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Abstract— The deployment of 10 Gigabit Ethernet (10GbE) 
connections to servers has been hampered by the “fast-network-
slow-host” phenomenon. Recently, the integration of network 
interfaces (INICs) is proposed to tackle the performance 
mismatch.  While significant advantages over PCI-based discrete 
NICs (DNICs) were shown in prior work using simulation 
methodologies, it is still unclear how INICs perform on real 
machines with 10GbE.  
    This paper is the first to study the impact of INICs by extensive 
evaluations through micro-benchmarks on a highly threaded Sun 
Niagara 2 processor. The processor is the industry’s first "system 
on a chip," integrating two 10GbE NICs. We observe that the 
INIC only shows its advantage over the DNIC with large I/O 
sizes. It improves 7.5% network bandwidth while saving 20% 
relative CPU utilization. We characterize the system behaviors to 
fully understand the performance benefits with respect to 
different number of connections, OS overhead, instruction 
counts, and cache misses etc.  All of our studies reveal that there 
is a benefit of integrating NICs onto CPUs, but the gain is 
somewhat marginal. More aggressive integrated NIC designs 
should be adopted for higher speed networks like the upcoming 
40GbE and 100GbE.

Keywords: 10GbE,  Integrated NIC,  Discrete NIC,  Performace 
Evaluation,  Characterization,  Sun  Niagara 2. 

I. INTRODUCTION 

    Ethernet continues to be the most widely used network 
architecture today for its low component cost and backward 
compatibility with the existing Ethernet infrastructure. As of 
2006, Gigabit Ethernet-based clusters make up 176 (or 35.2%) 
of the top-500 supercomputers [17]. Unfortunately, even as 
nearly all server platforms completed the transition to Gigabit 
Ethernet, the adoption of 10 Gigabit Ethernet (10GbE) has 
been limited to a few niche applications [18]. The use of 
10GbE has been constrained by the processing capability of 
general purpose platforms [7, 11].  

     Prior work [1, 2, 3, 5, 14] for improving the processing 
capability broadly falls into two categories: 1) dedicating an 
embedded CPU to a NIC and 2) integrating a NIC onto a CPU.  
TCP Offload Engine (TOE), a popular approach for high 
speed networks,  belongs to the first category. It offloads the 
whole network stack running on operating systems (OS) into 
NICs in the form of firmware. However, TOE lacks flexibility 

and the ability to take advantage of technology-driven 
performance improvements as easily as host CPUs [5]. 
Recently, an alternative approach to integrating NICs onto 
CPUs has been shown to be more promising and is gaining 
more and more popularity in both academia and industry [3, 
14, 15]. Compared to TOE, the integration of NICs does not 
require modifying the legacy network stack, and provides high 
flexibility and good compatibility with the OS.  

    Existing work on the integration of NICs (INICs) was 
evaluated by simulation [1, 2, 3]. Although simulation is 
flexible, it is hard to fully simulate the bandwidth and latency 
of memory and system bus protocols in real machines. It is 
also difficult for simulators to capture the whole OS behaviors.  
Hence, evaluations on real machines become critically 
important and are complementary to simulators. Papers [1, 2] 
claimed that INICs can significantly improve network 
processing efficiency in comparison with discrete NICs 
(DNICs) connected via a PCI-E bus, due to the smaller latency 
of accessing I/O registers. However, how integrated NICs 
perform on real machines remains unclear. A detailed 
performance evaluation and characterization are required to 
answer it.  

    Sun released the UltraSPARC T2 processor ( a.k.a Niagara 
2) [15] by envisioning the benefits of the integration of NICs. 
The processor is a highly threaded processor consisting of 
small cores and the industry’s first "system on a chip" 
integrating two 10GbE NICs.  The integration can reduce the 
latency of accessing I/O registers, though the overhead of 
accessing network packets is not eliminated because they are 
still sourced and destined to memory rather than caches [15]. 
In this paper, we present extensive evaluations with 10GbE, 
and compare the INIC with the DNIC in detail. To make a fair 
comparison, the INIC has the same design as the DNIC except 
for its proximity to CPUs in our experiments. Our experiments 
reveal that the INIC improves network efficiency only with 
large I/O sizes, with 7.5% higher bandwidth and 20% less 
CPU utilization. Our CPU breakdown confirms the previous 
observation from the simulator that the driver overhead is 
largely reduced (50% reduction in our experiments, and up to 
80% reduction in [2]). The reduction is contributed to the 
smaller latency of accessing I/O registers.   
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    Besides confirming the simulator-based finding above, 
through a detailed performance characterization, we also 
unexpectedly observe that the INIC significantly affects the 
behaviors of the OS scheduler and CPU caches.  We notice 
that the INIC reduces context switches by 40% in comparison 
with the DNIC.  Our in-depth analysis shows that more cross-
calls (or inter-processor interrupts) are incurred by the OS 
scheduler, and correspondingly result in more frequent context 
switches in the DNIC. Additionally, the longer packet 
processing latency in the DNIC directly translates to longer 
residential life cycles of packets in caches. It could result in 
cache pollution and thus incur higher cache miss rates. With 
the combination of influence of more context switches on 
caches, our evaluation shows that the INIC has 25% lower L1 
data cache and 7.6% lower L2 cache miss rates.  

    In our experiments, we observe that the smaller latency of 
accessing I/O registers itself does not help processing by a 
large extent. The different behaviors of the OS scheduler and 
CPU caches incurred by the smaller latency mainly contribute 
to the performance gain.  It is in contrary to the previous 
observation that the reduced driver overhead can lead to the 
performance improvement up to 58% [2]. To satisfy the 
processing requirement introduced by higher network traffic 
rates, more aggressive INIC designs like the new CPU/NIC 
interaction mechanism should be considered.  

    The remainder of this paper is organized as follows. Section 
2 describes the background knowledge about the integration of 
NICs. Section 3 presents the experimental methodology. 
Section 4 and 5 show our performance evaluation and detailed 
characterization. Finally, we conclude our paper in section 6. 

II. BACKGROUND

A. Integration of NICs 
    It is well known that TCP/IP over Ethernet is a dominant 
overhead for commercial web and data servers [19, 20]. 
Researchers gradually realized that a comprehensive solution 
across hardware platforms and software stacks is necessary to 
eliminate the overhead [1, 2]. Existing work for improving 
TCP/IP performance falls into two categories: TOE [5] and the 
integration of NICs [1, 2].  Although TOE reduces the 
communication overhead between processors and NICs, it 
lacks scalability due to the limited processing and memory 
capacity. It also requires extensive modification of OS and 
development of firmware in  NICs.  Recently, a counter-TOE 
approach is to integrate NICs onto CPUs. It is envisioned as 
the next generational network infrastructure. It not only 
reduces the latency of accessing I/O registers, but also 
leverages extensive resources in multi-core CPUs.  

    Binkert [1, 2] made a first attempt to couple a simple NIC 
with a CPU for high bandwidth networks.  They claimed that 
the device driver is one of the dominant overheads for 
processing high speed networks and an integrated NIC can 
eliminate the overhead.  Additionally, they also go further to 
redesign the integrated NIC to eliminate the overheads of 
DMA descriptor management and data copy. Evaluation on 

their full system simulator M5 [2, 3] showed the driver 
overhead is reduced up to 80% even without any redesign, 
thus improving performance up to 58%.  

     The Joint Network Interface Controller (JNIC) [14], a 
collaborative research project between HP and Intel, also 
attempted to explore high performance in-data-center 
communications over Ethernet by integrating a NIC. They built 
a system prototype by attaching a 1GbE NIC on the front side 
bus to mimic the integration. Apparently, the integration is 
drawing more and more attention to eliminating the disparity 
between host computation capacity and high speed networks. 

B. Sun Niagara 2  
    The Niagara 2 processor is the industry's first "system on a 
chip," packing the most small underpowered cores and 
threads, and integrating all the key functions of a server on a 
single chip: computing, networking, security and I/O [15].   

    As shown in Figure 1, it has two 10 GbE NICs (NIU in the 
figure) with a few features.  All the data is sourced from and 
destined to memory, DMA in the parlance. This means a core 
sets up the transfer and gets out of the way. The path to 
memory goes from the Ethernet unit (NIU), to the system 
interface unit (SIU), directly into the L2 or the crossbar. The 
CPU sets up DMA for packet transfers from the NIC to 
memory. 

    Niagara 2, known for its massive amount of parallelism,  
contains eight small SPARC physical processor cores and each 
core has full hardware support for eight hardware threads. 
There are total 64 hardware threads or CPUs from the OS 
perspective. Additionally, each core has a 64-entry fully 
associative ITLB, a 128-entry fully associative DTLB, a 16K 
L1 I (instruction) cache and an 8K L1 D (data) cache with 
associativity of the Icache upped to eight. The Dcache has 
four-way associativity and is write-through, and all of the 
cores share a 4MB L2 cache. This is divided into 8 banks and 
each bank is 16-way associative.   

Figure 1. Niagara 2 Architecture 

III. EXPERIMENT METHODOLOGY

A. Testbed Setup 
    Our experimental testbed consists of a Sun T5120 server 
connected to an Intel® Quad Core DP Xeon® server, which 
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functions as a System Under Test (SUT) and a stressor 
respectively. The Sun server has a Niagara 2 processor, which 
has 64 hardware threads and each hardware thread is operating 
at 1.2GHz. The Intel server is a two-processor platform based 
on the quad-core Intel® Xeon® processor 5300 series with 8 
MB of L2 cache per processor [8].  Both of the machines are 
equipped with 16GB DRAM.  

TABLE I. INIC VS DNIC

    In order to compare the integrated NIC with the discrete 
NIC, we used two 10GbE network adapters in the SUN server: 
a discrete Sun 10GbE PCI-E NIC (a.k.a Neptune) [16] and an 
on-chip 10GbE Network Interface Unit (a.k.a NIU) [15]. The 
on-chip NIU has the same physical design as Neptune except 
it has half less DMA transmit channels. More information is 
shown in Table 1. They use the same device driver, and trigger 
an interrupt after the number of received packets reaches 32 or 
8 NIC hardware clocks have elapsed since the last packet was 
received. We also installed two Intel 10GbE Server Adapters 
(a.k.a Oplin) [9] in the stressor system to connect two network 
adapters in the Sun server. All of discrete NICs connect to 
hosts through PCI-E x8, a 16+16 Gigabit/s full-duplex I/O 
fabric that is fast enough to keep up with the 10+10 Gigabit/s 
full-duplex network port.  

B. Server Software 
    The SUT runs the Solaris 10 Operating System while the 
stressor runs Vanilla Linux kernel 2.6.22. In Solaris 10, a 
STREAMS-based network stack is replaced by a new 
architecture named FireEngine [6] which provided better 
connection affinity to CPUs, greatly reducing the connection 
setup cost and the cost of per-packet processing. It merges all 
protocol layers into one STREAMS module that is fully 
multithreaded.   

    In order to optimize network processing with the 10GbE 
network, we use 16 soft rings per 10GbE NIC by setting the 
parameter ip_soft_rings_cnt for the driver. Soft rings are 
kernel threads that offload processing of received packets from 
the interrupt CPU, thus preventing the interrupt CPU from 
becoming the bottleneck. We also set ddi_msix_alloc_limit to 
8 so that received interrupts can target 8 different CPUs. 
Besides, we retain the default settings in the device driver 
without specific performance tuning on interrupt coalescing, 
write combining etc. All protocol and system relevant settings 
are at default.  

    Micro-benchmarks were used in our experiments to easily 
identify the performance benefits and avoid system noises 
from commercial applications [7, 11],  We selected Iperf [10] 
and NetPIPE [13] as  micro-benchmarks for measuring 
bandwidth and ping-pong latency respectively. Because peak 
bandwidth can be achieved by more than 16 connections,  
Iperf is run with 32 parallel connections on 64 CPUs for 60 
seconds in all our experiments, unless otherwise stated.    

    In our experiments, the utility vmstat is used for capturing 
the corresponding CPU utilization. We ran profiling tools 
er_kernel and er_print to collect and analyze the system 
functions overhead. Meanwhile, tools busstat and cpustat were 
chosen to obtain memory traffic and hardware performance 
counter statistical information while running the benchmark.  

IV. PERFORMANCE EVALUATION

    In Figure 2, we show how the INIC and the DNIC perform 
with various I/O sizes while receiving packets.  The bar in the 
figure represents achievable network bandwidth, and the line 
stands for the corresponding CPU utilization.  It can be 
observed that the INIC can achieve 8.97 Gbps bandwidth 
while consuming 27% CPU utilization with large I/O sizes. 
Correspondingly, 8.31 Gbps bandwidth is obtained by the 
DNIC with 35% CPU utilization. The INIC obtains 7.5% 
higher bandwidth and saves 20% relative CPU utilization on 
average for large I/O sizes (>1KB). The efficiency of the INIC 
is close to the DNIC with small packets. All of the results 
reveal that the integration improves network efficiency in the 
receive side only with large I/O sizes.  

INIC vs DNIC (RX with 32 Connections)
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Figure 2. Bandwidth & CPU Utilization (RX) 

    We studied the performance comparison of the DNIC and 
the INIC while transmitting packets in Figure 3. Because less 
time is required in the driver for the INIC to transmit packets, 
it is expected that the higher transmitting bandwidth could be 
obtained by the INIC than the DNIC.  However, the INIC does 
not show noticeable benefits to the application in terms of 
network efficiency. It is possibly because: first, the number of 
transmit DMA channels in NIU is half less than that in the 
Neptune 10GbE card (8 TX DMA channels in the INIC and 12 
TX DMA channels in the DINC). Fewer channels could 
reduce the capacity of transmitting packets. Second, the 
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transmit side is much less latency-sensitive than the receive 
side [12, 19, 20].  

DNIC vs INIC (TX 32 connections)
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Figure 3. Bandwidth & CPU Utilization (TX) 

DNIC vs INIC with Different Connections
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Figure 4. Performance with Various Connections 

      To ease and expedite our analysis of the above observation 
in receive side, we conducted experiments for comparing the 
INIC with the DNIC by running Iperf with varying number of 
connections rather than 32 connections. Figure 4 illustrates the 
comparison from one single connection to 64 connections with 
64KB messages. The following observations can be made 
from the figure: 1) greater than 16 connections are required for 
both the INIC and the DNIC to achieve peak bandwidth. It is 
due to low performance of a single hardware thread in Niagara 
2;  2) differing from the INIC, the DNIC with 64 connections 
downgrades 10% bandwidth compared to 32 connections;  3) 
the INIC improves network efficiency only with greater than 
or equal to 32 connections.  

    Similarly, we also studied the performance comparison by 
running 32 connections with varying number of CPUs or 
hardware threads in Figure 5.  We observe from the figure that 
the benefits only come when more than 16 CPUs are used in 
our experiments. With the combination of Figure 4,  we can 
draw two conclusions: 1) the integration could affect the 
system behaviors with a large number of connections, and 
different system behaviors mainly cause the performance 
difference, and 2) the benefits can only be achieved with large 
number of CPUs, and thus are tied to the highly threaded Sun 
system.    

Figure 5. Performance with Various CPUs 

    High bandwidth and low latency are two main metrics in 
modern networking servers. We also conducted experiments to 
compare ping-pong latency by configuring the SUT with the 
INIC or the DNIC while retaining the same configuration in 
the stressor. The micro-benchmark NetPIPE was used to 
measure the latency. Since large I/Os are segmented into small 
packets less than MTU (Maximum Transfer Unit, 1.5KB by 
default), we focus on packets less than MTU for the ping-pong 
latency test. Our results in Figure 6 show that the INIC can 
achieve a lower latency by saving  6 s. It is due to the smaller 
latency of accessing I/O registers and eliminating PCI-E bus 
latency.  

DNIC vs INIC (Latency)
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Figure 6. Ping-Pong Latency 

V. DETAILED PERFORMANCE CHARACTERIZATION

    To further understand the benefits of the INIC, we profiled 
the system for both the kernel and application function calls as 
well as the assembly code. We used the test case with a 64KB 
I/O size and 32 concurrent connections in Figure 2. The data 
gathered was grouped into the following components to 
determine their impacts on performance: device driver, socket, 
buffer management, network stack, kernel, data copy and user 
application Iperf. 

    CPU overhead breakdown per packet is calculated and 
presented  in Figure 7. We observe that 28 s and 20 s are
required for processing one received packet in the DNIC and 
the INIC respectively.  
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DNIC vs INIC (CPU's Breakdown)
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Figure 7. CPU Overhead Breakdown 

    The comparison in the figure reveals that the CPU overhead 
on the driver is reduced from 4.7 s to 2.6 s by the 
integration. Our profiled result shows that the overhead on the 
interrupt handler nxge_rx_intr, which frequently operates on 
NIC registers, is reduced by 10X. The copy component 
remains the same when we switch between the DNIC to the 
INIC configuration. It is because all packets in the INIC are 
sourced and destined to memory rather than caches. The data 
copy from kernel to user buffers in both configurations incurs 
compulsory cache misses to fetch payloads from memory into 
caches. The overhead on the copy component is eliminated 
only if packets are delivered to caches.  Our findings so far 
confirm the observations in prior work [1, 2] even though they 
differ in absolute benefits.  

    We also observe that the INIC also reduces the overheads 
on network stack, buffer management, socket and kernel. 
These unexpected improvements comprise up to 75% of the 
total overhead reduction and thus mainly contribute to the 
performance benefits. We found that the different behaviors of 
the OS scheduler and CPU caches lead to these benefits. 

A. Impacts on the OS Scheduler 
    Since the benefits of the INIC over the DNIC changes as the 
number of connections increases,  we carefully characterize 
the system behaviors with varying number of connections to 
understand the benefits by the INIC.   

1) Instruction Breakdown 
    First, we did an architectural characterization by instruction 
for packet processing along various connections. In the DNIC, 
instructions are broken down into 5 types of instructions: load, 
store, atomics, software count instructions and all other 
instructions as shown in Figure 8 (Note that the received 
packet is less than 1.5KB because large messages in the sender 
side are segmented into packets smaller than MTU). As shown 
in Figure 8, about 3500 instructions are required to process a 
packet with less than 32 connections, but increase to 4500 
instructions for 32 and 64 connections.  The instruction 
breakdown shows that the instruction types of load, store and 
other instructions, increase proportionally. Figure 9 shows the 
similar behavior for the INIC, but contrary to the DNIC, 
increased connections do not significantly increase 

instructions per packet.  The higher instructions per packet 
directly translate to the higher CPU utilization of the DNIC 
with a large number of connections.  
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Figure 8. Instruction Breakdown (DNIC) 
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Figure 9. Instruction Breakdown (INIC) 

2) Context Switch Rate 
    Because the same device driver and network stack are used, 
the INIC and the DNIC have the same code path while 
processing packets. The increased instructions are incurred by 
other components in the OS. The increased load and store 
operations reveal that more context switches could be required 
by the DNIC.  Hence, we studied the OS scheduler’s behaviors 
while processing packets along various connections. Average 
context switches per second are presented in Figure 10. The 
figure confirms our deduction that more context switches are 
incurred by the DNIC with more than 16 connections.  

DNIC vs INIC (Context Switch)
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Figure 10. Context Switches with Various Connections 

3) Interrupt Rates 
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    Since the micro-benchmark was used in our experiment, the 
lightweight execution in applications does not incur system 
noise and yields few context switches.  Context switches are 
mainly caused by system interrupts. Hence, we studied system 
interrupts per second along various connections in Figure 11. 
The result lines up with the observation in Figure 10. Both the 
INIC and the DNIC have comparable interrupt rates with less 
than 32 connections. When we come to the scenario beyond 
16 connections, the DNIC largely increases the interrupt rate 
but the INIC keeps the same interrupt rate. The higher 
interrupt rate results in more context switches. To study the 
increased interrupts, we breakdown system interrupts with 32 
connections into interrupts from the NIC, cross-calls, and all 
other system interrupts in Figure 12.  

DNIC vs INIC (Interrupt per Second)
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Figure 11. Interrupts per Second 

DNIC vs INIC (Interrupt Breakdown)
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Figure 12. System Interrupts Breakdown 

    We notice that the INIC sent slightly more interrupts than 
the DNIC because of the higher bandwidth. However, the 
system with the DNIC is interrupted much more frequently 
than with the INIC by cross-calls. We used the Dtrace utility 
[4] to count the number of cross-calls incurred by various 
system components. It shows that more than the 96% cross-
calls are from the OS scheduler. The scheduler uses cross-calls 
to notify other CPUs of running tasks or threads immediately.   

    We also profiled the usage for all 64 CPUs from the OS 
perspective and found that more CPUs were used by the 
system with the DNIC. Specifically, only 18 CPUs were free 
with the DNIC, while 31 CPUs are available with the INIC.  
(Note that one connection might require more than one CPU 
for processing in the Sun system [6, 15]). The result reveals 
that the OS scheduler with the DNIC uses the cross-calls to 
distribute threads to more CPUs as compared to the INIC.  It is 
because the lower processing latency with the integration 
makes running cores more efficient and lowers the likelihood 
that packets are dispatched to other idling cores.   

B. Impacts on the CPU Caches 
    Since lower processing latency intuitively embeds shorter 
residential life cycles of network data in caches, the 
integration could also bring impacts on CPU caches. We 
studied cache behaviors in the system with the INIC and with 
the DNIC respectively.   

    Starting from the instruction cache, we show the instruction 
misses per packet in Figure 13. More context switches incur 
higher miss rates beyond 16 connections. We studied the 
instruction misses in L2 cache in Figure 14 to investigate the 
impacts of those misses on the unified L2 cache. Their 
performance is similar but misses happen very rarely in larger 
L2 cache.  

    We also show data behaviors in both L2 and L1 data caches. 
We captured data misses per packet in L2 cache for both the 
DNIC and the INIC in Figure 15. It shows they have 
comparable miss rates with less than 32 connections. When it 
comes to beyond 16 connections, the INIC has 7.6% reduction 
of misses.  The misses in the data cache behave similarly as 
shown in Figure 16, but we see a much larger gap between the 
DNIC and the INIC. The INIC has 180 fewer misses or 42% 
reduction of misses at most. 
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Figure 13. Icache Misses per Packet 

DNIC vs INIC (Inst Miss of L2 Per Packet)
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Figure 14. Instruction Misses per Packet in L2 
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DNIC vs INIC (DCache Miss per Packet)

0
50

100
150
200
250
300
350
400
450
500

1 4 8 16 32 64
Connections

D
C

ac
he

 M
is

s 
pe

r P
ac

ke
t DNIC INIC

Figure 16. Data Cache Misses per Packet 

    In our system, the L2 cache is a 4MB cache and the total 
data cache size of eight cores is 64KB.  They can 
accommodate up to 64 and 1 64KB I/O sizes  respectively. We 
need control plane data structures such as TCP Control Block 
(TCB) and headers, descriptors etc during packet processing. 
With the increased connections, we actually need more cache 
size for simultaneous control plane processing. For example, 
different connections need to lookup different entries in the 
TCB.  Hence, the smaller access latency to I/O registers in the 
INIC is beneficial. The smaller latency means that packets can 
be provided for upper level processing faster than the DNIC, 
correspondingly resulting in smaller processing latency. 
Hence, in the same time interval, less packet footprints are left 
in caches with the INIC and more cache spaces can be used for 
other data. The above behavior could incur the lower miss rate 
with the INIC. Two conclusions can be drawn from our 
analysis: 1) the smaller latency could explain the difference 
between cache misses, and 2) the difference caused by the 
smaller latency is sensitive to the cache size. It explains why 
the difference on data cache is much larger than that on L2 
cache.    

DNIC vs INIC (Memory Traffic per Packet)
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Figure 17. Memory Traffic per Packet 

    Last but not least, we also captured traffic on the memory 
bus. More cache misses would lead to more memory accesses 
and thus increase memory read traffic. We gathered the 
memory traffic for both read and write operations with the 
INIC and the DNIC while running Iperf for 60 seconds. The 
memory traffic, normalized to per packet in Figure 17,  shows 
that the DNIC incurs more memory read and write accesses. 

    Although both the behaviors of the OS scheduler and CPU 
caches are influenced by the integration, we believe that there 

is some correlation between them.  Besides the impact of 
different processing latency on CPU caches, more context 
switches also change the working data set in caches and thus 
incur some cache misses. Unfortunately, the paper now is 
unable to quantify their impacts on CPU caches.   

VI. CONCLUSION AND FUTURE WORK

    The integration of NICs has been proposed for improving 
the processing capacity of general purpose platforms with high 
speed networks. Their performance benefits over discrete 
NICs are usually verified by simulators.  

    In this paper, we conducted extensive evaluations on a real 
machine with integrated NICs to study their performance 
benefits over discrete NICs. A detailed performance 
characterization is provided to understand the benefits. We 
show that the smaller latency of accessing I/O registers with 
the integration positively affects the behavior of the OS 
scheduler and CPU caches through fewer context switches and 
cache misses. Through our thorough studies, we make the 
following observations: 1) the driver overhead is largely 
reduced due to the smaller latency of accessing I/O registers, 
which confirms the observation from prior simulation-based 
work, 2) the INIC affects the behaviors of the OS scheduler 
and CPU caches, mainly resulting in the performance benefits, 
which is unexpected, 3) the performance benefits of the INIC 
are tied to the highly threaded Sun system. SUN Niagara 2 
uses a simple Integrated NIC architecture. We believe that the 
performance can be further improved by redesigning the 
interaction mechanism between CPUs and NICs in the next 
generation I/O infrastructure. In future, we plan to study the 
performance benefits of the integrated NIC with real 
workloads like NFS and web servers.   
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