-copy and reducing access latency
to NIC registers. However, all of them did not conduct detailed
system-wide performance analysis and are unable to pinpoint real
performance bottlenecks of high speed network processing on
mainstream servers. Moreover, they also did not study network
processing from the power perspective.

6. Conclusion

As Ethernet network becomes ubiquitous and its speed
continues to grow rapidly, it becomes critical for us to clearly
study high speed network processing on mainstream servers
from two important perspective: processing performance and
power consumption. In this paper, we first studied the per-
packet processing overhead on mainstream servers with 10 GbE
and pinpointed three major performance overheads: data copy,
the driver and buffer release. Then, we carefully instrumented
the driver and OS kernel along the packet processing path to
do a system-wide architectural analysis. Unlike existing tools
attributing CPU cost to functions, our instrumentation was done at
the data granularity and can pinpoint data with considerable cost.
Our studies reveal several new findings, which have never been
reported due to a lack of fine-grained instrumentation.

In addition, we also examined power consumption of network
processing over 10 GbE on mainstream servers by using a power
analyzer. To clearly understand its power consumption, we use
an external Data Acquisition System to obtain a breakdown of
power consumption for individual hardware components. Our
investigation leads to several interesting observations. Given the
trend towards rapid evolution of network speed, we envision
that our detailed performance and power analysis can guide
us to design a more processing- and power-efficient server I/O
architecture.
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