
SUBMITTED TO INFOCOM 2002 1

Fair Scheduling and Buffer Management in Internet Routers
Nan Ni Laxmi N. Bhuyan

IBM Corporation Computer Science and Engineering
Austin, TX 78758 University of California

Riverside, CA 92521

Abstract—Input buffered switch architecture has become attractive for implement-
ing high performance routers and expanding use of the Internet sees an increasing
need for quality of service. It is challenging to provide a scheduling technique that is
both highly efficient and fair in resource allocation. In this paper, we first introduce
an iterative fair scheduling(iFS) scheme for input buffered switches that supports fair
bandwidth distribution among the flows and achieves asymptotically 100% through-
put. The iFS is evaluated both under synthetic workload and with Web traces from
the Internet. Compared to the commonly used synthetic input, our simulation results
reveal significant difference in performance when the real network traffic is employed.
We then consider fair scheduling under various buffer management mechanisms and
analyze their impact on the fairness in bandwidth allocation. Our studies indicate
that early packet discard in anticipation of congestion is necessary and per-flow based
buffering is effective for protecting benign users from being adversely affected by mis-
behaved traffic. Buffer allocation according to bandwidth reservation is especially
helpful when the input traffic is highly bursty.

Keywords—quality of service, fair bandwidth allocation, switch scheduling, buffer
management, decongestion mechanism, web traffic.

I. INTRODUCTION

The exponential growth of the Internet has put increasing demands
on the routers and switches in the network for high bandwidth and low
latency. In addition, as networks provide new services supporting mul-
ticast, voice, security, and bandwidth reservation, quality of service
(QOS) is becoming a major issue in design of routers [25], [19]. Fair-
ness in resource allocation is very important to support the need for
diverse applications. Fair queuing algorithms have been developed [8],
[38] to schedule packets at an output link of a router. However, little re-
search has been done to address QoS issues inside the router operation
itself. The purpose of this paper is to develop fair scheduling and buffer
management schemes for Internet routers and to demonstrate their su-
periority using actual Web traces from NLANR [27] and UCB [37].

A router consists of three parts, namely, (a) line cards that connect
to datalinks (b) a router processor that runs routing protocols and (c)
a backplane crossbar switch that actually transfers the packets or cells
from inputs to outputs. In this paper, we are mainly concerned with
QoS issues of the backplane switch design in a router. The switch
has buffers either at the input or output to store the packets temporar-
ily during transmission. Although output buffering can achieve better
throughput, it is known to suffer from poor scalability [18]. The reason
is that the output port of an

�����
switch has to operate

�
times faster

than the input in order to accommodate requests on all possible inputs
in a cycle. Consequently, most high-performance routers employ input
queues with their crossbar backplanes [24], [30].

In this paper, we develop fair scheduling schemes for input-buffered
switches. High throughput and fairness in resource allocation are con-
tradictory goals in a switch design. Due to the fact that only a single
cell can be transmitted from each input of the crossbar in a given slot,
cells forwarded based on maximal set of input-output match may not
coincide with those satisfying fairness. On the other hand, passing cells
based on fair resource allocation may not produce the highest through-
put and may give rise to under utilization of the crossbar switch. The
aim of this research is to find scheduling and buffer management tech-
niques that are both fair and highly efficient for link utilization.

This research has been supported by NSF Grants CCR 9622740 and CCR 9810205. This work was done
while the authors were at Texas A&M University.

According to [8], bandwidth allocation of a link is fair if for each
flow, the received bandwidth is proportional to its share of reserva-
tion. We know that the fluid flow queueing(or Generalized Processor
Sharing(GPS)[29]) algorithm which sends packets in a bit-by-bit round
robin fashion is absolutely fair but unrealistic. Numerous fair queueing
algorithms have been developed to approximate the GPS algorithm in
units of packets(see [38] for a survey). However, most work on fair
queueing has been conducted in the context of output queueing due to
its conceptual simplicity. Situation becomes complicated in the case
of input buffered switch where flows not only contend for output link
bandwidth but also have to compete to access the crossbar. Neverthe-
less, in order to achieve high performance as well as to provide quality
of service, it is imperative to maintain fairness in input buffered switch
scheduling.

In the first part of this paper, we propose an iterative fair schedul-
ing(iFS) scheme which provides high throughput, low latency as well
as fair bandwidth distribution among the contesting flows. As with
other iterative approaches, iFS tries to increase the number of input-
output matches during each iteration, but the major difference is that
instead of picking a cell from each input in a probabilistic([1], [14])
or round robin([22], [34]) fashion, a cell is chosen based on the band-
width requirement of the flows. In this way, we are able to allocate
bandwidth to various flows in proportion to their reservation and pre-
vent misbehaved flows from taking advantage at the expense of others.
The iFS is compared with iSLIP [22] and WPIM [36] for throughput
and fairness.

In a real deployment of network with finite buffering space, pack-
ets are dropped in the presence of congestion. In order to support fair
bandwidth allocation, it is crucial to determine when to drop and which
packet to drop. Thus, the fairness in scheduling issue should be con-
sidered in conjunction with the decongestion mechanism. In this paper,
four decongestion mechanisms are studied and their impact on the fair
sharing of bandwidth is examined.

The effectiveness of our fair scheduling approaches is demonstrated
by simulations using a cycle-based simulator. Experiments are con-
ducted with different types of input workload. Investigation has shown
that the Internet traffic is very bursty in nature [31], [7] and therefore
can not be characterized very well by commonly employed Bernoulli or
geometrically distributed ON/OFF traffic model. While distributional
models have been developed for the Internet workload [4], traffic traces
are widely applied for evaluating web servers [2], proxy caches [6], [21]
and packet forwarding methods [17]. The use of real traffic traces can
offer direct validation of the network components under study. Hence,
we incorporate the traffic pattern directly from the Internet in addition
to employing synthetic workload and we are not aware of any existing
application of traces in the context of router design or switch schedul-
ing.

To summarize, we have the following original contributions in the
paper:�

We propose an iterative fair scheduling(iFS) scheme for unicast traf-
fic. It supports fair bandwidth allocation and achieves asymptotically
100% throughput with uniform traffic.�

We analyze various buffer allocation policies along with fair schedul-
ing and pinpoint their effect on fair bandwidth allocation.�

Ours is the first attempt to evaluate switch scheduling schemes using

SUBMITTED TO INFOCOM 2002 2

real traffic from the Internet. It gives some insight into the difference in
performance compared to the common practice of evaluating through
synthetic workload.

The rest of the paper is organized as follows. Section II gives an
overview of the related work on scheduling for input buffered switches.
In Section III we propose the iterative fair scheduling(iFS) for unicast
traffic. Extensive simulation results with synthetic workload as well
as traces from the Internet are presented in Section IV. Buffer man-
agement schemes are examined in Section V. Finally, Section VI con-
cludes the paper.

II. RELATED WORK

SCHEDULER

N
xN

in
pu

t p
or

ts

cr
os

sb
ar

ou
tp

ut
 p

or
ts

Fig. 1. Block diagram for an input buffered switch architecture

Input queueing is subject to head of line(HOL) problem with maxi-
mum throughput of 58.6% using FIFO input queue[18]. Solution has
been found which constructs separate queues at each input so that a
packet will not be blocked by packets going to other destinations. Ma-
jor issues in the input buffered switch architecture design include buffer
management and scheduling. We have studied various queueing and
buffer allocation schemes in our previous research [9], [33]. In this
paper, we seek to address the issue of fairness in scheduling(i.e., in-
put to output matching) for quality of service. Figure 1 gives a block
diagram of the cell-based switch architecture we consider throughout
the paper. It consists of four components: input ports, output ports,
crossbar switching fabric and a scheduler. At any given switch cy-
cle(slot), at most one cell from each input can be routed to the output
side and each output can only accept at most one cell. As a result,
the scheduling is more intricate than that for output queued switch.
Most existing work on scheduling for input buffered switch attempts
to achieve high throughput by looking for maximum bipartite matching
between inputs and outputs. Schemes such as PIM[1], iSLIP[22] and
Shakeup[14] repeatedly search for matches at each time of scheduling.
Some approaches can achieve 100% throughput asymptotically[23].

 (1) (2) (3)

Fig. 2. 3-step procedure in iterative matching

An iterative scheduling algorithm essentially consists of three major
steps in each iteration, as illustrated in Figure 2.

1. Request stage: An input may have several requests. Each un-
matched input sends requests to the outputs for which it has cells

for.
2. Grant stage: There may be several requests to an output. Each

unmatched output chooses one from several received requests
and sends a grant signal to one of the inputs.

3. Accept stage: Each unmatched input may receive grant signals
from several outputs. Upon receiving grant signals, each input
sends accept signal to only one of the outputs offering the grants.

Probabilistic Iterative Matching(PIM) suggested by Anderson et
al.[1] is the first switch scheduling algorithm that employs an itera-
tive approach. At grant stage, each output sends out a grant signal to a
randomly selected requesting input. Again at accept stage, each input
accepts one output from several grant signals at random. It takes an av-
erage of

��������� �
	
iterations for the PIM to converge. The consequence

of random selection in grant and accept stage of PIM is that an input
could possibly end up in not being served for a long time. Thus, this
scheme is not starvation free. Moreover, implementation of random
selection among the member of a time-varying set is not an easy task.

The iSLIP scheme proposed by McKeown [22] uses rotating
priority(round-robin) arbitration to schedule active inputs and outputs
in turn. A grant pointer is kept for each output to track the input
with the highest priority. Similarly, there is an accept pointer for
each input which tells the output with the highest priority. Whenever
a match is found, the corresponding grant/accept pointers are incre-
mented(modulo the number of ports). Compared to PIM, iSLIP is sim-
pler in implementation[16] and achieves higher throughput[22].

Matches are irrevocable in both PIM and iSLIP, which means that
later iterations can only add upon previously made matches but can not
change them even if better matches can be found. To escape this “local
maximum”, Goudreau et al. offer a Shakeup technique in [14] where
each unmatched input is allowed to force a match for itself randomly
even though an existing match has to be knocked off. In other words,
Shakeup attempts to find the global maximum, but the feasibility of
its implementation in real system is unknown because it takes more
iterations to converge.

The issue of fair resource allocation is not considered in the above
mentioned approaches. Iterative schemes that do address the fairness
issue include statistical matching [1] and Weighted Probabilistic Itera-
tive Matching(WPIM)[36]. Statistical matching is similar to PIM, ex-
cept that the matching process is now initiated by the outputs, each
generating a grant signal to a randomly selected input based on the re-
served proportion of bandwidth. It can happen that an input is picked
when its queue is empty and the switch is poorly utilized. WPIM is
also built upon PIM where based on the reservation, every input flow
is assigned a quota that can be used in a frame of a constant number
of slots. During each frame, flows that have not reached their quotas
secure equal share of bandwidth by random selection as done in PIM.
To accomplish this, an additional masking stage is added to the 3-step
procedure to exclude those inputs that have consumed their quotas in
the current frame.

Scheduling fairness is also addressed in other work under assump-
tions not relevant to this paper. Stephens and Zhang [35] considered a
switch that has effectively fully connected crossbar [33] and processes
packets of variable length. There, the inputs and outputs are decoupled
so that each output independently reads from any input with a packet
for it. Li and Ansari gave end-to-end delay bound provided that incom-
ing flows conform to the

������ 	
traffic model[20].

Among the packet discarding schemes, some assume a queueing dis-
cipline of FCFS, others are designed with per-flow queueing. The most
basic one among the FCFS disciplines is the “do nothing” policy, which
is a complete buffer sharing with a drop-tail (DT) mechanism, where
cells are dropped when they arrive to find the buffer full. Generally,
network systems do not support cell level retransmission, so a partially
received packet is of no value. In partial packet discard (PPD) [3], after
a cell from a packet is dropped, all subsequent cells of the same packet

SUBMITTED TO INFOCOM 2002 3

are dropped as well. In early packet discard (EPD) [11], the entire
packet (i.e., all the cells constituting a new packet) is dropped when-
ever congestion is anticipated because the buffer occupancy exceeds
certain threshold. A more sophisticated policy by Floyd and Jacobson
is random early discard (RED) [10], whose primary goal is to avoid
performance degradation and unfairness caused by DT. It does so by
maintaining average buffer occupancy at a level significantly below the
total number of buffers. To achieve this, packets are dropped with a
certain probability when the average buffer occupancy reaches certain
level. Drop probability increases with the average queue occupancy,
and once the queue occupancy exceeds a maximum buffer threshold,
all arriving packets are discarded. All these schemes assume a FCFS
scheduler, each arriving packet is treated identically and all the flows
see the same loss rate.

Example of per-flow discarding include longest queue drop
(LQD) [12] and fair buffer allocation (FBA) [26]. The justification be-
hind LQD is that if flows are given equal weights, the ones that use the
link more tend to have longer queues. Hence, biasing packet discarding
such that flows with longer queues have higher drop rate should make
the bandwidth sharing more fair. In FBA, buffer share for each flow is
computed as a function of the number of free buffers and the number of
active connections. Once the aggregate occupancy is above the speci-
fied threshold, packets arriving for flows that have occupied more than
the fair shares are thrown away. The CHOKe algorithm in [28] provides
an approximate fair dropping mechanism to control unresponsive UDP
flows without using per-flow information.

III. ITERATIVE FAIR SCHEDULING SCHEME

In this section, we first introduce a definition of fairness in input
buffered switch scheduling and then propose an iterative fair schedul-
ing(iFS) scheme that can be used to achieve fair bandwidth allocation.

Let
� ��� �� 	

denote the
�
th flow from input

�
. It goes to output ���	�

and reserves a bandwidth of � ���
 . The number of flows from input�
is � . Let � �	�
 � ��� ����� be the amount of traffic(in bits) reaching the

output from flow
� ��� �� 	

in time interval
� ��� ����� . We say that two flows� ��� � �� � 	 and

� ��� � �� � 	 are in contention if
� ��� � � or ���	���
�� � �������
�� .

Note that we do not define precisely what a flow is because we would
like our iFS scheme to be applied in a broad sense: Depending on the
desired granularity of QoS and scalability concern, a flow can be as fine
as a TCP connection or as coarse as a class of aggregated connections
with similar bandwidth requirement.

On the analogy of the definition of the GPS server for a single shared
resource in [29], we consider a scheduling scheme for input buffered
switches to be fair as follows.

Definition 1: For any two back logged flows
� ��� � �� � 	 and

� ��� � � � 	
that are in contention, a scheduling scheme is fair in

� ��� ����� if

� �	���
�� � ��� �����
� ���!�
�� � ��� ����� � �������
��

� �"���
��
This definition specifies the ideal situation, but if the output link

bandwidth is to be best utilized (i.e., work conserving), it is possible
that the equation may not be held under all the combinations of band-
width reservations. The discrepancy of this definition from the one of
GPS[29] is that here the flows are contesting to access the crossbar as
well as to access the output links. In other words, we are trying to allo-
cate correlated resources because a cell must first make its way out of
the input buffer before going to the intended output.

Nevertheless, we find that the existing fair queueing algorithms,
which have been successful in allocating a single shared resource,
can be applied here to facilitate our effort to support fair bandwidth
distribution. In a fair queueing algorithm, a virtual system time# � � 	 (corresponding to the number of rounds made till time � in GPS)
is maintained. Every incoming packet is assigned a virtual starting
time and a virtual finishing time depending on its bandwidth require-
ment. Virtual starting time and virtual finishing time denote the virtual

time when a packet should begin and finish sending if GPS were used.
The transmitting order is then regulated according to non-decreasing
starting time[15], non-decreasing finishing time[8] or a combination of
both[5]. Naturally, flows with larger bandwidth reservations will take
greater proportion of bandwidth since they tend to have smaller virtual
starting time(or finishing time).

Our basic idea of iFS is to enhance the iterative approaches described
in Section II by giving out grant signals from the individual outputs
based on virtual time and then try to resolve input contention in the
accept stage.

For each output link we maintain a fair queueing engine, which as-
signs a virtual time to every incoming cell based on bandwidth reser-
vation of the flow. Note that the arriving cells are queued in the input
buffer first-in-first-out on a per flow basis. This is required for imple-
menting a fair queueing algorithm where each output must keep track
of the active flows to compute the virtual time. It is different from other
iterative approaches where input queues are arranged on per output ba-
sis.

In each iteration, the first step in our scheme is for every unmatched
output to independently send a grant signal to one of the unmatched
inputs which has the cell with the minimal virtual time corresponding
to that output. Such a cell is marked as a “candidate” with respect
to its input. It may so happen that an input receives multiple grants
from different outputs and have multiple candidates, which means that
several flows from this input have minimal value of virtual time with
their relevant outputs. Then, each unmatched input selects among its
candidates a cell(called “winner”) with the oldest age at the switch and
sends accept signal to its desired output. That is, in accept stage, an
input resolves the contention on a first-come-first-serve(FCFS) basis.
The justification is that since these candidate cells are from the same
upstream node, the fact that the cell arrives first among the contending
cells implies that it has the smallest virtual time among them at the
previous node and naturally should be the first one to depart from the
current node.

In summary, the iFS scheme can be formalized as the following:�
Initially, all inputs and outputs are considered as unmatched and none

of the inputs have any candidates.�
Then in each iteration:

1. Grant stage: Each unmatched output selects a flow with the
smallest virtual time for its head-of-line cell and marks the cell
as a candidate for the corresponding input. Grant signal is then
given to the input.

2. Accept stage: Each unmatched input examines its candidate set,
selects a winner according to age and sends an accept signal to
its output. The input and output are then considered as matched.
Reset the candidate set to empty.

�
At the end of each switch cycle, the winning cells are transferred

from the input side to the output side.
Comparing iFS to other iterative scheduling schemes, we see that

grants in iSLIP are given in round-robin manner without any respect to
bandwidth reservation. WPIM guarantees fair bandwidth sharing, but
in a much coarser granularity. Before running out of quota in WPIM,
every flow has equal access to the bandwidth. Consequently, the flows
with larger reservations get more bandwidth only after other flows run
out of their quotas, which usually happens towards the end of a frame.
If we look at the bandwidth distribution within a frame, the bandwidth
share is disproportional. In statistical matching, grants are given by
outputs to inputs randomly, therefore it is possible that an input port
is selected to receive grant signal when its queue is empty. It has
been shown in [36] that statistical matching has inferior performance
than WPIM. Unlike Shakeup where matches in prior iterations can be
modified, matched input-output pairs are ruled out in later iterations in
iFS. Although Shakeup is attractive theoretically, its feasibility for high

SUBMITTED TO INFOCOM 2002 4

performance switch is unclear because one “knock-off” of an existing
match could possibly trigger a chain of “knock-offs” which would take
more iterations to converge to global maximum matches.

The issue we do not consider in detail here is the implementation
feasibility. Efficient implementation of

�
fair queueing engines is cru-

cial to the iFS for an
� � �

switch. It is to our advantage that the
switch under discussion is cell based. The calculation of virtual time
can be simplified due to fixed packet length. The switch proposed in
[35] needs

� �
fair queueing engines to deal with variable length pack-

ets for an
� � �

switch. A second advantage is that, unlike PIM,
WPIM or Shakeup, no random number generator is needed for iFS,
which again greatly reduces the implementation complexity. Hard-
ware design for iSLIP is described in [16] where three iterations are
made possible within a cycle of 51ns. We do not have the expertise
to pinpoint the timing for iFS, but we conjecture that it is feasible for
high performance switches supporting OC-12, OC-48 line rate or even
higher.

IV. PERFORMANCE EVALUATION OF iFS

Following the criteria in [32] for assessing a resource allocation
scheme, we evaluate the proposed iFS in two aspects: efficiency and
fairness. The principal metrics for efficiency are throughput and de-
lay. A cell based simulator is developed and the simulations are con-
ducted with the assumption of infinite buffer size. The offered load
refers to the probability that a cell arrives at an input in a given slot and
the underlying fair queueing algorithm for iFS is self-clocked[13]. Our
methodology of evaluation is as follows. We start by examining iFS and
other approaches using synthetic workload under cases where destina-
tions are uniformly and non-uniformly distributed among the outputs.
Results are presented to show that iFS can achieve average cell latency
and overall throughput close to the existing schemes. Then we compare
the ability of various approaches to support fair bandwidth distribution.
In the second part of this section, traces from Internet traffic are applied
to the simulator to study how iFS works in the “real world”. Our results
demonstrate that under both synthetic and real network traffic, iFS can
achieve high throughput like iSLIP and at the same time supports fair
bandwidth allocation.

A. Measurement from synthetic workload

We begin by evaluating the throughput and the average delay of iFS
under benign i.i.d. Bernoulli traffic, where at any given slot, a cell
arrives with the probability determined by the offered workload. The
simulation is performed on a ��� � ��� switch with ��� flows per input
each destined for a different output, for a total of ����� flows. In the
first scenario, each input port sends cells with destinations uniformly
distributed among all the output ports. Figure 3 shows the delay versus
the offered load for iFS, iSLIP and WPIM with the number of itera-
tions equal to four. The iSLIP is known to offer low delay for an input
buffered switch. The delay using output buffered switch is also shown
for comparison. Under this circumstance, we observe that the average
cell delay for iFS is almost identical to iSLIP and both are very close to
output buffered switch, which is the lower bound for the delay. Hence,
iFS is capable of achieving asymptotically 100% throughput for uni-
form traffic.

Next we consider a non-uniform Bernoulli traffic model as used in
[36]. The assumption is that four of the switch ports are connected
to servers and the remaining twelve to clients. Each client sends 10%
of its generated traffic to each of the four servers, and the remainder
is uniformly distributed among the other clients. Similarly, each server
directs 95% of its traffic to the clients and the remaining 5% to the other
servers. Figure 4 indicates that iFS is very close to iSLIP and WPIM in
terms of average cell latency and can reach a throughput of 78.5%.

Now we turn to examine the effectiveness of iFS to support the fair
bandwidth sharing when a link is overloaded. This time, we simulate a

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Offered load

1

10

100

A
ve

ra
ge

 c
el

l d
el

ay
 (

sl
ot

s)

iFS

iSLIP

WPIM

output-buffered

Fig. 3. Performance of iFS, iSLIP and WPIM under uniform traffic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.74 0.78 0.8

Offered load

1

10

100

1000

A
ve

ra
ge

 c
el

l d
el

ay
(s

lo
ts

)

iFS

iSLIP

WPIM

output buffered

Fig. 4. Performance of iFS, iSLIP and WPIM under non-uniform traffic

	 �
	
switch so that we can plot the results with clarity. Assume that

every input has four flows each going to a different output. Without
loss of generality, let the

�
th flow from link

�
go to output

�
and denote

it as
� ��� �� 	

following the notation in Section III. Also assume that the
flows to output 1,

� �
�

� 	 , � �

�

� 	 , � � � � 	 and

� � 	 � 	 , have reserved
10%, 20%, 30% and 40% of the bandwidth, respectively. But they
always maintain the same actual arrival rate. Others are background
flows with a load of 5% each. We vary the input rate of the flows to
output 1 and plot the received bandwidth share in Figure 5 and 6 using
iSLIP and iFS scheduling. For workload under 25%, the throughput
for every flow is able to keep up with the input workload for both the
schemes. However, for workload beyond 25%, all the four flows are
still treated equally in iSLIP, and therefore they obtain the same share
of bandwidth(each 25%) despite of the variance in bandwidth reserva-
tion. The iFS, on the other hand, is observed to differentiate the flows
according to the promised share when the load is greater than 25%. Ill-
behaved flows are prevented from influencing the well-behaved ones.
For load beyond 40%, each flow receives its allocated bandwidth. Let
us look closely at the sharing when input load is between the range of
25% and 40%. At 30%, for instance, flow

� � 	 � 	 does not consume
its share of 40% of bandwidth. The unused part is distributed to flow� �
�

� 	 and flow

� �
�

� 	 so that they acquire a larger fraction of band-

width than their reservations. Flow
� �
�

� 	 receives 13.3%(versus a

reservation of 10%) and flow
� �
�

� 	 receives 26.6%(versus a reserva-

SUBMITTED TO INFOCOM 2002 5

tion of 20%). Such behavior also conforms to the fairness requirement
in [8], which states that the unused portion should be assigned equally
to other active flows.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load for flows to output 1

0

0.1

0.2

0.3

0.4

A
llo

ca
te

d
ba

nd
w

id
th

bandwidth reservation: f(1,1) 10%, f(2,1) 20%, f(3,1) 30%, f(4,1) 40%

f(1,1)

f(2,1)

f(3,1)

f(4,1)

Fig. 5. Received bandwidth using iSLIP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load for flows to output 1

0

0.1

0.2

0.3

0.4

A
llo

ca
te

d
ba

nd
w

id
th

bandwidth reservation: f(1,1) 10%, f(2,1) 20%, f(3,1) 30%, f(4,1) 40%

f(1,1)

f(2,1)

f(3,1)

f(4,1)

Fig. 6. Received bandwidth using iFS

To quantify the fairness, we define fairness index in the following to
measure the fairness of a switch for allocating bandwidth during time� � � � � � . Suppose there are

�
flows sharing a link and let

� � , � � and
� �

denote the actual average arrival rate, received bandwidth and reserved
bandwidth respectively for flow

�
during time

� ��� ����� . Without loss of
generality, we assume that the first � (��� ��� �) flows honor
their reservation, that is,

� � � � � for flows � through ��� � . The rest
 � � � � � flows have arrival rate greater than their reservation. For
each over subscribing flow

�
(� � � � �), we denote

	 � �

�� �� �
���� ���
 � �
 	 � �

�� �� � � �
� � (1)

	 � is the bandwidth that can be spared to the over subscribing flow�
, and the adjusted reservation for it is

� ��� 	 � . Ideally, the unused
bandwidth is distributed proportionally to the back logged flows and
this is exactly what is conveyed in Equation 1.

Now we define fairness index (�) for a link as

� �

 � �� ������ ������� � �

� �
� 	 �
 � ��!� � � ���

��� #" � �%$ � � � & �('*),+
" � �,$ � � � & �('*),+

� 	
� (2)

� measures how close the received bandwidth is to the reservation for a
link. The overall fairness index for a switch is calculated as the average
� value of its output links:

�.-0/ �!1�203 �

54 ��67 �4 ��� � 4 � � � 48 (3)

where K is the number of outputs for the switch.

The smaller the � is, the better is the fairness. The fairness indices
for the settings in Figure 5 and 6 are �%9 ��� for iSLIP and �%9 � ��:�� for iFS
at the input rate of 0.3. The � values are 0.573 and 0 for iSLIP and iFS
respectively under the input rate of 0.4 or above.

1st 250 slots 2nd 250 slots 3rd 250 slots 4th 250 slots
0

0.2

0.4

0.6

0.8

A
llo

ca
te

d
ba

nd
w

id
th

bandwidth reservation: f(1,1) 40%, f(2,1) 20%, f(3,1) 20%, f(4,1) 20%

f(1,1)

f(2,1)

f(3,1)

f(4,1)

Fig. 7. WPIM: bandwidth distribution within a frame of 1000 slots

1st 250 slots 2nd 250 slots 3rd 250 slots 4th 250 slots
0

0.1

0.2

0.3

0.4

A
llo

ca
te

d
ba

nd
w

id
th

bandwidth reservation: f(1,1) 40%, f(2,1) 20%, f(3,1) 20%, f(4,1) 20%

f(1,1)

f(2,1)

f(3,1)

f(4,1)

Fig. 8. iFS: bandwidth distribution within a frame of 1000 slots

TABLE I

FAIRNESS INDICES FOR WPIM AND iFS (SF FOR SUBFRAME)

� 1st SF 2nd SF 3rd SF 4th SF

WPIM 0.21 0.158 0.225 0.568
iFS 0.015 0 0 0

WPIM scheme also complies with the bandwidth requirement of
each flow by restricting the number of transmitted cells during a frame
within a limit determined by its reservation. Accordingly, bandwidth
requirement can be met and the well-behaved flows are protected. How-
ever, a careful study reveals the drawback of WPIM whose mechanism
rules that link bandwidth is evenly distributed among existing flows un-
til some use up their quotas. Flows running out of their quotas are then
excluded from accessing the link in the current frame, and the band-
width is again allocated equally among the remaining flows. Let us
inspect the flow with the largest bandwidth reservation. Under WPIM,
this flow shares the link bandwidth equally with all the other flows at
the beginning of each frame. Its share increases gradually as the quotas
for other flows are exhausted. As an example, consider the four flows
going to output 1 but with bandwidth reservations of 40%, 20%, 20%
and 20% this time. Frame length is taken as 1000 slots as in [36]. We
observe that every flow gets its fair share by the end of a frame un-
der both WPIM and iFS. But if we break a frame into four 250-slot
subframes, we notice that the bandwidth distribution for WPIM is not
fair, as depicted in Figure 7. During the first 750 slots, bandwidth is
almost equally distributed(about 25% each) regardless of the reserva-
tion. Towards the end of the frame, flows with less reservation(

� �
�

� 	 ,

SUBMITTED TO INFOCOM 2002 6

� � � � 	 and
� � 	 �) have used up their quota. Flow with the highest

reservation(
� �
�

�) then consumes almost all the capacity in the last

250 slots. Therefore, WPIM provides bandwidth guarantee at coarse
granularity of 1000 slots. The iFS, on the other hand, can provide fair
sharing both at coarse and fine grain levels. The received bandwidth in
iFS complies with the reservations even within subframes as illustrated
in Figure 8. Their ability to support fair bandwidth is also compared by
fairness indices in Table I for individual subframes.

As for all the iterative approaches, the number of iterations required
for convergence is a constraining factor because all the iterations must
be done within a single switch cycle. In the case of ��� � ��� switch,
��� iterations are needed in the worst case. Figure 9 shows the effect
of the number of iterations on the average cell latency under uniform
traffic. We can see that with two iterations, a throughput of over 90%
can be achieved and four iterations are adequate to obtain a throughput
of nearly 100%. This is consistent with the findings in [1], [36] and
[22] that

� � � � �
	
iterations are enough for the algorithm to converge.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Offered load

1

10

100

1000

10000

A
ve

ra
ge

 c
el

l d
el

ay
(s

lo
ts

)

1 iteration

2 iterations

3 iterations

4 iterations

16 iterations

output buffered

Fig. 9. Latency versus the number of iterations for iFS

In summary, the evaluation using uniform and non-uniform synthetic
traffic models indicates that the iFS scheme is very promising in sup-
porting fair bandwidth distribution as well as maintaining high overall
throughput.

B. Measurement from real traffic

Studies using the Internet traffic traces have been extensively re-
ported in network research. Yet, to the best of our knowledge, ours is
the first attempt to incorporate such traces into evaluating switch/router
scheduling schemes. We hope this practice can shed some light on the
effective use of real traces in validating the performance of different
approaches.

Traffic arrivals in the Internet have been shown to be highly
correlated(self-similar) [31], [7]. Simulations using Poisson or
Bernoulli distribution offer good judgment on how a scheme works,
but may significantly underestimate the burstiness of the real traffic
pattern and give rise to unrealistic performance results. Geometrically
distributed ON/OFF traffic is used in [22] and [14] to model the bursti-
ness, but we will show later that the approach of taking real traces is
better in characterizing the impact of traffic on switch design.

B.1 Measurement from NLANR traces

The traces taken from National Lab of Applied Network Re-
search(NLANR [27]) are collected using OC3mon, a traffic monitor
on OC-3 link, at the ATM backbones on NSF vBNS. Traces from the
same site were used in [17] for studying packet forwarding method.
The traces considered in this paper were collected in May 2000 from
facilities AIX, FRG and MRT. Every line in the trace file includes the

TABLE II

INPUT LINK UTILIZATION FOR THE VARIOUS FLOWS(NLANR)

utilization link 1 link 2 link 3 link 4

overall 19.5% 20.5% 19.3% 18.6%� ���
� 	 7.6% 8.5% 18.9% 13.1%� ���
� 	 4.2% 4.5% 0.2% 3.5%� ��� � 	

4.7% 3.6% 0.09% 1.4%� ��� 	 	
3.0% 3.8% 0.07% 0.6%

following information: timestamp when a TCP header arrives at the
OC3mon, source IP/port, destination IP/port and size of the packet. We
use four traces as arriving traffic on four input links to our

	 � 	
switch.

The overall average utilization for these input links is listed in the first
row of Table II. Based on the destination IP address, we classify traffic
on each link into four flows, one for each output port(i.e., flow

� ��� �� 	
from link

�
going to output

�
). The link utilization for the individ-

ual flows are also listed in Table II. We derive each burst length from
packet size as they are segmented into ATM cells. Each idle period is
calculated as the interarrival time between two packet headers minus
the burst length of the prior packet. Unfortunately, the traces carry no
information about the bandwidth reservation so we impose our assump-
tion of reserved bandwidth in the simulation.

0

200

400

600

800

1000

0 10000 20000 30000 40000 50000

ce
lls

 p
er

 1
00

0-
cy

cl
e

time(in 1000 cycles)

Fig. 10. The arrival pattern for traffic from link 1(NLANR)

To see how real traffic is different from geometrically distributed
ON/OFF traffic, we give an example by plotting cell arrival patterns for
input link 1 and its corresponding geometric counterpart in Figure 10
and Figure 11, respectively. The geometrical ON/OFF traffic is so gen-
erated that it has the same average burst length and idle period as those
from the trace. We observe that the ON time is much more clustered
in the trace and the typical number of cells coming within 1000 cycles
ranges from 100 to 600. There are also non-negligible times when not
a single cell shows up during a 1000-cycle period. For geometrically
distributed ON/OFF arrival pattern, on the other hand, the interarrivals
are more evenly spread out with only 100 to 350 cells incoming within
every 1000 cycles. Studies from other links tell similar differences be-
tween traces and synthetically generated traffic.

To examine the impact of the distinct traffic pattern, we feed the
flows from the traces and the geometrically distributed ON/OFF traffic
to the simulator. Figure 12 presents the delay for flows to output 1
under both cases. The average cell delay is substantially greater for the
real traffic. Geometrically distributed ON/OFF traffic underestimates
the contention of the flows and therefore cannot be used very well as a

SUBMITTED TO INFOCOM 2002 7

0

200

400

600

800

1000

0 10000 20000 30000 40000 50000

ce
lls

 p
er

 1
00

0-
cy

cl
e

time(in 1000 cycles)

Fig. 11. The arrival pattern for geometric traffic from link 1

representative model.

f(1,1) f(2,1) f(3,1) f(4,1)
1

10

100

1000

10000

A
ve

ra
ge

 c
el

l d
el

ay
(s

lo
ts

)

geometric on/off

trace

Fig. 12. Average cell delay for trace vs. geometrically ON/OFF traffic

f(1,1) f(2,1) f(3,1) f(4,1)
100

1000

10000

A
ve

ra
ge

 c
el

l d
el

ay
(s

lo
ts

)

iFS

iSLIP

Fig. 13. Internet traffic: average cell delay for iFS and iSLIP(NLANR)

Now we study effectiveness of the iFS scheme for maintaining fair
bandwidth allocation for real traffic. On top of the flows presented
in Table II, we impose a bandwidth requirement arbitrarily. Let the
bandwidth requirement for flows

�����������
,
���
	������

,
����������

and
�����������

be 10%, 20%, 30% and 40%, respectively. As the sum of the workload
is well below the capacity of output link 1, throughput for each flow is
equal to offered input rate. However, since some flows reserve a greater
fraction of bandwidth than others, these flows should receive a larger

TABLE III

LINK UTILIZATION FOR THE FLOWS AFTER CUTTING DOWN IDLE TIME(NLANR)

utilization link 1 link 2 link 3 link 4�����������
24.7% 27.1% 48.3% 37.6%��������	��
15.0% 15.8% 0.78% 12.8%�����������
16.6% 13.2% 0.35% 5.6%�����������
10.9% 13.5% 0.28% 2.2%

f(1,1) f(2,1) f(3,1) f(4,1)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
llo

ca
te

d
ba

nd
w

id
th

iFS

iSLIP

Fig. 14. Internet traffic: received bandwidth distribution(NLANR)

bandwidth and perceive less delay. Figure 13 shows the average cell
delay for the flows to output 1 under iFS and iSLIP schemes. Note
that iSLIP does not observe the bandwidth requirement. Flows

�����������
and

���
	������
have lower delay because their input rate is only about 8%.

Flow
����������

experiences much longer delay than
�����������

since the it
has higher input rate than the latter(18.9% vs. 13.1%). In contrast with
the situation for iSLIP, the delay for the individual flows in iFS depends
not only on the input rate, but also on the bandwidth requirement. It is
shown in Figure 13 that flow

�����������
has much greater average cell

latency than that of
���
	������

even though their input rates are close. This
is because

�����������
reserves only 10% of the bandwidth whereas 20% is

set aside for
���
	������

. For the same reason,
����������

suffers larger delay
than

�����������
since the it has higher input rate(18.9% vs. 13.1%) but

reserves less bandwidth(30% vs. 40%). However, a greater reservation
itself cannot guarantee lower delay. Look at

���
	������
and

����������
for a

case in point. Compared to
���
	������

with a reservation of 20%,
����������

has larger average cell delay even if it reserves 30% of the bandwidth.
The actual input workload for

����������
is so much higher than

���
	������
that its reservation is not great enough to bring in a lower delay.

In order to demonstrate how iFS enforces fair bandwidth assignment,
we need flows to send packets at a higher rate than reservation. How-
ever, the highest link utilization from the traces available at NLANR is
only around 20%, and it becomes even lower after being split over four
outputs. We get around this problem by cutting down each idle period
to 25% of the original time in the simulation. The resulting average
link utilization of various flows are listed in Table III. We believe this
manipulation on the traces will not compromise the quality of the real
traffic. Assume the same bandwidth reservations of 10%, 20%, 30%
and 40% for

�����������
,
���
	������

,
����������

and
�����������

, respectively. The
achieved bandwidth of the flows is plotted in Figure 14 for iFS and
iSLIP schemes. It is observed that iFS is capable of supporting fair
bandwidth allocation when the workload exceeds the capacity of the
shared link and the received bandwidth for the individual flows is pro-
portional to the reserved share. The iSLIP fails to do so and distributes
the bandwidth evenly among the various flows due to the mechanism
of rotating priority.

SUBMITTED TO INFOCOM 2002 8

TABLE IV

LINK UTILIZATION FOR THE FLOWS AFTER CUTTING DOWN IDLE TIME(UCB)

utilization link 1 link 2 link 3 link 4� ���
� 	 23.3% 25.9% 36.1% 35.9%� ���
� 	 8.0% 22.1% 21.1% 14.0 %� ��� � 	

5.1% 19.9% 20.5% 15.8%� ��� 	 	
28.5% 9.3% 20.5% 16.4%

B.2 Measurement from UCB traces

Next, we consider Web proxy traffic from HTTP traces gathered by
UC Berkeley in November 1996 from its Home IP service [37]. The
community gains IP connection across about 600 modems (with speed
from 2.4Kb/s to 28.8Kb/s), and all their traffic ends up going through
a single 10Mb/s shared Ethernet segment, on which a network moni-
toring computer is placed. Interested fields from the traces include the
time when the first byte of a HTTP response data file was seen, the time
when the last byte of data was seen, anonymized client and server ad-
dresses and the size of response data file. We ignore the effect of HTTP
requests because their consumed bandwidth is negligible.

We do the following processing to the trace. According to the max-
imum transmission unit of the Ethernet, we segment each data file into
a series of 1500-byte packets. Since our simulator is cycle-based, each
packet is further divided into cells which are sent back to back as a
burst. The idle time between two consecutive bursts is determined as
if the packets belonging to a file are evenly spaced between the time of
the first byte seen and the last byte seen. The idle period between the
files are calculated directly from the trace. The interleaving of packet
transmission from multiple files is also taken into account. Again, we
assume a

	 � 	
switch and classify traffic depending on the IP address

and then feed the traces into the four input links. Due to the same rea-
son for NLANR traces, the idle time is cut down to obtained higher link
utilization, as shown in Table IV.

f(1,1) f(2,1) f(3,1) f(4,1)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
llo

ca
te

d
ba

nd
w

id
th

iFS

iSLIP

Fig. 15. Internet traffic: received bandwidth distribution(UCB)

Assume the same bandwidth reservations of � �
�

, � �
�

,
� � � and	 � � for

� �
�

� 	 , � �

�

� 	 , � � � � 	 and

� � 	 � 	 , respectively. The
achieved bandwidth of the flows from link � is plotted in Figure 15 for
iFS and iSLIP schemes. As expected, with iFS scheduling, the more a
flows reserves, the more bandwidth it entitles to. But one thing brought
to our attention is that, although

� ����� �
�

� 	 has an average link utiliza-

tion of � � 9 � � and has reserved � � � of the link bandwidth, its perceived
bandwidth is only � 9 : � . We examine the traffic pattern for this flow
and plot it in Figure 16. It is observed that in approximately the first one
third of the time, there are almost no packet arrivals from

� � ��� �
�

� 	 .

So
� �
�

� 	 has nothing to send during that period. After that, its traffic

increases dramatically. However, due to the reservation of � � � only,� ����� �
�

� 	 is restricted by the iFS from transmitting too much because

0

200

400

600

800

1000

0 500 1000 1500 2000

ce
lls

 p
er

 1
00

0-
cy

cl
e

time(in 1000 cycles)

Fig. 16. The arrival pattern for traffic from flow(1,1)

0

200

400

600

800

1000

0 500 1000 1500 2000

ce
lls

 p
er

 1
00

0-
cy

cl
e

time(in 1000 cycles)

Fig. 17. The arrival pattern for traffic from flow(4,1)

other completing flows are also over subscribed. Therefore, the result-
ing average received bandwidth over the entire monitored interval is
only � 9 : � . With iSLIP,

� ����� �
�

� 	 grasps ���

�
of the bandwidth in

its active period and attains � � 9 : � of the link bandwidth on average,
well above the preserved � � � . According to the trace collector, the
uncharacteristically low activity in the traces corresponds to network
outrages from Berkeley’s ISP, rather than from trace failures [37]. For
comparison, we plot an example of a normal flow arrival pattern in Fig-
ure 17. We can see that even under such skewed scenario, iFS is able
to distribute resources more fair than iSLIP.

V. BUFFER MANAGEMENT FOR FAIR SCHEDULING

Section III focuses on the switch scheduling scheme itself without
considering the buffer size. Yet , in practice the input buffer is finite.
With rate-based flow control, which is the common choice for support-
ing bandwidth distribution, excessive packets are dropped when buffer
is full or congestion is anticipated. In the following, we study four se-
lective packet discarding mechanisms and examine their impact on fair
bandwidth allocation.

A. Decongestion Mechanisms

While messages from a source node are fragmented into fixed cells,
which are transmitted individually across the network and reassembled
at the destination, cell level retransmission is not supported. Thus, loss
of a single cell in a packet forfeits the whole packet and it has to be re-
transmitted. Four decongestion mechanisms schemes are investigated:
drop tail (DT), early packet discard (EPD), equal size per flow (ESPF)
and rate based size per flow (RSPF). DT and EPD are stateless whereas

SUBMITTED TO INFOCOM 2002 9

ESPF and RSPF are on per-flow basis.
Drop tail: This is the basic dropping strategy: Cells are first-in-first-out
and an incoming cell is dropped if it arrives to find the input buffer full.
After a cell is shredded, the switch still makes effort to transmit the
remaining part of the packet even if they turn out to be worthless at the
destination and the entire packet has to be retransmitted. Hence, DT
scheme is poor in performance despite its simplicity in implementation
without keeping status for each flow.
Early packet discard [11]: EPD overcomes the the drawback of DT
by dropping all the cells constituting a new packet when congestion is
predicted. Upon receiving a header cell of a new packet, the switch
checks to see whether the buffer occupancy exceeds certain threshold.
If so, the header cell is dropped and so are the upcoming cells from
the same packet. Otherwise, the header is inserted into the buffer and
subsequent cells are allowed into the buffer as long as the it is not full
upon their arrival. The justification behind this early discard is that
because the buffer is almost full and the congestion is likely to occur,
the upcoming cells of the packet are most probably dropped. So it is
better to give up sooner than later the packet that cannot be received
successfully any way. A good side effect is that, once the packet is
dropped, it makes room in the buffer for other upcoming packets so that
they are less likely to be discarded. Like drop tail mechanism, EPD is
also a stateless scheme. But we need to watch for buffer occupancy
constantly and keep track of the packets that have been selected for
discard so that their upcoming cells are taken care of. Therefore, EPD
is more intricate in implementation compared to DT. It will been seen
later with simulation that the extra effort pays off.
Equal size per flow: Both drop tail and early packet discard are state-
less, and they are very much handicapped to the degree to achieve flow
isolation, which is important in order to prevent ill-behaved flow to
take advantage of others. An EPD-based per flow queueing approach
called ESPF secures equal share of buffer space after certain thresh-
old is reached. In ESPF, the share is calculated as the total buffer size
divided by the number of concurrent active flows. Thus, this is a dy-
namic reservation policy in which the quota for each flow changes with
the number of active flows. When buffer occupancy is below certain
threshold, all incoming cells are accepted. After that, a header cell is
allowed into the buffer only if the flow’s quota has not been used up.
Otherwise, the entire packet is discarded. Once the header cell is admit-
ted, subsequent cells can follow in provided that the buffer is not full.
One concern of ESPF in terms of implementation complexity is the ne-
cessity to compute the quota for the active flows on the fly because the
flows are on and off.
Rate-proportional size per flow: ESPF attempts to assign equal share of
the buffer space to the active flows without taking their desired band-
width into consideration. Intuitively, some flows may deserve larger
fraction of buffer than others because they reserve a greater portion of
link bandwidth. In this sense, it is not necessarily fair to treat all the
flows equally when allotting the buffer space. With the scheme of rate-
proportional size per flow (RSPF), the quota is assigned in proportion
to the fraction of bandwidth reservation. Same as ESPF, if buffer oc-
cupancy is low, all incoming cells are admitted. After the threshold is
reached, a packet is allowed into the buffer only if its quota has not been
exhausted. In contrast to ESPF, quota for each flow is fixed by the time
the reservation is made in RSPF. Therefore, it is less computational
intensive in implementation .

B. Performance Analysis

The decongestion mechanisms are evaluated based on the simulation
with a

	 � 	
switch. From each of the four inputs there are four flows

going to different outputs, amounting to a total of 16 flows. We first
examine the various schemes using geometric on/off traffic for average
cell delay, packet loss ratio and the ability to support fair bandwidth
allocation. Then we extend our study to employ real network traffic as

input. The scheduling scheme used throughout this section is iFS and
the threshold is chosen to be : �

�
of the buffer size.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Offered load

0

20

40

60

80

100

120

A
ve

ra
ge

 c
el

l d
el

ay
(s

lo
ts

)

DT
EPD

ESPF

RSPF

Fig. 18. Average cell delay versus offered load

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Offered load

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

Pa
ck

et
 lo

ss
 r

at
e

DT
EPD

ESPF

RSPF

Fig. 19. Packet loss ratio versus offered load

Let us consider a scenario with a set of benign flows, where each of
the 16 connections reserves an equal share of its intended link band-
width and all the flows keep the same actual average traffic rate all the
time. The workload is geometrically distributed on/off traffic and the
average on period is 20 consecutive cells in a burst. The buffer size
for each input block is set to � � � slots. We vary the offered input rate
by changing the mean off time and examine the average cell delay and
packet loss ratio, which is defined to be the ratio of the number of lost
packets to total number of packets sent by the source. From the results
in Figure 18 and Figure 19, it is observed that under the input rate of
�,9 � , there is little difference among the four schemes. As the input rate
further increases, the delay for DT is far more worse than the others.
In DT, incoming cells are dropped only when the buffer is full. There-
fore, even if a header cell has already been discarded, constituent cells
of the same packet may still clog in the buffer and compete to pass the
crossbar. Such cells, eventually thrown away at the destination, worth-
lessly obstruct the way of useful cells from other packets and delay
their transmission. The other three schemes all employ early packet
discard technique where useless cells are detected at early stage and
dropped so that delivery of other packets is expedited. Since all the
flows reserve equal share of bandwidth, RSPF becomes almost identi-
cal to ESPF under this circumstances, so it is not a surprise that ESPF
and RSPF give nearly the same performance. However, careful study
reveals that ESPF offers slightly lower packet loss ratio. We trace this to
the fact that buffer quota is dynamically assigned to the flows in ESPF.
The active flows in ESPF can take advantage of the off flows and allow
more packets in the buffer than in the case of RSPF.

Both ESPF and RSPF outperform EPD under heavy workload. With
EPD, a new packet is discarded when the threshold is reached, whereas
in ESPF and RSPF, an incoming packet can still be admitted provided

SUBMITTED TO INFOCOM 2002 10

that the quota for its flow has not been exhausted. Therefore, with the
same threshold, ESPF and RSPF allow more packets into the buffer.
And it explains why EPD has much higher packet loss ratio than ESPF
and RSPF in Figure 19. It is possible to set a higher threshold in order
for EPD to achieve better buffer utilization, but again the same problem
with DT may occur. Simulation with longer burst length (not shown
here due to space limitation) indicates similar performance trend. Al-
though longer burst results in larger cell delay and greater loss ratio for
all the four schemes, DT is more sensitive to burstiness than others.

f(1,1) f(2,1) f(3,1) f(4,1) f(1,2-3-4) f(2,2-3-4) f(3,2-3-4) f(4,2-3-4)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
llo

ca
te

d
ba

nd
w

id
th

DT

EPD

ESPF

RSPF

Fig. 20. The ability for fair bandwidth allocation under synthetic workload

TABLE V

EFFECT OF DECONGESTION MECHANISM ON FAIRNESS UNDER SYNTHETIC

WORKLOAD(NLANR)

� DT EPD ESPF RSPF

link 1 0.420 0.024 0.055 0.014
link 2,3,4 0.480 0.480 0.110 0.100

switch overall 0.465 0.366 0.096 0.079

The performance of the various decongestion mechanisms are in-
spected in supporting fair bandwidth distribution using geometric
on/off workload. Following the notation of the tagged flows in Section
IV, it is assumed

� �
�

� 	 , � �

�

� 	 , � � � � 	 and

� � 	 � 	 reserve � � � ,
� � � ,

� � � and
	 � � of the output link � bandwidth respectfully. Each

of the rest flows reserves a fraction of ���
�

of their intended link band-
width. Suppose that the tagged flows fail to keep the contract and each
sends at a rate of 0.4 but others abide their promises. The perceived
bandwidth for the flows are presented in Figure 20. Without flow isola-
tion, DT performs the worst and cannot support bandwidth distribution
according to the reservation. For example, compared to their respective
reservation of � � � and � � � ,

� �
�

� 	 receives

� 9 � � and
� �
�

� 	 gets	 9 	 � . Yet, the figure shows that the various flows do receive somewhat

different bandwidth using DT. This is attributed to the fair scheduling
scheme being used, which attempts to favor flows with greater reserva-
tion. EPD improves over DT by supporting fair bandwidth distribution
among the tagged flows. However, if we look at untagged flows from
input link � and � , they receive bandwidth well below the reservation.
The reason is that the actual sending rate from tagged flows of input
� and � is so much higher than their reservation that many of their
packets are backlogged. Since EPD is not per flow based, such pack-
ets clog the buffer and prevent cells from the untagged flows to get in.
Eventually packets from the untagged flows are discarded, resulting in
underutilization of their allocated bandwidth. With per-flow queueing,
ESPF and RSPF sucessfully protect the benign flows in this scenario.
The fairness indices for the four policies are given in Table V. One
may wonder why ESPF, without taking any reservation, works almost
equally well as RSPF. Intuitively, because fair scheduling is employed,

flows reserving greater fraction of bandwidth also receive higher ser-
vice rate and cells are drained more quickly. As a result, such flows do
not necessarily require buffer size in proportion to the arrival rate.

f(1,1)f(2,1)f(3,1)f(4,1) f(1,2)f(2,2)f(3,2)f(4,2) f(1,3)f(2.3)f(3,3)f(4,3) f(1,4)f(2.4)f(3.4)f(4,4)
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

A
llo

ca
te

d
ba

nd
w

id
th

DT

EPD

ESPF

RSPF

Fig. 21. The ability for fair bandwidth allocation for Internet traffic(NLANR)

TABLE VI

EFFECT OF DECONGESTION MECHANISM ON FAIRNESS UNDER REAL

WORKLOAD(UCB)

� DT EPD ESPF RSPF

link 1 0.500 0.140 0.220 0.140
link 2 0.293 0.200 0.023 0.000
link 3 0.310 0.247 0.079 0.058
link 4 0.240 0.180 0.043 0.036

switch overall 0.336 0.192 0.086 0.059

f(1,1) f(2,1) f(3,1) f(4,1) f(1,2) f(2,2) f(3,2) f(4,2) f(1,3) f(2.3) f(3,3) f(4,3) f(1,4) f(2.4) f(3.4) f(4,4)
0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

A
llo

ca
te

d
ba

nd
w

id
th

DT

EPD

ESPF

RSPF

Fig. 22. The ability for fair bandwidth allocation for Internet traffic(UCB)

TABLE VII

EFFECT OF DECONGESTION MECHANISM ON FAIRNESS UNDER REAL

WORKLOAD(UCB)

� DT EPD ESPF RSPF

link 1 0.400 0.270 0.240 0.250
link 2 0.440 0.330 0.170 0.174
link 3 0.460 0.320 0.160 0.160
link 4 0.508 0.240 0.260 0.230

switch overall 0.468 0.290 0.207 0.203

SUBMITTED TO INFOCOM 2002 11

Finally, the various decongestion mechanisms are compared using
the Web traces as in Section IV-B. For NLANR packet header traces,
the link utilization can be found in Table III. The bandwidth reservation
imposed is assumed to be the same with the last setting, i.e., � � � , � � � ,� � � and

	 � � for the tagged flows and � �
�

otherwise. The perceived
bandwidth for the individual flows under different schemes is plotted
in Figure 21. Significant difference between ESPF and RSPF is seen,
especially for flow

� � � � 	 , whose traffic is the most intensive and clus-
tered. Rate based buffer space allocation gives better results under real
traffic when the incoming packets are highly bursty. Although flows
with greater bandwidth reservation drain their cells faster under fair
bandwidth scheduling, it may not be fast enough to offset the fact their
cells arrive in a dramatically clustered fashion. The fact that EPD pro-
vides a more fair bandwidth allocation than ESPF for output link 1 (�
value 0.14 vs. 0.22 in the first row of Table VI) also proves this to be
true since flows with higher input rate are allowed to take more buffer
space in EPD but not in ESPF. Therefore, equal share of buffer is not
capable of maintaining fairness for such flows and it is beneficial to
provide larger buffer for those with highly bursty arrival pattern.

We assume the same bandwidth requirement for the flows in UCB
Web proxy traces and rerun the simulation using various decongestion
policies. The results are presented in Figure 22 and Table VII. We again
found that both RSPF and ESPF offer better performance than EPD.
RSPF outperforms ESPF for some flows and is little bit inferior for
others. We attribute this to the traffic characteristics of the individual
flows.

The above experiments indicate that decongestion mechanism can
significantly affect the switch performance, and fair scheduling scheme
alone cannot guarantee fairness. Early packet discard, which drops
worthless packets at an earlier stage and relieves the network conges-
tion, is a must. Flow isolation is important to support fair link band-
width distribution. Under the situations when the traffic is not highly
bursty, equal sharing of buffer space is sufficient if fair scheduling
scheme is used. However, when cell arrival is highly clustered, equal
buffer sharing will force the flows with high input rate to drop more
packets. This can be avoided to a large extent if buffer allocation is in
proportion to the bandwidth reservation.

VI. CONCLUDING REMARKS

In this paper, we explored the scheduling schemes for input buffered
switches to support fair bandwidth allocation. We first proposed an
iterative fair scheduling(iFS) algorithm capable of scheduling cells so
that each flow receives bandwidth proportional to its reservation un-
der heavy traffic. We showed that the fairness support does not com-
promise the average cell latency when compared with other iterative
scheduling schemes. We examined four decongestion mechanisms and
studied their impact on supporting fair bandwidth scheduling. With
the extensive experimental results, we showed that early packet dis-
card is necessary to relieve congestion. Our simulation also tells that
fair scheduling scheme alone cannot ensure fair bandwidth allocation
and per flow buffering is needed to protect well-behaved flows. Buffer
allocation based on the bandwidth reservation offers better fairness es-
pecially when the workload is highly clustered. It is worth mentioning
that we explored the issues of switch design by incorporating the Web
traffic traces in the study. Although it has been applied in other aspect
of network research, it has not been used in the study of this area be-
fore. Results from real trace workload provides further validation in
addition to commonly employed traffic model.

REFERENCES

[1] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker. High speed switch scheduling for local
area networks. ACM Transctions on Computer Systerms, 11(4):319–352, November 1993.

[2] M. F. Arlitt and L. Williamson, Carey. Internet web servers: Workload characterization and perfor-
mance implications. IEEE/ACM Transactions on Networking, 5(5):631–645, October 1997.

[3] G. Armitage and K. Adams. Packet reassemly during cell loss. IEEE Network Magazine, 7(5):26–34,
September 1993.

[4] P. Barford and M. Crovella. Generating representative web workloads. In Proceedings of the 1998
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
pages 151–160, Madison, WI, July 1998.

[5] J. Bennett and H. Zhang.
��� ���

: worst-case fair weighted fair queueing. In Proceedings of IEEE
INFOCOM’96, pages 120–128, San Francisco, CA, March 1996.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions:
Evidence and implications. In Proceedings of IEEE INFOCOM’99, pages 126–134, March 1999.

[7] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web traffic: Evidence and possible
causes. IEEE/ACM Transactions on Networking, 5(6):835–846, December 1997.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. Journal
of Internetworking Research and Experience, 1(1):3–26, September 1990.

[9] J. Ding and L. N. Bhuyan. Evaluation of multi-queue buffered multistage interconnection net-
works under uniform and non-uniform traffic patterns. International Journal of Systems Science,
28(11):1115–1128, 1997.

[10] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1:397–413, August 1993.

[11] S. Floyd and A. Romanov. Dynamics of TCP traffic over ATM networks. IEEE Journal on Selected
Areas in Communications, 13(4):633–641, 1995.

[12] L. Georgiadis, I. Cidon, R. Guerin, and A. Khamisy. Optimal buffer sharing. IEEE Journal on
Selected Areas in Communications, 13:1229–1240, September 1995.

[13] S. J. Golestani. A self-clocked fair queeuing scheme for broadband applications. In Proceedings of
IEEE INFOCOM’94, pages 636–646, Toronto, Canada, June 1994.

[14] M. W. Goudreau, S. G. Kolliopoulos, and S. B. Rao. Scheduling algorithms for input-queued
switches: Randomized techniques and experimental evaluation. In Proceedings of IEEE INFO-
COM’00, volume 3, pages 1634–1643, Tel Aviv, Israel, March 2000.

[15] P. Goyan, H. Vin, and H. Chen. Start-time fair queueing: A scheduling algorithm for integrated
services. In ACM SIGCOMM, pages 157–168, Palo Alto, CA, August 1996.

[16] P. Gupta and N. McKeown. Design and implmentation of a fast crossbar scheduler. IEEE Micro,
pages 20–28, Janurary/Febrary 1999.

[17] F. Hoymany and D. Mosse. A simulation study of packet forwarding methord over ATM. In Pro-
ceedings of IEEE INFOCOM’98, pages 401–408, San Francisco, CA, March 1998.

[18] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input versus output queueing on a space-division
packet switch. IEEE Transactions on Communications, COM-35(12):1347–1356, December 1987.

[19] S. Keshav and R. Sharma. Issues and trends in router design. IEEE Communications Magazine,
pages 144–151, May 1998.

[20] S. Li and N. Ansari. Input-queued switching with QoS guarantees. In Proceedings of IEEE INFO-
COM’99, pages 1152–1159, New York City, NY, March 1999.

[21] A. Mahanti, C. Williamson, and D. Eager. Traffic analysis of a web proxy caching hierarchy. IEEE
Network Magazine, pages 16–23, May/June 2000.

[22] N. McKeown. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Transactions
on Networking, 7(2):188–201, April 1999.

[23] N. McKeown, V. Anantharam, and J. Walrand. Achieving 100% throughput in an input-queued
switch. In Proceedings of IEEE INFOCOM’96, pages 296–302, San Francisco, CA, March 1996.

[24] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz. Tiny tera: a packet switch
core. IEEE Micro, pages 26–33, January/February 1997.

[25] C. Metz. IP routers: New tool for gigabit networking. IEEE Internet Computing, pages 14–18,
November/December 1998.

[26] P. Misha and M. Saksena. Designing buffer management policies at an IP/ATM gateway. In Pro-
ceedings of IEEE ATM Workshop, pages 144–153, 1998.

[27] National Lab for Applied Network Research (NLANR) packet header traces,
http://moat.nlanr.net/traces/.

[28] R. Pan, B. Prabhakar, and K. Psounis. CHOKe, a stateless active queue management scheme for
approximating fair bandwidth allocation. In Proceedings of IEEE INFOCOM’00, pages 942–951,
Tel Aviv, Israel, March 2000.

[29] A. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in intergrated
services networks: The single-node case. IEEE/ACM Transactions on Networking, 1(3):344–357,
June 1993.

[30] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham, M. Hathaway, P. Herman,
A. King, S. Kohalmi, T. Ma, and J. Mcallen. A 50-Gb/s IP router. IEEE/ACM Transactions on
Networking, 6(3):237–248, June 1998.

[31] V. Paxson and S. Floyd. Wide area traffic: The failure of poisson modeling. IEEE/ACM Transactions
on Networking, 3(3):226–244, June 1995.

[32] L. L. Peterson and B. S. Davie. Computer Networks — A System Approach. Morgan Kaufmann, San
Francisco, CA, 2000.

[33] M. Pirvu, N. Ni, and L. N. Bhuyan. Exploring the switch design space in a CC-NUMA multiproces-
sor environment. In Proceedings of International Parallel and Distributed Processing Symposium,
pages 703 –710, Cancun, Mexico, May 2000.

[34] D. Serpanos and P. Antoniadis. FIRM: A class of distributed scheduling algorithm for high-speed
ATM switches with multiple input queues. In Proceedings of IEEE INFOCOM’00, volume 2, pages
548–555, Tel Aviv, Israel, March 2000.

[35] D. C. Stephens and H. Zhang. Implementing distributed packet fair queueing in scalable switch
architecture. In Proceedings IEEE INFOCOM’98, pages 282–290, San Francisco, CA, March 1998.

[36] D. Stiliadis and A. Varma. Providing bandwidth guarantees in an input-buffered crosbar switch. In
Proceedings of IEEE INFOCOM’95, pages 960–968, Boston, MA, April 1995.

[37] UC Berkeley Home IP Web Traces, http://ita.ee.lbl.gov/html/contrib/UCB.home-IP-HTTP.html.
[38] H. Zhang. Service displines for guaranteed performance service in packet-switching networks. In

Proceedings of the IEEE, volume 83, pages 1374–1396, October 1995.

