Adaptive Max-min Fair Scheduling in Buffered
Crossbar Switches Without Speedup

Xiao Zhang, Satya R. Mohanty and Laxmi N. Bhuyan
Department of Computer Science and Engineering
University of California, Riverside, CA 92521
Email: {xzhang, satya, bhuya@cs.ucr.edu

Abstract— A good crossbar switch scheduler should be able is that doubling crossbar speed requires memory speed to be
to achieve 100% throughput and maintain fairness among doubled and scheduling time to be halved.
competing flows. A pure input-queued (IQ) non-buffered swith Recently, with the breakthrough of very large scale integra
requires an impractically complex scheduler to achieve thd goal. .. ’ L e T
Common solutions are to use crossbar speedup and/or buffede tion (VLSI) and application specific integrated C'r_CU'F (5
crossbar. technology, a large amount of buffer can be easily intedrate
In this paper, we explore this issue in a buffered crossbar into a single chip. This makes buffered crossbar (a smafebuf
without speedup. We first discuss the conflict between fairrss  resjdes at each crosspoint) a very promising solution.cAigh
and throughput and the fairness criteria in crossbar switch the number of buffers iV (where N is the crossbar size),

scheduling, and justify that a desirable scheduler shouldsstain d it i t th but th b f pins that
full bandwidth for admissible traffic and ensure max-min faimess owadays, It s not the memory but the number or pins tha

for non-admissible traffic. Then we describe anadaptive max- dominates the chip area.

min fair scheduling (AMFS) algorithm and show by analysis A big advantage of a buffered crossbar is the simplification
and simulation that it can provide both 100% throughput of the scheduling algorithm. The crosspoint buffers sejara

and max-min faimess. Finally we briefly discuss the hardwae 6 input contentions from the output contentions so thehea

implementation of the AMFS algorithm. . - .
Index Terms— switch scheduling, buffered crossbar, combined input and output arbiter can work independently.

input crosspoint queued (CICQ) switch, quality of service QoS), Early studies demonstrated by simulation that a buffered
max-min fairness. crossbar switch provides better throughput than an non-
buffered crossbar switch with much simpler schedulershsuc
|. INTRODUCTION as oldest cell first (OCF)-OCF [6] and round-robin (RR)-RR

Input-queued (1Q) crossbar switch scheduling has begf Later, longest queue first (LQF)-RR [8] has been proved to
a topic for decades. However, the challenges still rema@ichieve 100% throughput for uniform admissible traffic. Elor
partly because the network bandwidth is increasing rapidhecently, Shortest crosspoint buffer first (SCBF) [9] hasoal
and partly because of the intricate difficulty of the crossbdeen proved to support 100% throughput for any admissible
scheduling. traffic. Unfortunately, these algorithms fail to providerfeess.

The problem of IQ crossbar scheduling can be formalizedin the other hand, by applying@acket fair queuingPFQ)
as the classical graph theory problem of maximum weightgorithm [10]-[13] at each input and output, PFQ-PFQ has
matching on the bipartite graph where nodes represent infiien shown to provide fairness among competing flows [14];
and output ports, and edges represent packets to be switched as we will show later, it fails to sustain full bandwidth
The maximum weight matching (MWM) algoritinihas been under admissible non-uniform traffic.
proved to achieve 100% throughput [1] but is too complex for To provide both throughput and quality of service (QoS),
fast hardware implementation. researches again resort to speedup. Magfilal. show how

For an algorithm to be practical, it must be fast. For exo emulate an OQ switch with speedup ®»f[15]. And a
ample, with 10-Gbps (approximately OC-192) line card speadore recent work by Chuanet al. further describes a set of
and 64-byte packet size, a scheduling decision is preféeaedscheduling algorithms to provide throughput, rate and yela
be made within51.2 ns. Heuristic algorithms, such as iSLIPguarantees with speedup 2for 3 [16].
[2], IFS [3], IDRR [4], meet the time-constraint, but fail to One open question is: can we achieve both throughput
provide 100% throughput for admissiBlaon-uniform traffic. and fairness in a buffered crossbar without speedup? Our
One approach is to apply moderate crossbar speedup (tbe ratiswer is both yes and no. It is no because it is impossible
of the crossbar speed and line card speed). An excitingtrissulto achieve both 100% throughput and strict fairness at the
that any maximal algorithms with a speedup2otan support same time (even in the case of admissible traffic!) due to
100% throughput [5]. However, the downside of this approathe coexistence of input and output contentions. On therothe

IThe MWM algorithm assigns eaciOQ,. a weightw,.. and finds a ha_md., the answer is yes becau;e if we relax the strict' faa'mes
ma_t(_:hinthhat maximizesza’j)eM wi]-.'lz eweightcan”b’e queue Iength,igge(ﬂon to a dynamic r_na?(-mm fa_urness,_fglrness |rr_1plles
waiting time or others. 0 throughput for admissible traffic. Suprisingly enopigh

2Admissibility will be defined subsequently in section IV. a buffered crossbar switch, this fairness can be achievtdawi



very simple (and almost obvious) modification to an existingpstead of considering inputs and outputs at the same time,
algorithm: a PFQ-PFQ scheme with dynamic weights basadbuffered crossbar allows input and output arbiters to work
on both queue lengths and assigned weights. We name thidependently. In this paper, we address the problem of bow t
algorithmadaptive max-min fair schedulifdAMFS), provide achieve throughput and fairness in a buffered crossbackwit
a detailed description, present analysis and simulatisnlt® without speedup. In the next section, we first examine the
and finally discuss its hardware implementation issues. problem and present the motivation behind this work.

The rest of the paper is organized as follows. In section I,

i i i i i Crosspoint buffer
we bngﬂy overview the switch quel u_sed in this paper. A p:»t
In section Ill, we discuss the relationship between faisnes Vi b Lo
and throughput in the context of crossbar scheduling withou PP ===y
i - :
speedup. In section IV, V, VI and VII, we describe our VLI R R R
main algorithms, provide the max-min fairness definitiomd a Voo
present the throughput and fairness analysis. In sectidh VI
. . . N /\'
we show simulation results to verify our scheme and compare Ve b o]
. . . . . . %4
with existing schemes. In section I1X, we briefly discuss the — 7 A e =
. . . . . bif
hardware implementation of the AMFS algorithm. Finally in ootinecat
section X we present our conclusions. Output Atier || 2 | | w3 o7
Yol 0 Yol
AN gs
[l. BACKGROUND: SWITCH MODEL Output lne card |==) | = T
Fig. 1 shows a high-level diagram of an input-queued non-
buffered crossbar switch. The crossbar operates on fixat-si Fig. 2. AnNxN buffered crossbar switch.

packets (callectells) at the same speed as line cards. Time is
divided intotime slots and it takes one slot to transfer one cell.
Variable-size packets are segmented at inputs and reakskmb
at outputs. To avoid the head-of-line (HOL) blocking [17], With appropriate crossbar speedup and scheduler, an
virtual output queuing (VOQ) [18] is used, where a logicalQ/CICQ switch can emulate an OQ switch [15], [19], which
separate FIFO queue is maintained for each input-output paheans that throughput and fairness can be satisfied at thee sam
Because of both input and output contentions, a crosshiae. However, in the case of no speedup, this is not the case.
scheduler is necessary to decide which cells are trandfertgote that our discussion in this section applies to bothavefi
across the crossbar in the next slot. and non-buffered crossbar.

Fairness implies equal allocation of resources, but there i
little agreement among researchers as to what needs to be

equalized. The best-effort traffic mainly refers to thosatth
Schedtls are not delay sensitive. Therefore, in this paper, by faisne
we mean fair sharing bandwidth among competing flows.

In general, the goal of achieving fairness conflicts with the
goal of maximizing throughput. Consider three backlogged
flows f11, fi2 and foo going through &x2 crossbar, where
fij is the flow from input to outputj. If we want to maximize
the overall crossbar throughput, the only choice is to saleed
f11 and fos, as shown in Fig. 3, so that the throughput is
2. Clearly such scheduling starvgs,. If we want to fairly
treat each flow, we have to schedule each with the per-flow

Fig. 1. AnNxN non-buffered crossbar switch. rate of 0.5, where the overall throughput is only 1.5. Even
though the output 1 is idle whefis is scheduled, the second

In a buffered crossbar switch, a small buffer, called cros§cheduling strategy avoids starvation and enforces fs&ne
point buffer (CB), is put at each crosspoint, as shown in Eig. Fig. 4 shows the throughput of three flows as a function
From the queuing point of view, this switch architecture i§f workload using OCF [20]. When workload is above 0.5,
calledcombined input crosspoint queug@CQ) switch. Note fi2 receives much less than other two flows. Although 100%
that if the crosspoint buffer is infinite or very large, CICQhroughput is achieved, this case shows that it is necessary
is equivalent to output queuing and input arbiters are nit provide overload protection to ensure fairness. Otheswi
necessary since packets can be directly stored at the cinssp2 malicious user can easily steal bandwidth by flooding the
buffer upon their arrival. To make a single chip implemeiotat hetwork.
feasible, the crosspoint buffer has to be limited, and doeee 30ldest Cell First (OCF) is a MWM algorithm with weight define

imposes a challenge to scheduling. A great benefit of \@iing time of the head-of-line (HOL) cell. Note it is diffnt from that in
buffered crossbar is that the scheduling becomes muchaimpthe OCF-OCF algorithm [6].

IIl. MOTIVATION: THROUGHPUT VS FAIRNESS

Input line card

1ayng
Alquiassy

1ayng
Alquiassy

Output line card

N
z




17,1615 14 13 12 11,10, 9 '8 7 6 5 4 3 2 1 slot

6 5 a 3 2 T
Cl1 11 C11 Ci1 C11 C11| 1 1

12 11 109 8 .7 6 |5 13 2 |1
2 1 2 2 05 2 L. [eanfea €21/C21 C21/C21 C21|C21 C21|C21 C21(C21| 2 2
5 A 3 2 1
22 C22 €22 €22 €22

maximize throughput ensure fairness wasted bandwidth
Fig. 3. lllustration of conflict between throughput and rfeiss. [ & = 3, 3, ol
‘ S | e | ‘ B | i | ch ‘ 31 | en
0.8 s ;
% 07 £ ‘032"032“532“532“052‘
g 06 e 1 T
3 05 Fig. 5. Strict fairness leads to under-utilization of barmitv for admissible
£ 04 traffic
=1 03 * = f12 '
3 o
£ o2
0.1

01 02 03 04 05 06 07 08 09 1

Workload per flow (cells) fairness and 100% throughput at the same time is impossible.

Therefore, some trade-off must be made. However, unlike the
Fig. 4. OCEF fails to ensure fairness under non-admissilaifficr case in F|g 3, we prefer throughput than fairness. In this
particular case, we can give priority to flofy; by postponing
each cell of f;; by 2 slots. Although instantaneous fairness
Notice that in many switch scheduling studies, it is assumésinot maintained, this trade-off is justifiable. First befbrt

that at most 1 cell arrives at each input in one slot. Under thiraffic is not delay sensitive, and throughput is more imamott
assumption, an input can never be over-subscribed. For disan delay. Because traffic is admissible, giving prefegenc
cussion of non-admissible traffic, we remove this assumptiao heavy-backlogged queues will not affect the throughgut o
allowing more than 1 cells arrive at each input in one slolight-backlogged queues. In a relatively long intervalrrfass
Thus the aggregate arrival rate at each input can be greaestill maintained. Second, although cells of light-bacjded
than 1, as shown in Fig. 4. Non-admissible traffic includeffow incur longer delay, the increased delay only affects the
input over-subscription as well as output over-subsaipti initial delay observed by the end-user.

Although allowing input over-subscription sounds unneeeg  Note that fairess does not necessarily mean equal distribu
in a crossbar switch because the switch can only transfekidn of resources. In many cases, it is justifiable to give enor
cell per input per slot, it is still practical. For example) a pandwidth to some flows than others. How to assign weights

input can be an aggregate link of many links or queues, agdpends on applications. From now on, we assume that each
the aggregate arrival rate can be much higher than 1 cell REDQ,; is assigned a weight;;.

slot. If only 1 cell is allowed to arrive at one slot, we must g far, we haven't formulated the fairmess criterion when a
put another scheduler at the aggregate link to schedule c@llosshar is overloaded. At first glance, it is appealing ®the
from the aggregate link to VOQs. This scheduler is redundagfiness definition of the well known GPS system [10], i.er, f

because the switch scheduler can do the same thing. 4y competing flowi and; that are continuously backlogged
In the case of admissible traffic, strict faimess can s##id in the interval [r,t), 242 = 2 where Wir,t) is the
. o . . . , b 1 _Wj[‘r,t) . ¢j' ) 3 b) .
to bandwidth under-utilization. To illustrate this probiglet's  5mount of flows traffic served in an intervallr, t) and ¢; is
look at the example :hown In Flg.ﬂ?. We have three flowge \eight of flowi. However, when in the case of a crossbar,
fu1s far and fo, a”dcz‘g denotes the:™ cell of fi;. Cells of s gefinition in general does not hold without unnecegsari
fu1 arrive at slot3n —2; cells of f, arrive at slot3n —2and \ya5ting bandwidth. In fact, in terms of bandwidth distribat

3n—1; and cells off», arrive at slot3n, wheren = 1,2,3,.... "t js more appropriate to represent crossbar as a network as
Clearly, this is an admissible traffic. Now suppose each floy,own in Fig. 6.

has the same weight and we use an absolutely fair fluid model

scheduler. In slot 1 and 2}, andc}, are transferred, and each bottleneck
cell gets half bandwidth and takes 2 slots. In slot, and ¢ S 1—] : 1
ci, are transferred, and again each gets half bandwidth. Note
that in slot 3, half of the output 1 bandwidth is wasted as _
indicated as the gray area in the graph. Therefore, with this”é;
arrival pattern fo; only receive% of the bandwidth, much less  “
than its workload of%, and its queue will gradually become , ,
infinite. There is a waste of of the bandwidth at output 1,
but we cannot use them because of the fairness concern. Fig. 6. Crossbar network. Fig. 7. Max-min bandwidth

This example again shows that achieving both absolute distribution in a crossbar.

sndinQ
Do
)




Now it is clear that there ar&V bottlenecks. Different flows queuing(QLD-PFQ). Now we show that QLD-PFQ achieves

might have different bottlenecks. In this scenario, a redtiair

100% throughput. We will adopt the notation and definitions

allocation scheme callechax-min fairnesg21] can be used. introduced in [24]. For @V x N switch, define

The goal of max-min fairness is to achieve fairness among, x -

competing flows while not unnecessarily wasting bandwidth,
i.e., maximize the minimum service rate of each flow. Fig. 7
illustrates the max-min bandwidth allocation. We have four

equal-weight flowsfi1, fo1, f31 and fi2. Although each flow A,

has the same weighf;> can have% of the total bandwidth
without affecting other flows’ throughput. To summarize, a
desirable scheduler should fulfill the following:

1) sustain 100% throughput for admissible traffic, and

2) ensure max-min fairness for non-admissible traffic.
In the next 4 sections, we show how to achieve the above
objective in a buffered crossbar employing a very simple
scheme that requires no speedup. First in section IV, based
on a packet fair queuing (PFQ) algorithm, we present a queue
length driven packet fair queuing (QLD-PFQ) algorithm and
prove that it provides 100% throughput. Then in section V,
we formally define a dynamic max-min fairness criterion for
crossbar switches. In section VI, we describe an adaptive ma °
min fair scheduling (AMFS) algorithm and show its max-min
fairness property. Finally in section VII, we apply AMFS to
the case of finite buffers.

IV. QUEUE LENGTHDRIVEN PACKET FAIR QUEUING

In [14], Stephens and Zhang study a distributed packet
fair queuing (D-PFQ) system, where each input and output
apply PFQ independently, hence we refer to this scheme as
PFQ-PFQ in this paper. It is shown that PFQ-PFQ provides®
fairness among competing flows. In [22], PFQ-PFQ is shown
to automatically converge to the max-min fair rate allooati
under a fully overloaded situation. [23] further shows that
by viewing the scheduling as a non-cooperative strategic
game, the max-min fair allocation is equivalent to the Nash
equilibrium, thus providing a solid foundation for the manin
fairness criterion.

o D,

o [[XII:

the vector of queue lengths at time, i.e.,
X, = (zt,... 29, . 2lN), wherex¥ is the
((t—1)*«N+ j)”‘ element, denoting the length of
queueij at timen. Assumezy = 0.

the vector of numbers of arrivals at time i.e.,
A, = (all, .. a¥, ... alN), wherea is the
number of arrivals at queug in the time interval
(n,n + 1]. Assume that the arrival process, is
independent and identically distributed.

the vector of numbers of departures at timei.e.,
D, = (dit,....dJ, ... d\N), whered¥ is the
number of departures from quetgin time interval
(n,n + 1]. Hence, the evolution of the system of

queues can be described as:
Xn+1 - Xn + An - Dn (2)

the vector of average arrival rates, i.e\, =
(A1, -5 Aij, -, AN ), Where )\;; is the arrival
rate at queuej. Clearly, F[A,] = A. A traffic
is said to beadmissibleif no input or output is
oversubscribed, i.e.,

N N
D Ap<1oand Y M <1 (3)
k=1 k=1

the vector of average departure (or service) rates,
e, M = (/1,11, N IR /J,NN), Whereuij is

the departure rate from queug Clearly, E[D,,] =

M.

Euclidean norm of vectoX = (z1,x2,...,2x).

- [~ K
Le., ||X]| = /20l 27

Definition 1: (throughput) A system of queues is strongly
stable (implies 100% throughput) if for any admissibleficaf

However, PFQ-PFQ cannot sustain full bandwidth whelm,, ... sup E[|| X, ||| < oc.
traffic is admissible. To see why this is the case, assumeThis definition basically means that in a strongly stable
all flows have the same weight, then PFQ-PFQ becom&gstem, the average queue length and hence the average queue
equivalent to RR-RR which is already demonstrated in [7dielay is bounded. To prove that QLD-PFQ leads to a stable
[8] to fail to provide 100% throughput under admissible nonsystem, we first introduce the following lemma.

uniform traffic. In fact, we've already shown in section Il

Lemma 1:A switch with a scheduling algorithm such that

that an algorithm focusing on fairness alone fails to susta'E[Dn] = (1+a)X, + D/, is strongly stable, whera € Rt

100% throughput because of the conflict between throughq@u
and fairness.
The underlying reason that PFQ-PFQ fails to sustain fq!L,
bandwidth under admissible traffic is that it doesn’t takewgl
status into consideration. This motivates us to use quewghe
as weight in the scheduling decision. Formally, ¢gf(¢) be
the weight of queué; (from inputi to 5 at timet, define

Gij(t) = @i (t) (1)

2
is the set of non-negative real numbely, ¢ R+"" and
is a function ofX,,, and X,, is the normalized vector ok,
W Xn = X

maxi; (32, 23k, 32, an’)”

Proof: refer to theorem 6, 7 and 8 in [24]. ]
Lemma 1 states that if the departure rate is parallel to the
queue lengthX, and longer thanX, the system is stable. We
show that in a buffered crossbar employing QLD-PFQ, the
departure rate indeed satisfies Lemma 1.

wherez;;(t) be length of queué; (combined queue length Lemma 2:In a buffered crosshar switch operating under the
of VOQ; and CB;;) at time t. We call PFQ-PFQ with QLD-PFQ algorithm,E[D,] = X + D,, for any admissible

the above weight definitiomueue-length-driven packet fairtraffic.



Proof:
sponding fluid model using the GPS scheduler [10]. 4;ett)

be the queue level 8fOQ,; at timet, b;;(t) be the queue level

of CB” at timet, andxij(t) = Zij(t) + bu(t)

According to equation (1)p;;(t) = x;;(t). Therefore, with
PFQ, at each input, the service raig (t) for queuei; at time
tis

i (1)

>k ik (t)

Similarly, at each output, the service ratg?‘t(t) for queue
ij at timet is

iy (1) (4)

z5(t)

out
() = =T (5)
T e, ®
Because
buffers,
pi(t) = min(u}(t), uf () + dij (t)
. x5 (t) w45 (t) m
= min( ; ) +diz(t) (6)
Do Tik(t) " 2oy whj () !
where d?(t) € R* indicates the extra service due

to the fact that GPS automatically converges to max-mi
rate, and convergence takes finite time depending on thé

: zi;(t) zi5(t)
min(s= 0@ e ®)

Ok Obviously,ds;(t) > 0.

zi;(t)

CB size [22]. Letdf;(t) =
24 (t)

maxi; (320, Tik (£): 22k Thj

) DO SN AL A
= Fy(t) +d5(t) + d(t) @)

Finally, letd;;(t) = dg;(t) + d}}(t), we have
E[D,] = X, + D, (8)
| |

Given a buffered crossbar, consider its corréde call R feasible if

N N
Z’mk <¢; and Zrkj < ¢ (9)
k=1 k=1
We also call a feasible allocatioR weighted max-min fair,
when it is impossible to increasg; without losing feasibility
or reducingr,, satisfying;’f—; < ;—JJ

Given W, C and C, it is easy to find the max-min rate
matrix R using the water-filling approach [21]. However, the
rates calculated in this way only represent the maximum
throughput each flow gets when all active flows are continu-
ously backlogged. If a flow only uses some portion of its max-
min rate, the unused portion should be used by other flows.

inputs and outputs are coupled by crosspoidturally we want this unused bandwidth to be distributed in

the max-min fair manner.

To take this situation into consideration, we further intro
duce dynamic max-min rate matrig** = [r**], based on
both W and A, whereas the matrix, based only d#, is
referred to asstatic max-min rate matrix?” = [rj%]. The
fairness the two matrices represent is caliigthamic max-min
fairnessand static max-min fairnessespectively. GivernlV/,

C and A, the following procedure give®®“*.
1)
2)
3)

Rw)\ — &
calculateR"™ (note thisR" is a local variable)
for each);; < e do
oA
ij
él‘ — él‘ - )\ij
Cj = & — Aij
wij —0
4) repeat 2) and 3) untik;; > 7% or w;; = 0,4, j

5) for eachr}y >0 andri* = 0 do
wA
e

— )\Zj

<—7";"j

Clearly every non-zero entry in BR** falls into the follow-

Theorem 1:A buffered crossbar switch operating under th%g WO cases-

QLD-PFQ algorithm is strongly stable.
Proof: straightforward from Lemma 1 and 2. ]

V. MAX-MIN FAIRNESS CRITERION

Unfortunately, QLD-PFQ cannot provide fairness when the

switch is over-loaded because it doesn'’t take into conatasr

. )\ij > T}lj{)‘:
flow.

o \ij = r}‘f: in this case, we call;; an admissibleflow.
Furthermore, ifrggA < rii, we call f;; an absolutely

admissibleflow; whereas ifr}ffjA > T fij is called a

relatively admissibleflow. because in the latter case, a

in this case, we callf;; a non-admissible

the pre-assigned weight of each queue. To discuss fairwess,
need to formally define fairness. First, we introduce the max
min fairness criteria in & x N crossbar switch based on the
general definition in [21]. Let
 fi; be the flow fromVOQ;. We say f;; is idle if
Aij = 0, and f;; is activeif \;; > 0. Note VOQ,; can be
temporarily empty even iff;; is active.
e« W = [w;;] be the matrix of assigned weights of>

flow is good because another admissible flow doesn'’t use
up its max-min bandwidth.

Note, if we remove an absolutely admissible flow from
the crossbar network, another relatively admissible flowy ma
become an absolutely admissible flow. To convey this obser-
vation formally, let¥ = (W, A, C, C‘), and recursively define
Uk = (Wk AF, C* C*) as follows:

flows. Assumew;; = 0 if f;; is idle, andw;; > 0 if f;; wk = k-1 wk =0

. . Prq pq 13 ’

|§ active. N = /\k—l, A = 0,
« C = (&) be the vector of input capacities. A VW S SR
« C = (¢;) be the vector of output capacities. For a switch ! ¢ v J 7

without speedupg; = ¢; = 1, V4, j. wherek > 1, p # i, ¢ # j and f;; is an absolutely admissible
o R =[r;;] be the matrix of rate allocation for each flow. flow with respect tol*—1. It is easy to get the following facts:



kflkkfl

1) r};‘;“k = 7y ' , Vr}‘j’,w > 0 (i.e., the dynamic  Now we show informally that AMFS is fair. There are 3
max-min rate in¥* is the same as that iwr*—1). cases:

2) re" >t et > 0 (ie., the static max-min rate 1) V active fi;, Ai; = ri2* (i.e., all flows are admissible):
in U* is at least the same as thatdrf—?).  because} , Nix = Yo, < & = 1 and ), Ay =

3) {fijl\y = 2"} # @ = 3f,; such that\; < " S, rr < ¢ = 1, this is the admissible traffic which
(i.e., if there are admissible flows i*, there must exist approximately corresponds to the first casé 6f z;; < N in
an absolutely admissible flow with respectdd). equation (10), where the weight of each queue is propoitiona

to its queue length. According to the asymptotic constaucti

of N, this approximation is accurate with probability— e,

for every e > 0. Therefore, from theorem 1, asymptotically
thEbe switch is strongly stable, i.eu;; = A\;; = r}‘f‘.

Definition 2: (fairness) Given weightV and arrival rate\,
a crossbar switch under a scheduling algorithm is fajr;jf =
r}”j*, wherey;; is the departure (or service) rate fey;.

This definition simply states that for admissible flows, ) N/
service rate is equal to the workload; and for non-admissibl 2) ¥V active fij, Ay > 1 ("S" all flows are non-
flows, the service rate is its dynamic max-min rate. Note thafimissible): obviously, in this case;” = ri7. This is the fully
by using dynamic max-min faimess criterion, this fairnesaverioaded case (all queues are continuously backlogged),
definition implies 100% throughput for admissible traffio. | COTrésponds to the third case ofV < z;; < oo, where
fact, if Aij = ),V active fi; = 37, Aip = S, 1N < & = the weight of each queue is its pre-assigned weight. [22] has

ij . . . . . . .
1 andS™ Ao — P <o =1 (ie. if all active flows proved that bandwidth will be distributed in the max-minrfai
2 My = Dk Th S G ( fashion, i.e.u;; = ¥ = rit?

are admissible, the traffic is admissible). ; ij iy o
3) 3 active fi;, \i; = ri* and (O, Ax > 1 andlor
VI. THE ADAPTIVE MAX-MIN FAIR SCHEDULING (AMFS)  >_; Ak; > 1) (i.e., some flows are admissible, but their ports
ALGORITHM are overloaded): in this case, there must exist an absglutel
) ) ) o _admissible flow, sayf,, such that\,, < r;; (from fact 3).
Taking the above max-min fairness definition into considye ¢laim thatz,, < 2N because ifz,, > 2N, f,q Wil

eration, we now extend the weight definition in equation (}bceive its max-min service rat&’ ,but\,, < 1. Therefore

. q
as follows: fipg = Apg = TN, o
= 0<uzy <N Now let ¥° = (W, A,C,C), and supposel*~! has an
bij = 1+ (w45 — N)% N < z;; <2N (10) absolutely admissible flow, we can remove it to obtdif.
Wi 2N < x4 < 00 Then inU*, if there are still admissible flows, there must exist

a flow f,,, which is absolutely admissible with respect®

where NV is a large number such that for every > 0, (from fact 3). Note it maybe a relatively admissible flow with
lim,, o Pr{||Xn|| > N} < e when the switch under the respect toP°. Again, z,, < 2N, andj,, = A whAF _

QLD-PFQ algorithm is loaded with any admissible traffic. §hi .wx_ So, by induction, for all admissible fIO\I;\;Iﬁp 7:,% have
N exists because the switch is strongly stable under QLD _ N — pwA !
PFQ. In addition, to make sure thay; is non-decreasing as a pff al If)|qOWS R are non-admissibleXt, > 1Y), we
function of queue length, we also scale all; in proportion h h L > Th 4 P e
so thatw;; > 1,Vi,j. We call PFQ-PFQ using this weight 3\;’“ e same situation as case 2. Therefgre= r;; * =
definition adaptive max-min fair schedulindAMFS). Tpq -

When a flow's queue length is belaW, the flow is regarded VII. THE AMFS ALGORITHM WITH FINITE QUEUE

as admissible, and;; is in proportion to its queue length. n previous discussions, queues are assumed infinite which
Note, it is possible that a flow is admissible when its queyg jmpractical. In this section, we apply AMFS to the case of
length grows beyond/. Thanks to the strong stability of QLD- finjte buffers. We normalize queue lengths, set two thregshol

PFQ with infinite queue and the asymptotic construction of ang3 (0 < o < 8 < 1), and definep;; as follows:
N, the probability of queue length greater thah can be

asymptotically small. Lij _— 0<lj<a
When a flow’s queue length is betweahand2N, the flow Gij =4 a+(l —a)(F=) a<l;<p (11)
is at the boundary between admissible and non-admissihle, wij f<liy<1

is increased as a combination of queue length and assigne@learly,« and3 correspond taV and2NV in equation (10).
weight. The main purpose of this region is to provide 8lote thata should be set large enough to accommodate
transition from admissible to non-admissible traffic sot#ha reasonable traffic burst. This implies that the queue cépaci
can smoothly change from queue length to assigned weighé large enough. This assumption is valid for today’s high-
When a flow's queue length reaché&sV, the flow is performance routers where each line card can easily cantain
regarded as non-admissible, apg = w;; which is the flow’s buffers of capacities in hundreds of megabytes.
assigned weight. The PFQ-PFQ algorithm will ensures max-Note, we also replace;; (combined length oOQ,; and
min fairness among competing flows as discussed beforer La®8;;) with [;; (length of VOQ;;). Since CBs are very small
we will see tha NV also serves to protect well-behaved flowsompared to VOQs, this modification won't affect perfor-
from overflow. mance. In fact, it makes input arbiters work-conserving.



A. Description of AMFS time directly from the packet system. M8+ also maintains

For the convenience of the discussion of hardware implBE™-flow (instead of per-packet) virtual start time and finis
mentation in section IX, we present the algorithm in detaii™me. and virtual times are updated only when a packet &rive
followed by an explanation. at the hgad of its queue, thus greatly reducing the hardware

In an N x N buffered crossbar switch, for each inputt < COMPlexity. _ _ _

i < N), we keep a set of following counters: _ AMFS uses the PFQ algorithms that is deS|gne_d for s_chedul-
. vtimg: system virtual time for input ing packets at output links. However, there are still somgpma
W ' assigned weight fovOQ,. (1' <j<N) dlfference$ betweeq AMFS_a_n_d an output-link sche_dules_tFw
. l»?. current queue length fd;](,)Q oo of course is the weight definition. For each flow with a fixed
. (;J instantaneous weight deOQ%J-. weight, an output-link scheduler using W@+ (or other PFQ
. sgljmel virtual start time forvOQ,, A algprithms) sim.p_ly keeps the interyal Which is inverse dof th
. ftime{'. virtual finish time forvoa- weight. In addition, using normalized weights, the system

IE )+

L e o . virtual time can simply be increased byinstead ofl/ } " . ¢;;
» valid;;: boolean values to mdpgtg fiime; andftime;, (in line 16). AMFS, on the other hand, has to keep track of the
have been updated. Initialized talse

e req,.: boolean values to indicate WYOQ,; is not empty queue length anq adJ.USt the weight dynammally. SO. a”t.lm et
J . J reciprocal operation is needed to get the service interival (
andCB;; is not full.

. line 9).
Then in each slot, do Second, output-link schedulers are packet driven, i.e, th

Step 1 calculate each VOQ's virtual start and finish time. @algorithm executes enqueue when a packet arrives and dequeu

1) for eachj do when a packet departs. AMFS, on the other hand, is time-
2) ¢ij <0 driven, i.e., the enqueue and dequeue operation occur at
3) req,; « false the same time in every slot becau'se of the s.lotted cros§bar
4) if VOQ; is not emptyand CB; is not full, then operation. To take advantage of this synchronized operatio
5) req;; « true we also sample queue status and update virtual times only at
lij 0<1l;<a tf|1e beginning of adsI(;t. For cells_ grrlvmgrln tt?e _rmddle c;f ﬁ
o N wi—a g slot, we can regard them as arriving at the beginning of the
®) 9ii = ZJF (b = ) (F=7) gi;” zf next slot. This little postponement should have virtually n
7) if valid;; :llgalse then T Impact on the pgrformance. .
8) stimg; «— max(vtime, ftime, .) Third, output-link schedulers con§|der the caseNbinput
9) ﬁimevl{ — stime, + 1'(’)/(#/' v gueues and one output queue (or link). Dequ.eue occurs only
10) validzlj'  true & e when the output queue is gvallable anpl any input queue has
11) if req,, :ijalse ¥j then packets. When the qutput is busy, all mputs are blocked. In
12) inpﬂtz‘ idles for the next slot the crossbar scheduling, each arbiter Magmput queues (e.g.

Step 2 adjust system virtual finish time.

13) vtimg <« max(vtime, min(stime; | req;; = true))

VOQs) andN output queues (e.g. crosspoint buffers). When
one output queue is full, only the corresponding input queue
should be disabled in order to keep work-conserving. As a
result, we cannot update the virtual start and finish time of

Step 3 select the Output with the smallest el|g|b|e finish tln‘lﬂis blocked queue even if it has back'ogged packets_ From

14) j < arg; min(ﬁimeij | stimg; < vtime and

valid;; = true)
15) valid;; < false

Step 4 update system virtual time.
16) vtimg « vtime + 1.0/ Zj bij

the queuing point of view, we can regard the input queue as
empty and a packet arrives at the time when its output is
available. Therefore, the virtual times should not be updat
until this point. That is the major purpose of counteid;;.

VIII. SIMULATION RESULTS

The output arbiter is almost the same as the input arbiter,In our simulation, we implement AMFS based on g~
except that it checks the status of VOQs, crosspoint buffgs3] (with o = 0.7 and 8 = 0.8). WF2Q+ is also used in
(CBs) and assembly buffers (on the line card), and that titee case of fixed weight, which is referred as PFQ in the

queue length to calculate;; includes cells in botivOQ,;

andCB;;.
B. Remark

figures in this section. We also implement OCF [20] for IQ
switches because it is proved to achieve 100% throughput for
any admissible traffic. Output queuing scheme with AQF

as the output-link scheduler is also shown for comparison as

In theory, any PFQ algorithm works. For the sake at is the optimal solution. Note in the case of IQ and CICQ
simple and fast hardware implementation, however, we ahoaawvitches, the output-link scheduler is simply FCFS.
WF2Q+ [13] because it provides the tightest delay bound andThe switch size isl6x16. Cell size is 64 bytes. VOQs or
the smallest worst-case fair index (WFI) while maintainihg output queues (OQs) are statically partitioned with 256keby
lowest algorithmic complexity by computing the systemuwatt (4K cells) per input-output pair. The total buffer size pigel



card for al6x16 switch is 4M bytes. The crosspoint buffer T
size of CICQ switches i8 cells unless otherwise stated. g o PEG
Packet arrival is modeled as a 2-state ON-OFF process. B 0Q ——
The number of ON state slots is defined as the packet length g
which is obtained from a profile of NLANR trace at AlX site & 100 %Rﬂ
[25]. We collected over 119 million packets. The packet teng ‘“ ﬁﬁﬁﬁﬁ
ranges from 20 to 1500 bytes with meah, = 566 bytes and DI e t
standard deviation of 615 bytes. The number of OFF state 01 o0z 03 04 05 06 07 o8 05 1
slots is exponentially distributed with avera@igs = =2 Eon, Workload per input (cells)

. . P
wherep is defined as the offered workload. We consider the rig. 8. Average packet delay under diagonal traffic #®Q;;).
following performance metrics:

o average packet delayin the case of IQ and CICQ 1000 —
switches, packet delay is measured from when the first AVES
100 Oggi ﬁ E|
2

bit of a packet arrives at its VOQ to the last bit leaves

its assembly buffer (see Fig. 1 and 2). In the case of OQ f i TR S -
switches, packet delay is measured from when the first 3 NS e M;;?W
bit of a packet arrives at its OQ to the last bit leaves its & b -
0Q. 2 %*//

« average queue lengtthe average queue length of VOQs 0l 07 os o7 o5 o8 o o8 o5 1
(in the case of IQ/CICQ switches) or OQs (in the case Workioad per input (cells)

of OQ switches).
« average throughpuinumber of cells per slot leaving the
assembly buffers (in the case of 1Q/CICQ switches) or

OQs (in the case of OQ switches). expected, OCF cannot distinguish flows with different wésgh

The simulations run long enough to ensure the 95% cofir the case of output queuing, flows only compete for outputs.

fidence interval of the average packet delay, queue lengthTerefore, 4L — % Bz _ % and £13 — % when outputs are
throughput with+5% error margin. Evaluation is performedfylly overloaded. Has

under various traffic patterns. Due to page limit, howevex, W On the other hand, AMFS and PFQ always maintain max-
only report some of the results. min allocation among competing flows. When the workload is
A. Admissible traffic below 1/3, the throughpu.t is equal to the workload for every
i i flow because the switch is not overloaded.
For ur_uform_trafflc, all schemes worl_< well. Here we only At 0.33, input 1 is first saturated, the throughputfef goes
report simulation results under the dla}gona] tl’affl?(;; — down until reaching its max-min rate/6. For fi,, although
2p/3, Njin = p/3 @nd Ay; = 0 for j # i or[i+1ll, \ ' w ' 3whenl/3 < A < 2/5, itis still an admissible

where |i + 1| — ¢ mod N This is a very skewed traffic flow because\;» < %, After 0.40, the throughput of;, also
pattern. No maximal algorithms have been found to be able§9arts to go down until it reaches its max-min rate

_Sl_l;]Sta'? adr;;:_ss;blt:rworktltoad undet: the d:jagonall_ttrafflce:mattt At workload 0.5, output 1 is also saturated, afid gets
erefore this traffic pattern can be used as a Itnus 1est. o \ay min ratel/2. Note that although the weight gf;

Fig. 8 and Fig. 9 show the average packet delay and quey (corresponding ta /6 of the total bandwidth), it also

Iength of trafn(? frgm\/_OQU as a function of 'the workload o i e /2 of the total bandwidth because of the max-min
per input. In this situation, AMFS and OCF still perform ve ir allocation policy

0,
well. PFQ starts to drop packets at about 90% workload. .OFinaIIy when output 2 and output 3 become saturated at

see what happened, we also plot the packet delay of traffj ‘ ‘ . . ey .
from VOQ, ;14 in Fig. 10, where the delay is very low in theg 3 and5/6, fs> and fu; receive their max-min fair shares

case of PFQ. This case clearly shows that favoring fairness
affects the throughput adversely, as pointed out in sedtlon

Fig. 9. Average queue length under diagonal traffic ¥@Q;;).

1000 MFS —+—
PFQ —>—
OCF —e—
0oQ —&—

B. Non-admissible traffic

To evaluate the weighted max-min fairness allocation, we 3
run the simulation on dx4 switch with traffic weight as¥ = %
3 2 1 0 g @%%
10 0 0 i i -Mi i o e e
o 1 o o |-Itscorresponding static max-min service rate ( ggﬁﬁﬁw
0O 0 1 o0
1/2 1/3 1/6 0 i 100.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
RY — 162 2(/)3 8 8 . Flg 11 shows the throughput Workload per input (cells)
0 0 5/6 0

of four schemes as a function of workload per flow. As Fig- 10. Average packet delay under diagonal traffic §#®@Q;|; ).



@ weight: Wy 1=3, Wy =2, wy=1, Wy1=1, Weo=1, wy5=1 . . . . . .
g, A S T P R - implementation of AMFS. With each arbiter on its line card,
s I NN AMFS is entirely feasible for very high speed networks.
_C: 04 ﬁgﬁmu B-E—E—B5 5888 In,fn
3 02 IR AR KA AN REFERENCES
: 0 0.2 04 0.6 0.8 1 [1] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 0%0
2 1 throughput in an input-queued switch,” IEEE INFOCOM vol. 1, San
< o8 fa Francisco, CA, Mar. 1996, pp. 296-302.
£a 0.6 F—PFQ P A s [2] N. McKeown, “The iSLIP scheduling algorithm for inputigued
> 04 REE fin switches,”IEEE/ACM Trans. Networkingvol. 7, no. 2, pp. 188-201,
g 02 * f13 Apr. 1999.
I 0 0.2 0.4 0.6 0.8 1 [3] N. Ni and L. N. Bhuyan, “Fair scheduling and buffer managt in
2 1 internet routers,” inProc. IEEE INFOCOM'02 vol. 3, Yew York, June
< o8 2002, pp. 1141-1150.
3 06 OCF Safiaats oo fa a1 [4] X.Zhang and L. N. Bhuyan, “Deficit round-robin schedgifor input-
%3» 0.4 - = === queued switchesJEEE J. Select. Areas Communrol. 21, no. 4, pp.
g 02 : s & 584-594, May 2003.
0 0.2 04 06 0.8 1 [5] J. G. Dai and B. Prabhakar, “The throughput of data sveisctvith and
v ' ' i i without speedup,” iIHEEE INFOCOM vol. 3, Mar. 2000, pp. 556-564.
& o3 fip [6] M. Nabeshima, “Performance evaluation of a combineduinpand
2 o060 A SO crosspoint-queued switch|EICE Trans. Commun.ol. E83-B, no. 3,
5 04 A A A ffj 2 pp. 737-741, Mar. 2000.
g o2 R [7] R. Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao, “CIXB-dmbined
0 02 0a 06 08 1 input-one-cell-crosspoint buffered switch,”Rroc. IEEE HPSR'0IMay
) ’ : : 2001, pp. 324-329.
Workload per flow (cells) [8] T. Javidi, R. Magill, and T. Hrabik, “A high-throughputckeduling
. L . algorithm for a buffered crossbar switch fabric,” Broc. IEEE ICC'01
Fig. 11. Throughput under non-admissible traffic. June 2001, pp. 1581-1587.

[9] X.Zhang and L. N. Bhuyan, “An efficient algorithm for comled-input-
crosspoint-queued (CICQ) switches,” Rroc. IEEE GLOBECOM'04
vol. 2, Nov./Dec. 2004, pp. 1168-1173.

respectively which are also much more than their aSSIQnﬁg] A. Parekh and R. Gallager, “A generalized processorisgaapproach

bandwidth. to flow control in integrated services networks: the singbele case,”
IEEE/ACM Trans. Networkingvol. 1, no. 3, pp. 344-357, June 1993.
IX. HARDWARE IMPLEMENTATION ISSUES [11] A. Demers, S. Keshav, and S. Shenkar, “Analysis and Igition of a

A . . . fair queueing algorithm,”ACM SIGCOMM Computer Communication
Due to page limit, we only show in Fig. 12 a block diagram  zeyiey vol. 19, no. 4, pp. 1-12, Sept. 1989.

of how four steps of an AMFS arbiter are connected, and oniR] J. C. Bennett and H. Zhang, “W¥B: Worst-case fair weighted fair

detailed discussion of each block. Each arbiter is bagical[llg] Queveling, Tnf toc. IEEE INFOCOM'S6 Mar 1_3196&:?&/1:8&1%8-

. . . . . ——, “Hierarchical packet fair queueing algorithm rans.
a WP Q-+ arbiter [13] with dynamic weight. With _parallel Networking vol. 5, no. 5, pp. 675-689, Oct. 1997.
hardware support, each step can be don@ftog N) time.  [14] D. C. Stephens and H. Zhang, “Implementing distribupetket fair
queuing in a scalable switch architecture,”"Rroc. IEEE INFOCOM'98
vol. 1, Mar. 1998, pp. 282-290.

o step 1: stime; step 3: . . .
3 caleulate ftime,, select output j [15] R. B. Maglll, C.E. _Rohrs_, an_d R L. Stevenson, “Outpueged switch
: req;; ; with smallset —= emulation by fabrics with limited memory,IEEE J. Select. Areas
1 i valid;, o
Wi i . eligible ftime;; | 3 Commun.vol. 21, no. 4, May 2003.
l stime; % [16] S.-T. Chuang, S. lyer, and N. McKeown, “Practical algons for
VOQy; | ftime;; stime;; [step 2: = performance guarantees in buffered crossbars,Piac. of IEEE IN-
CBi; valid;; vtime; | adjust FOCOM’05, Miami, Florida, Mar. 2005.
" e _| vtime; [17] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input vessoutput
queuing on a space-division packet switch2EE Transaction on
6 [step & Communicationsvol. COM-35, no. 12, pp. 1347-1356, December 1987.
e times 4= 1 i [18] Y. Tamir and G. Frazier, “High performance multi-quebeffers for
i +=1/30; ¢ij . e ; .
I vlsi communication switches,” irProc. 15th Ann. Symp. Computer
validy; — false Architecture June 1988, pp. 343-354.

[19] S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, tdhang
. . . o output queueing with a combined input/output-queued $WitEEE J.

Fig. 12. A block diagram of an AMFS arbiter at inpiit Select. Areas Commuyrvol. 17, no. 6, pp. 1030-1039, June 1999.

[20] A. Mekkittikul and N. McKeown, “A starvation-free algithm for

achieving 100% throughput in an input-queued switch,IQCCN’96,

X. CONCLUSION Oct. 1996, pp. 226-231.

. . [21] D. Bertsekas and R. Gallagédata Networks Prentice Hall, 1992.

In this paper, we address the problem of how to achiey®) N. chrysos and M. Katevenis, “Weighted faimess in breti crossbar
both throughput and fairness in a buffered crossbar without scheduling,” inProc. IEEE HPSR'03June 2003.

speedup. The solution is surprisingly simple: applying @pF[ZS] G. F. Georgakopoulos, “Nash equilibria as a fundameistsue con-

. . . . . cerning network-switches design,” ifroc. IEEE ICC’04 vol. 2, June
algorithm at each input and output with the dynamic weights 2004_9 9 4

based on queue lengths and assigned weights. Our analj&ik E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “On tistability of

and simulation results show that the adaptive max-min fair NPut-queued switches with speed-ufi?EE/ACM Trans. Networking
. . vol. 9, no. 1, pp. 104-118, Feb. 2001.

scheduling (AMFS) scheme achieves 100% throughput f@&; National Laboratory for Applied Network Research, “ANR

any admissible traffic as well as providing max-min fairness network traffic packet header traces.” [Online]. Availabléttp:

under overloaded situation. We also briefly show the hardwar ~ //Pma.nlanr.net/Traces



