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Abstract— A good crossbar switch scheduler should be able
to achieve 100% throughput and maintain fairness among
competing flows. A pure input-queued (IQ) non-buffered switch
requires an impractically complex scheduler to achieve this goal.
Common solutions are to use crossbar speedup and/or buffered
crossbar.

In this paper, we explore this issue in a buffered crossbar
without speedup. We first discuss the conflict between fairness
and throughput and the fairness criteria in crossbar switch
scheduling, and justify that a desirable scheduler should sustain
full bandwidth for admissible traffic and ensure max-min fairness
for non-admissible traffic. Then we describe anadaptive max-
min fair scheduling (AMFS) algorithm and show by analysis
and simulation that it can provide both 100% throughput
and max-min fairness. Finally we briefly discuss the hardware
implementation of the AMFS algorithm.

Index Terms— switch scheduling, buffered crossbar, combined
input crosspoint queued (CICQ) switch, quality of service (QoS),
max-min fairness.

I. I NTRODUCTION

Input-queued (IQ) crossbar switch scheduling has been
a topic for decades. However, the challenges still remain
partly because the network bandwidth is increasing rapidly,
and partly because of the intricate difficulty of the crossbar
scheduling.

The problem of IQ crossbar scheduling can be formalized
as the classical graph theory problem of maximum weight
matching on the bipartite graph where nodes represent input
and output ports, and edges represent packets to be switched.
The maximum weight matching (MWM) algorithm1 has been
proved to achieve 100% throughput [1] but is too complex for
fast hardware implementation.

For an algorithm to be practical, it must be fast. For ex-
ample, with 10-Gbps (approximately OC-192) line card speed
and 64-byte packet size, a scheduling decision is preferredto
be made within51.2 ns. Heuristic algorithms, such as iSLIP
[2], iFS [3], iDRR [4], meet the time-constraint, but fail to
provide 100% throughput for admissible2 non-uniform traffic.
One approach is to apply moderate crossbar speedup (the ratio
of the crossbar speed and line card speed). An exciting result is
that any maximal algorithms with a speedup of2 can support
100% throughput [5]. However, the downside of this approach

1The MWM algorithm assigns eachVOQij a weight wij , and finds a
matchingM that maximizes

P

(i,j)∈M wij . The weight can be queue length,
waiting time or others.

2Admissibility will be defined subsequently in section IV.

is that doubling crossbar speed requires memory speed to be
doubled and scheduling time to be halved.

Recently, with the breakthrough of very large scale integra-
tion (VLSI) and application specific integrated circuit (ASIC)
technology, a large amount of buffer can be easily integrated
into a single chip. This makes buffered crossbar (a small buffer
resides at each crosspoint) a very promising solution. Although
the number of buffers isN2 (whereN is the crossbar size),
nowadays, it is not the memory but the number of pins that
dominates the chip area.

A big advantage of a buffered crossbar is the simplification
of the scheduling algorithm. The crosspoint buffers separate
the input contentions from the output contentions so that each
input and output arbiter can work independently.

Early studies demonstrated by simulation that a buffered
crossbar switch provides better throughput than an non-
buffered crossbar switch with much simpler schedulers, such
as oldest cell first (OCF)-OCF [6] and round-robin (RR)-RR
[7] Later, longest queue first (LQF)-RR [8] has been proved to
achieve 100% throughput for uniform admissible traffic. More
recently, Shortest crosspoint buffer first (SCBF) [9] has also
been proved to support 100% throughput for any admissible
traffic. Unfortunately, these algorithms fail to provide fairness.
On the other hand, by applying apacket fair queuing(PFQ)
algorithm [10]–[13] at each input and output, PFQ-PFQ has
been shown to provide fairness among competing flows [14];
but as we will show later, it fails to sustain full bandwidth
under admissible non-uniform traffic.

To provide both throughput and quality of service (QoS),
researches again resort to speedup. Magillet al. show how
to emulate an OQ switch with speedup of2 [15]. And a
more recent work by Chuanget al. further describes a set of
scheduling algorithms to provide throughput, rate and delay
guarantees with speedup of2 or 3 [16].

One open question is: can we achieve both throughput
and fairness in a buffered crossbar without speedup? Our
answer is both yes and no. It is no because it is impossible
to achieve both 100% throughput and strict fairness at the
same time (even in the case of admissible traffic!) due to
the coexistence of input and output contentions. On the other
hand, the answer is yes because if we relax the strict fairness
criterion to a dynamic max-min fairness, fairness implies
100% throughput for admissible traffic. Suprisingly enough, in
a buffered crossbar switch, this fairness can be achieved with a



very simple (and almost obvious) modification to an existing
algorithm: a PFQ-PFQ scheme with dynamic weights based
on both queue lengths and assigned weights. We name this
algorithmadaptive max-min fair scheduling(AMFS), provide
a detailed description, present analysis and simulation results,
and finally discuss its hardware implementation issues.

The rest of the paper is organized as follows. In section II,
we briefly overview the switch model used in this paper.
In section III, we discuss the relationship between fairness
and throughput in the context of crossbar scheduling without
speedup. In section IV, V, VI and VII, we describe our
main algorithms, provide the max-min fairness definition, and
present the throughput and fairness analysis. In section VIII,
we show simulation results to verify our scheme and compare
with existing schemes. In section IX, we briefly discuss the
hardware implementation of the AMFS algorithm. Finally in
section X we present our conclusions.

II. BACKGROUND: SWITCH MODEL

Fig. 1 shows a high-level diagram of an input-queued non-
buffered crossbar switch. The crossbar operates on fixed-size
packets (calledcells) at the same speed as line cards. Time is
divided intotime slots, and it takes one slot to transfer one cell.
Variable-size packets are segmented at inputs and reassembled
at outputs. To avoid the head-of-line (HOL) blocking [17],
virtual output queuing (VOQ) [18] is used, where a logical
separate FIFO queue is maintained for each input-output pair.
Because of both input and output contentions, a crossbar
scheduler is necessary to decide which cells are transferred
across the crossbar in the next slot.
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Fig. 1. An N×N non-buffered crossbar switch.

In a buffered crossbar switch, a small buffer, called cross-
point buffer (CB), is put at each crosspoint, as shown in Fig.2.
From the queuing point of view, this switch architecture is
calledcombined input crosspoint queued(CICQ) switch. Note
that if the crosspoint buffer is infinite or very large, CICQ
is equivalent to output queuing and input arbiters are not
necessary since packets can be directly stored at the crosspoint
buffer upon their arrival. To make a single chip implementation
feasible, the crosspoint buffer has to be limited, and therefore
imposes a challenge to scheduling. A great benefit of a
buffered crossbar is that the scheduling becomes much simpler.

Instead of considering inputs and outputs at the same time,
a buffered crossbar allows input and output arbiters to work
independently. In this paper, we address the problem of how to
achieve throughput and fairness in a buffered crossbar switch
without speedup. In the next section, we first examine the
problem and present the motivation behind this work.

Input Arbiter

Input line card
Output Arbiter

Output line card

Crosspoint buffer

N21

A
ssem

bly

A
ssem

bly

A
ssem

bly

B
uffer

B
uffer

B
uffer

Segment

Segment

Segment
N

2

1

VOQ

Fig. 2. An N×N buffered crossbar switch.

III. M OTIVATION : THROUGHPUT VS. FAIRNESS

With appropriate crossbar speedup and scheduler, an
IQ/CICQ switch can emulate an OQ switch [15], [19], which
means that throughput and fairness can be satisfied at the same
time. However, in the case of no speedup, this is not the case.
Note that our discussion in this section applies to both buffered
and non-buffered crossbar.

Fairness implies equal allocation of resources, but there is
little agreement among researchers as to what needs to be
equalized. The best-effort traffic mainly refers to those that
are not delay sensitive. Therefore, in this paper, by fairness,
we mean fair sharing bandwidth among competing flows.

In general, the goal of achieving fairness conflicts with the
goal of maximizing throughput. Consider three backlogged
flows f11, f12 andf22 going through a2×2 crossbar, where
fij is the flow from inputi to outputj. If we want to maximize
the overall crossbar throughput, the only choice is to schedule
f11 and f22, as shown in Fig. 3, so that the throughput is
2. Clearly such scheduling starvesf12. If we want to fairly
treat each flow, we have to schedule each with the per-flow
rate of 0.5, where the overall throughput is only 1.5. Even
though the output 1 is idle whenf12 is scheduled, the second
scheduling strategy avoids starvation and enforces fairness.
Fig. 4 shows the throughput of three flows as a function
of workload using OCF3 [20]. When workload is above 0.5,
f12 receives much less than other two flows. Although 100%
throughput is achieved, this case shows that it is necessary
to provide overload protection to ensure fairness. Otherwise,
a malicious user can easily steal bandwidth by flooding the
network.

3Oldest Cell First (OCF) is a MWM algorithm with weight definedas
waiting time of the head-of-line (HOL) cell. Note it is different from that in
the OCF-OCF algorithm [6].
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Fig. 3. Illustration of conflict between throughput and fairness.
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Fig. 4. OCF fails to ensure fairness under non-admissible traffic.

Notice that in many switch scheduling studies, it is assumed
that at most 1 cell arrives at each input in one slot. Under this
assumption, an input can never be over-subscribed. For dis-
cussion of non-admissible traffic, we remove this assumption,
allowing more than 1 cells arrive at each input in one slot.
Thus the aggregate arrival rate at each input can be greater
than 1, as shown in Fig. 4. Non-admissible traffic includes
input over-subscription as well as output over-subscription.
Although allowing input over-subscription sounds unnecessary
in a crossbar switch because the switch can only transfer 1
cell per input per slot, it is still practical. For example, an
input can be an aggregate link of many links or queues, and
the aggregate arrival rate can be much higher than 1 cell per
slot. If only 1 cell is allowed to arrive at one slot, we must
put another scheduler at the aggregate link to schedule cells
from the aggregate link to VOQs. This scheduler is redundant
because the switch scheduler can do the same thing.

In the case of admissible traffic, strict fairness can still lead
to bandwidth under-utilization. To illustrate this problem, let’s
look at the example shown in Fig. 5. We have three flows
f11, f21 andf22, andck

ij denotes thekth cell of fij . Cells of
f11 arrive at slot3n− 2; cells of f21 arrive at slot3n− 2 and
3n−1; and cells off22 arrive at slot3n, wheren = 1, 2, 3, . . . .
Clearly, this is an admissible traffic. Now suppose each flow
has the same weight and we use an absolutely fair fluid model
scheduler. In slot 1 and 2,c1

11 andc1
21 are transferred, and each

cell gets half bandwidth and takes 2 slots. In slot 3,c2
21 and

c1
22 are transferred, and again each gets half bandwidth. Note

that in slot 3, half of the output 1 bandwidth is wasted as
indicated as the gray area in the graph. Therefore, with this
arrival pattern,f21 only receives12 of the bandwidth, much less
than its workload of23 , and its queue will gradually become
infinite. There is a waste of16 of the bandwidth at output 1,
but we cannot use them because of the fairness concern.

This example again shows that achieving both absolute
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Fig. 5. Strict fairness leads to under-utilization of bandwidth for admissible
traffic.

fairness and 100% throughput at the same time is impossible.
Therefore, some trade-off must be made. However, unlike the
case in Fig. 3, we prefer throughput than fairness. In this
particular case, we can give priority to flowf21 by postponing
each cell off11 by 2 slots. Although instantaneous fairness
is not maintained, this trade-off is justifiable. First best-effort
traffic is not delay sensitive, and throughput is more important
than delay. Because traffic is admissible, giving preference
to heavy-backlogged queues will not affect the throughput of
light-backlogged queues. In a relatively long interval, fairness
is still maintained. Second, although cells of light-backlogged
flow incur longer delay, the increased delay only affects the
initial delay observed by the end-user.

Note that fairness does not necessarily mean equal distribu-
tion of resources. In many cases, it is justifiable to give more
bandwidth to some flows than others. How to assign weights
depends on applications. From now on, we assume that each
VOQij is assigned a weightwij .

So far, we haven’t formulated the fairness criterion when a
crossbar is overloaded. At first glance, it is appealing to use the
fairness definition of the well known GPS system [10], i.e., for
any competing flowi andj that are continuously backlogged
in the interval [τ, t), Wi[τ,t)

Wj [τ,t) = φi

φj
, where Wi[τ, t) is the

amount of flowi traffic served in an interval[τ, t) andφi is
the weight of flowi. However, when in the case of a crossbar,
this definition in general does not hold without unnecessarily
wasting bandwidth. In fact, in terms of bandwidth distribution,
it is more appropriate to represent crossbar as a network as
shown in Fig. 6.
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Now it is clear that there are2N bottlenecks. Different flows
might have different bottlenecks. In this scenario, a natural fair
allocation scheme calledmax-min fairness[21] can be used.
The goal of max-min fairness is to achieve fairness among
competing flows while not unnecessarily wasting bandwidth,
i.e., maximize the minimum service rate of each flow. Fig. 7
illustrates the max-min bandwidth allocation. We have four
equal-weight flowsf11, f21, f31 andf12. Although each flow
has the same weight,f12 can have2

3 of the total bandwidth
without affecting other flows’ throughput. To summarize, a
desirable scheduler should fulfill the following:

1) sustain 100% throughput for admissible traffic, and
2) ensure max-min fairness for non-admissible traffic.

In the next 4 sections, we show how to achieve the above
objective in a buffered crossbar employing a very simple
scheme that requires no speedup. First in section IV, based
on a packet fair queuing (PFQ) algorithm, we present a queue
length driven packet fair queuing (QLD-PFQ) algorithm and
prove that it provides 100% throughput. Then in section V,
we formally define a dynamic max-min fairness criterion for
crossbar switches. In section VI, we describe an adaptive max-
min fair scheduling (AMFS) algorithm and show its max-min
fairness property. Finally in section VII, we apply AMFS to
the case of finite buffers.

IV. QUEUE LENGTH DRIVEN PACKET FAIR QUEUING

In [14], Stephens and Zhang study a distributed packet
fair queuing (D-PFQ) system, where each input and output
apply PFQ independently, hence we refer to this scheme as
PFQ-PFQ in this paper. It is shown that PFQ-PFQ provides
fairness among competing flows. In [22], PFQ-PFQ is shown
to automatically converge to the max-min fair rate allocation
under a fully overloaded situation. [23] further shows that
by viewing the scheduling as a non-cooperative strategic
game, the max-min fair allocation is equivalent to the Nash
equilibrium, thus providing a solid foundation for the max-min
fairness criterion.

However, PFQ-PFQ cannot sustain full bandwidth when
traffic is admissible. To see why this is the case, assume
all flows have the same weight, then PFQ-PFQ becomes
equivalent to RR-RR which is already demonstrated in [7],
[8] to fail to provide 100% throughput under admissible non-
uniform traffic. In fact, we’ve already shown in section III
that an algorithm focusing on fairness alone fails to sustain
100% throughput because of the conflict between throughput
and fairness.

The underlying reason that PFQ-PFQ fails to sustain full
bandwidth under admissible traffic is that it doesn’t take queue
status into consideration. This motivates us to use queue length
as weight in the scheduling decision. Formally, letφij(t) be
the weight of queueij (from input i to j at time t, define

φij(t) = xij(t) (1)

wherexij(t) be length of queueij (combined queue length
of VOQij and CBij ) at time t. We call PFQ-PFQ with
the above weight definitionqueue-length-driven packet fair

queuing(QLD-PFQ). Now we show that QLD-PFQ achieves
100% throughput. We will adopt the notation and definitions
introduced in [24]. For aN×N switch, define

• Xn: the vector of queue lengths at timen, i.e.,
Xn = (x11

n , . . . , xij
n , . . . , xNN

n ), where xij
n is the

((i− 1) ∗N + j)
th element, denoting the length of

queueij at timen. Assumexij
0 = 0.

• An: the vector of numbers of arrivals at timen, i.e.,
An = (a11

n , . . . , aij
n , . . . , aNN

n ), where aij
n is the

number of arrivals at queueij in the time interval
(n, n + 1]. Assume that the arrival processAn is
independent and identically distributed.

• Dn: the vector of numbers of departures at timen, i.e.,
Dn = (d11

n , . . . , dij
n , . . . , dNN

n ), where dij
n is the

number of departures from queueij in time interval
(n, n + 1]. Hence, the evolution of the system of
queues can be described as:

Xn+1 = Xn + An −Dn (2)

• Λ: the vector of average arrival rates, i.e.,Λ =
(λ11, . . . , λij , . . . , λNN), where λij is the arrival
rate at queueij. Clearly, E[An] = Λ. A traffic
is said to beadmissibleif no input or output is
oversubscribed, i.e.,

N
∑

k=1

λik ≤ 1 and
N

∑

k=1

λkj ≤ 1 (3)

• M : the vector of average departure (or service) rates,
i.e., M = (µ11, . . . , µij , . . . , µNN ), whereµij is
the departure rate from queueij. Clearly,E[Dn] =
M .

• ||X ||: Euclidean norm of vectorX = (x1, x2, . . . , xK).

i.e., ||X || =
√

∑K
i=1 x2

i .

Definition 1: (throughput) A system of queues is strongly
stable (implies 100% throughput) if for any admissible traffic,
limn→∞ sup E[||Xn||] <∞.

This definition basically means that in a strongly stable
system, the average queue length and hence the average queue
delay is bounded. To prove that QLD-PFQ leads to a stable
system, we first introduce the following lemma.

Lemma 1:A switch with a scheduling algorithm such that
E[Dn] = (1 + α)X̃n + D′

n is strongly stable, whereα ∈ R
+

(R+ is the set of non-negative real number),D′
n ∈ R

+N2

and
is a function ofXn, andX̃n is the normalized vector ofXn,
i.e., X̃n = X

maxij(
P

k
xik

n ,
P

k
xkj

n )
.

Proof: refer to theorem 6, 7 and 8 in [24].
Lemma 1 states that if the departure rate is parallel to the

queue lengthX , and longer thanX̃, the system is stable. We
show that in a buffered crossbar employing QLD-PFQ, the
departure rate indeed satisfies Lemma 1.

Lemma 2: In a buffered crossbar switch operating under the
QLD-PFQ algorithm,E[Dn] = X̃ + D′

n for any admissible
traffic.



Proof: Given a buffered crossbar, consider its corre-
sponding fluid model using the GPS scheduler [10]. Letzij(t)
be the queue level ofVOQij at timet, bij(t) be the queue level
of CBij at time t, andxij(t) = zij(t) + bij(t).

According to equation (1),φij(t) = xij(t). Therefore, with
PFQ, at each input, the service rateµin

ij (t) for queueij at time
t is

µin
ij (t) =

xij(t)
∑

k xik(t)
(4)

Similarly, at each output, the service rateµout
ij (t) for queue

ij at time t is

µout
ij (t) =

xij(t)
∑

k xkj(t)
(5)

Because inputs and outputs are coupled by crosspoint
buffers,

µij(t) = min(µin
ij (t), µout

ij (t)) + dm
ij (t)

= min(
xij(t)

∑

k xik(t)
,

xij(t)
∑

k xkj(t)
) + dm

ij (t) (6)

where dm
ij (t) ∈ R

+ indicates the extra service due
to the fact that GPS automatically converges to max-min
rate, and convergence takes finite time depending on the
CB size [22]. Let de

ij(t) = min(
xij(t)

P

k
xik(t) ,

xij(t)
P

k
xkj(t)

) −
xij(t)

maxij(
P

k
xik(t),

P

k
xkj(t))

. Obviously,de
ij(t) ≥ 0.

µij(t) =
xij(t)

maxij(
∑

k xik(t),
∑

k xkj(t))
+ de

ij(t) + dm
ij (t)

= x̃ij(t) + de
ij(t) + dm

ij (t) (7)

Finally, let d′ij(t) = de
ij(t) + dm

ij (t), we have

E[Dn] = X̃n + D′
n (8)

Theorem 1:A buffered crossbar switch operating under the
QLD-PFQ algorithm is strongly stable.

Proof: straightforward from Lemma 1 and 2.

V. M AX -MIN FAIRNESS CRITERION

Unfortunately, QLD-PFQ cannot provide fairness when the
switch is over-loaded because it doesn’t take into consideration
the pre-assigned weight of each queue. To discuss fairness,we
need to formally define fairness. First, we introduce the max-
min fairness criteria in aN×N crossbar switch based on the
general definition in [21]. Let

• fij be the flow from VOQij . We say fij is idle if
λij = 0, andfij is active if λij > 0. NoteVOQij can be
temporarily empty even iffij is active.

• W = [wij ] be the matrix of assigned weights ofN2

flows. Assumewij = 0 if fij is idle, andwij > 0 if fij

is active.
• Č = (či) be the vector of input capacities.
• Ĉ = (ĉj) be the vector of output capacities. For a switch

without speedup,̌ci = ĉj = 1, ∀i, j.
• R = [rij ] be the matrix of rate allocation for each flow.

We call R feasible if

N
∑

k=1

rik ≤ či and
N

∑

k=1

rkj ≤ ĉj (9)

We also call a feasible allocationR weighted max-min fair,
when it is impossible to increaserij without losing feasibility
or reducingrpq satisfying rpq

wpq
≤

rij

wij
.

Given W , Č and Ĉ, it is easy to find the max-min rate
matrix R using the water-filling approach [21]. However, the
rates calculated in this way only represent the maximum
throughput each flow gets when all active flows are continu-
ously backlogged. If a flow only uses some portion of its max-
min rate, the unused portion should be used by other flows.
Naturally we want this unused bandwidth to be distributed in
the max-min fair manner.

To take this situation into consideration, we further intro-
ducedynamic max-min rate matrixRwλ = [rwλ

ij ], based on
both W and Λ, whereas the matrix, based only onW , is
referred to asstatic max-min rate matrixRw = [rw

ij ]. The
fairness the two matrices represent is calleddynamic max-min
fairnessand static max-min fairnessrespectively. GivenW ,
Č, Ĉ andΛ, the following procedure givesRwλ.

1) Rwλ ← ∅

2) calculateRw (note thisRw is a local variable)
3) for eachλij ≤ rw

ij do
rwλ
ij ← λij

či ← či − λij

ĉj ← ĉj − λij

wij ← 0
4) repeat 2) and 3) untilλij > rw

ij or wij = 0, ∀i, j

5) for eachrw
ij > 0 andrwλ

ij = 0 do
rwλ
ij ← rw

ij

Clearly every non-zero entry in aRwλ falls into the follow-
ing two cases:

• λij > rwλ
ij : in this case, we callfij a non-admissible

flow.
• λij = rwλ

ij : in this case, we callfij an admissibleflow.
Furthermore, ifrwλ

ij ≤ rw
ij , we call fij an absolutely

admissibleflow; whereas ifrwλ
ij > rw

ij , fij is called a
relatively admissibleflow. because in the latter case, a
flow is good because another admissible flow doesn’t use
up its max-min bandwidth.

Note, if we remove an absolutely admissible flow from
the crossbar network, another relatively admissible flow may
become an absolutely admissible flow. To convey this obser-
vation formally, letΨ = (W, Λ, Č, Ĉ), and recursively define
Ψk = (W k, Λk, Čk, Ĉk) as follows:

wk
pq = wk−1

pq , wk
ij = 0,

λk
pq = λk−1

pq , λk
ij = 0,

čk
i = čk−1

i − λij , ĉk
j = ĉk−1

j − λij ,

wherek ≥ 1, p 6= i, q 6= j andfij is an absolutely admissible
flow with respect toΨk−1. It is easy to get the following facts:



1) rwkλk

ij = rwk−1λk−1

ij , ∀rwkλk

ij > 0 (i.e., the dynamic
max-min rate inΨk is the same as that inΨk−1).

2) rwk

ij ≥ rwk−1

ij , ∀rwk

ij > 0 (i.e., the static max-min rate
in Ψk is at least the same as that inΨk−1).

3) {fij |λij = rwkλk

ij } 6= ∅ ⇒ ∃fij such thatλij ≤ rwk

ij

(i.e., if there are admissible flows inΨk, there must exist
an absolutely admissible flow with respect toΨk).

Definition 2: (fairness) Given weightW and arrival rateΛ,
a crossbar switch under a scheduling algorithm is fair ifµij =
rwλ
ij , whereµij is the departure (or service) rate forfij .
This definition simply states that for admissible flows, the

service rate is equal to the workload; and for non-admissible
flows, the service rate is its dynamic max-min rate. Note that
by using dynamic max-min fairness criterion, this fairness
definition implies 100% throughput for admissible traffic. In
fact, if λij = rwλ

ij , ∀ activefij ⇒
∑

k λik =
∑

k rwλ
ik ≤ či =

1 and
∑

k λkj =
∑

k rwλ
kj ≤ ĉj = 1 (i.e., if all active flows

are admissible, the traffic is admissible).

VI. T HE ADAPTIVE MAX -MIN FAIR SCHEDULING (AMFS)
ALGORITHM

Taking the above max-min fairness definition into consid-
eration, we now extend the weight definition in equation (1)
as follows:

φij =







xij

N 0 ≤ xij ≤ N

1 + (xij −N)
wij−1

N N < xij < 2N
wij 2N ≤ xij ≤ ∞

(10)

where N is a large number such that for everyǫ > 0,
limn→∞ Pr{||Xn|| > N} < ǫ when the switch under the
QLD-PFQ algorithm is loaded with any admissible traffic. This
N exists because the switch is strongly stable under QLD-
PFQ. In addition, to make sure thatφij is non-decreasing as a
function of queue length, we also scale allwij in proportion
so thatwij > 1, ∀i, j. We call PFQ-PFQ using this weight
definition adaptive max-min fair scheduling(AMFS).

When a flow’s queue length is belowN , the flow is regarded
as admissible, andφij is in proportion to its queue length.
Note, it is possible that a flow is admissible when its queue
length grows beyondN . Thanks to the strong stability of QLD-
PFQ with infinite queue and the asymptotic construction of
N , the probability of queue length greater thanN can be
asymptotically small.

When a flow’s queue length is betweenN and2N , the flow
is at the boundary between admissible and non-admissible,φij

is increased as a combination of queue length and assigned
weight. The main purpose of this region is to provide a
transition from admissible to non-admissible traffic so that φij

can smoothly change from queue length to assigned weight.
When a flow’s queue length reaches2N , the flow is

regarded as non-admissible, andφij = wij which is the flow’s
assigned weight. The PFQ-PFQ algorithm will ensures max-
min fairness among competing flows as discussed before. Later
we will see that2N also serves to protect well-behaved flows
from overflow.

Now we show informally that AMFS is fair. There are 3
cases:

1) ∀ active fij , λij = rwλ
ij (i.e., all flows are admissible):

because
∑

k λik =
∑

k rwλ
ik ≤ či = 1 and

∑

k λkj =
∑

k rwλ
kj ≤ ĉj = 1, this is the admissible traffic which

approximately corresponds to the first case of0 ≤ xij ≤ N in
equation (10), where the weight of each queue is proportional
to its queue length. According to the asymptotic construction
of N , this approximation is accurate with probability1 − ǫ,
for every ǫ > 0. Therefore, from theorem 1, asymptotically
the switch is strongly stable, i.e.,µij = λij = rwλ

ij .
2) ∀ active fij , λij > rwλ

ij (i.e., all flows are non-
admissible): obviously, in this case,rwλ

ij = rw
ij . This is the fully

overloaded case (all queues are continuously backlogged),and
corresponds to the third case of2N ≤ xij ≤ ∞, where
the weight of each queue is its pre-assigned weight. [22] has
proved that bandwidth will be distributed in the max-min fair
fashion, i.e.,µij = rw

ij = rwλ
ij .

3) ∃ active fij , λij = rwλ
ij and (

∑

k λik > 1 and/or
∑

k λkj > 1) (i.e., some flows are admissible, but their ports
are overloaded): in this case, there must exist an absolutely
admissible flow, sayfpq such thatλpq ≤ rw

pq (from fact 3).
We claim thatxpq ≤ 2N because ifxpq > 2N , fpq will
receive its max-min service raterw

pq, butλpq ≤ rw
pq. Therefore

µpq = λpq = rwλ
pq .

Now let Ψ0 = (W, Λ, Č, Ĉ), and supposeΨk−1 has an
absolutely admissible flow, we can remove it to obtainΨk.
Then inΨk, if there are still admissible flows, there must exist
a flow fpq which is absolutely admissible with respect toΨk

(from fact 3). Note it maybe a relatively admissible flow with
respect toΨ0. Again, xpq ≤ 2N , andµpq = λpq = rwkλk

pq =
rwλ
pq . So, by induction, for all admissible flowsfpq, we have

µpq = λpq = rwλ
pq .

If all flows in Ψk are non-admissible (λk
pq > rwkλk

pq ), we

have the same situation as case 2. Thereforeµpq = rwkλk

pq =
rwλ
pq .

VII. T HE AMFS ALGORITHM WITH FINITE QUEUE

In previous discussions, queues are assumed infinite which
is impractical. In this section, we apply AMFS to the case of
finite buffers. We normalize queue lengths, set two thresholds
α andβ (0 < α < β < 1), and defineφij as follows:

φij =







lij 0 ≤ lij ≤ α

α + (lij − α)(
wij−α
β−α ) α < lij < β

wij β ≤ lij ≤ 1

(11)

Clearly,α andβ correspond toN and2N in equation (10).
Note that α should be set large enough to accommodate
reasonable traffic burst. This implies that the queue capacity
is large enough. This assumption is valid for today’s high-
performance routers where each line card can easily contains
buffers of capacities in hundreds of megabytes.

Note, we also replacexij (combined length ofVOQij and
CBij) with lij (length of VOQij). Since CBs are very small
compared to VOQs, this modification won’t affect perfor-
mance. In fact, it makes input arbiters work-conserving.



A. Description of AMFS

For the convenience of the discussion of hardware imple-
mentation in section IX, we present the algorithm in detail
followed by an explanation.

In anN×N buffered crossbar switch, for each inputi (1 ≤
i ≤ N), we keep a set of following counters:

• vtimei: system virtual time for inputi.
• wij : assigned weight forVOQij , (1 ≤ j ≤ N).
• lij : current queue length forVOQij .
• φij : instantaneous weight forVOQij .
• stimeij : virtual start time forVOQij .
• ftimeij : virtual finish time forVOQij .
• validij : boolean values to indicate ifstimeij and ftimeij

have been updated. Initialized tofalse.
• reqij : boolean values to indicate ifVOQij is not empty

andCBij is not full.

Then in each slot, do

Step 1: calculate each VOQ’s virtual start and finish time.
1) for eachj do
2) φij ← 0
3) reqij ← false
4) if VOQij is not emptyand CBij is not full, then
5) reqij ← true

6) φij =







lij 0 ≤ lij ≤ α

α + (lij − α)(
wij−α
β−α ) α < lij < β

wij β ≤ lij ≤ 1
7) if validij = false then
8) stimeij ← max(vtimei, ftimeij)
9) ftimeij ← stimeij + 1.0/φij

10) validij ← true
11) if reqij = false, ∀j then
12) input i idles for the next slot

Step 2: adjust system virtual finish time.
13) vtimei ← max(vtimei, min(stimeij | reqij = true))

Step 3: select the output with the smallest eligible finish time.
14) j ← argj min(ftimeij | stimeij ≤ vtimei and

validij = true)
15) validij ← false

Step 4: update system virtual time.
16) vtimei ← vtimei + 1.0/

∑

j φij

The output arbiter is almost the same as the input arbiter,
except that it checks the status of VOQs, crosspoint buffers
(CBs) and assembly buffers (on the line card), and that the
queue length to calculateφij includes cells in bothVOQij

andCBij .

B. Remark

In theory, any PFQ algorithm works. For the sake of
simple and fast hardware implementation, however, we choose
WF2Q+ [13] because it provides the tightest delay bound and
the smallest worst-case fair index (WFI) while maintainingthe
lowest algorithmic complexity by computing the system virtual

time directly from the packet system. WF2Q+ also maintains
per-flow (instead of per-packet) virtual start time and finish
time, and virtual times are updated only when a packet arrives
at the head of its queue, thus greatly reducing the hardware
complexity.

AMFS uses the PFQ algorithms that is designed for schedul-
ing packets at output links. However, there are still some major
differences between AMFS and an output-link scheduler. First
of course is the weight definition. For each flow with a fixed
weight, an output-link scheduler using WF2Q+ (or other PFQ
algorithms) simply keeps the interval which is inverse of the
weight. In addition, using normalized weights, the system
virtual time can simply be increased by1 instead of1/

∑

j φij

(in line 16). AMFS, on the other hand, has to keep track of the
queue length and adjust the weight dynamically. So arithmetic
reciprocal operation is needed to get the service interval (in
line 9).

Second, output-link schedulers are packet driven, i.e., the
algorithm executes enqueue when a packet arrives and dequeue
when a packet departs. AMFS, on the other hand, is time-
driven, i.e., the enqueue and dequeue operation occur at
the same time in every slot because of the slotted crossbar
operation. To take advantage of this synchronized operation,
we also sample queue status and update virtual times only at
the beginning of a slot. For cells arriving in the middle of a
slot, we can regard them as arriving at the beginning of the
next slot. This little postponement should have virtually no
impact on the performance.

Third, output-link schedulers consider the case ofN input
queues and one output queue (or link). Dequeue occurs only
when the output queue is available and any input queue has
packets. When the output is busy, all inputs are blocked. In
the crossbar scheduling, each arbiter hasN input queues (e.g.
VOQs) andN output queues (e.g. crosspoint buffers). When
one output queue is full, only the corresponding input queue
should be disabled in order to keep work-conserving. As a
result, we cannot update the virtual start and finish time of
this blocked queue even if it has backlogged packets. From
the queuing point of view, we can regard the input queue as
empty and a packet arrives at the time when its output is
available. Therefore, the virtual times should not be updated
until this point. That is the major purpose of countervalidij .

VIII. S IMULATION RESULTS

In our simulation, we implement AMFS based on WF2Q+
[13] (with α = 0.7 and β = 0.8). WF2Q+ is also used in
the case of fixed weight, which is referred as PFQ in the
figures in this section. We also implement OCF [20] for IQ
switches because it is proved to achieve 100% throughput for
any admissible traffic. Output queuing scheme with WF2Q+
as the output-link scheduler is also shown for comparison as
it is the optimal solution. Note in the case of IQ and CICQ
switches, the output-link scheduler is simply FCFS.

The switch size is16×16. Cell size is 64 bytes. VOQs or
output queues (OQs) are statically partitioned with 256K bytes
(4K cells) per input-output pair. The total buffer size per line



card for a16×16 switch is 4M bytes. The crosspoint buffer
size of CICQ switches is8 cells unless otherwise stated.

Packet arrival is modeled as a 2-state ON-OFF process.
The number of ON state slots is defined as the packet length
which is obtained from a profile of NLANR trace at AIX site
[25]. We collected over 119 million packets. The packet length
ranges from 20 to 1500 bytes with meanEon = 566 bytes and
standard deviation of 615 bytes. The number of OFF state
slots is exponentially distributed with averageEoff = 1−ρ

ρ Eon,
whereρ is defined as the offered workload. We consider the
following performance metrics:

• average packet delay: In the case of IQ and CICQ
switches, packet delay is measured from when the first
bit of a packet arrives at its VOQ to the last bit leaves
its assembly buffer (see Fig. 1 and 2). In the case of OQ
switches, packet delay is measured from when the first
bit of a packet arrives at its OQ to the last bit leaves its
OQ.

• average queue length: the average queue length of VOQs
(in the case of IQ/CICQ switches) or OQs (in the case
of OQ switches).

• average throughput: number of cells per slot leaving the
assembly buffers (in the case of IQ/CICQ switches) or
OQs (in the case of OQ switches).

The simulations run long enough to ensure the 95% con-
fidence interval of the average packet delay, queue length or
throughput with±5% error margin. Evaluation is performed
under various traffic patterns. Due to page limit, however, we
only report some of the results.

A. Admissible traffic

For uniform traffic, all schemes work well. Here we only
report simulation results under the diagonal traffic:λii =
2ρ/3, λi|i+1| = ρ/3 and λij = 0 for j 6= i or |i + 1|,
where |i + 1| = i mod N . This is a very skewed traffic
pattern. No maximal algorithms have been found to be able to
sustain admissible workload under the diagonal traffic pattern.
Therefore this traffic pattern can be used as a litmus test.

Fig. 8 and Fig. 9 show the average packet delay and queue
length of traffic fromVOQij as a function of the workload
per input. In this situation, AMFS and OCF still perform very
well. PFQ starts to drop packets at about 90% workload. To
see what happened, we also plot the packet delay of traffic
from VOQi|i+1| in Fig. 10, where the delay is very low in the
case of PFQ. This case clearly shows that favoring fairness
affects the throughput adversely, as pointed out in sectionIII.

B. Non-admissible traffic

To evaluate the weighted max-min fairness allocation, we
run the simulation on a4×4 switch with traffic weight asW =
2

6

4

3 2 1 0
1 0 0 0
0 1 0 0
0 0 1 0

3

7

5
. Its corresponding static max-min service rate

Rw =

2

6

4

1/2 1/3 1/6 0
1/2 0 0 0
0 2/3 0 0
0 0 5/6 0

3

7

5
. Fig. 11 shows the throughput

of four schemes as a function of workload per flow. As
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expected, OCF cannot distinguish flows with different weights.
In the case of output queuing, flows only compete for outputs.
Therefore,µ11

µ21

= 3
1 , µ12

µ32

= 2
1 and µ13

µ43

= 1
1 when outputs are

fully overloaded.
On the other hand, AMFS and PFQ always maintain max-

min allocation among competing flows. When the workload is
below 1/3, the throughput is equal to the workload for every
flow because the switch is not overloaded.

At 0.33, input 1 is first saturated, the throughput off13 goes
down until reaching its max-min rate1/6. For f12, although
λ12 > rw

12 = 1/3 when1/3 < λ < 2/5, it is still an admissible
flow becauseλ12 ≤ rwλ

12 , After 0.40, the throughput off12 also
starts to go down until it reaches its max-min rate.

At workload 0.5, output 1 is also saturated, andf11 gets
its max-min rate1/2. Note that although the weight off21

is 1 (corresponding to1/6 of the total bandwidth), it also
receives1/2 of the total bandwidth because of the max-min
fair allocation policy.

Finally when output 2 and output 3 become saturated at
2/3 and 5/6, f32 and f43 receive their max-min fair shares
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respectively which are also much more than their assigned
bandwidth.

IX. H ARDWARE IMPLEMENTATION ISSUES

Due to page limit, we only show in Fig. 12 a block diagram
of how four steps of an AMFS arbiter are connected, and omit
detailed discussion of each block. Each arbiter is basically
a WF2Q+ arbiter [13] with dynamic weight. With parallel
hardware support, each step can be done inO(log N) time.

step 1:

calculate

reqij

φij

stimeij

ftimeij

validij

α
β

wij

lij

VOQij

CBij

step 2:

adjust

vtimei

stimeij

vtimei

reqij

step 3:

select output j
with smallset

eligible ftimeij

stimei

ftimeij

validij

d
ecisio

n

validij ← false

step 4:

vtimei += 1/
∑

j φij

φij

Fig. 12. A block diagram of an AMFS arbiter at inputi

X. CONCLUSION

In this paper, we address the problem of how to achieve
both throughput and fairness in a buffered crossbar without
speedup. The solution is surprisingly simple: applying a PFQ
algorithm at each input and output with the dynamic weights
based on queue lengths and assigned weights. Our analysis
and simulation results show that the adaptive max-min fair
scheduling (AMFS) scheme achieves 100% throughput for
any admissible traffic as well as providing max-min fairness
under overloaded situation. We also briefly show the hardware

implementation of AMFS. With each arbiter on its line card,
AMFS is entirely feasible for very high speed networks.
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