
Performance Measurement of an Integrated NIC Architecture
with 10GbE

Guangdeng Liao
Department of Computer Science and Engineering

 University of California, Riverside
Riverside, California, USA

gliao@cs.ucr.edu

Laxmi Bhuyan
Department of Computer Science and Engineering

University of California, Riverside
Riverside, California, USA

bhuyan@cs.ucr.edu

Abstract— The deployment of 10 Gigabit Ethernet (10GbE)
connections to servers has been hampered by the “fast-network-
slow-host” phenomenon. Recently, the integration of network
interfaces (INICs) is proposed to tackle the performance
mismatch. While significant advantages over PCI-based discrete
NICs (DNICs) were shown in prior work using simulation
methodologies, it is still unclear how INICs perform on real
machines with 10GbE.
 This paper is the first to study the impact of INICs by extensive
evaluations through micro-benchmarks on a highly threaded Sun
Niagara 2 processor. The processor is the industry’s first "system
on a chip," integrating two 10GbE NICs. We observe that the
INIC only shows its advantage over the DNIC with large I/O
sizes. It improves 7.5% network bandwidth while saving 20%
relative CPU utilization. We characterize the system behaviors to
fully understand the performance benefits with respect to
different number of connections, OS overhead, instruction
counts, and cache misses etc. All of our studies reveal that there
is a benefit of integrating NICs onto CPUs, but the gain is
somewhat marginal. More aggressive integrated NIC designs
should be adopted for higher speed networks like the upcoming
40GbE and 100GbE.

Keywords: 10GbE, Integrated NIC, Discrete NIC, Performace
Evaluation, Characterization, Sun Niagara 2.

I. INTRODUCTION

 Ethernet continues to be the most widely used network
architecture today for its low component cost and backward
compatibility with the existing Ethernet infrastructure. As of
2006, Gigabit Ethernet-based clusters make up 176 (or 35.2%)
of the top-500 supercomputers [17]. Unfortunately, even as
nearly all server platforms completed the transition to Gigabit
Ethernet, the adoption of 10 Gigabit Ethernet (10GbE) has
been limited to a few niche applications [18]. The use of
10GbE has been constrained by the processing capability of
general purpose platforms [7, 11].

 Prior work [1, 2, 3, 5, 14] for improving the processing
capability broadly falls into two categories: 1) dedicating an
embedded CPU to a NIC and 2) integrating a NIC onto a CPU.
TCP Offload Engine (TOE), a popular approach for high
speed networks, belongs to the first category. It offloads the
whole network stack running on operating systems (OS) into
NICs in the form of firmware. However, TOE lacks flexibility

and the ability to take advantage of technology-driven
performance improvements as easily as host CPUs [5].
Recently, an alternative approach to integrating NICs onto
CPUs has been shown to be more promising and is gaining
more and more popularity in both academia and industry [3,
14, 15]. Compared to TOE, the integration of NICs does not
require modifying the legacy network stack, and provides high
flexibility and good compatibility with the OS.

 Existing work on the integration of NICs (INICs) was
evaluated by simulation [1, 2, 3]. Although simulation is
flexible, it is hard to fully simulate the bandwidth and latency
of memory and system bus protocols in real machines. It is
also difficult for simulators to capture the whole OS behaviors.
Hence, evaluations on real machines become critically
important and are complementary to simulators. Papers [1, 2]
claimed that INICs can significantly improve network
processing efficiency in comparison with discrete NICs
(DNICs) connected via a PCI-E bus, due to the smaller latency
of accessing I/O registers. However, how integrated NICs
perform on real machines remains unclear. A detailed
performance evaluation and characterization are required to
answer it.

 Sun released the UltraSPARC T2 processor (a.k.a Niagara
2) [15] by envisioning the benefits of the integration of NICs.
The processor is a highly threaded processor consisting of
small cores and the industry’s first "system on a chip"
integrating two 10GbE NICs. The integration can reduce the
latency of accessing I/O registers, though the overhead of
accessing network packets is not eliminated because they are
still sourced and destined to memory rather than caches [15].
In this paper, we present extensive evaluations with 10GbE,
and compare the INIC with the DNIC in detail. To make a fair
comparison, the INIC has the same design as the DNIC except
for its proximity to CPUs in our experiments. Our experiments
reveal that the INIC improves network efficiency only with
large I/O sizes, with 7.5% higher bandwidth and 20% less
CPU utilization. Our CPU breakdown confirms the previous
observation from the simulator that the driver overhead is
largely reduced (50% reduction in our experiments, and up to
80% reduction in [2]). The reduction is contributed to the
smaller latency of accessing I/O registers.

2009 17th IEEE Symposium on High Performance Interconnects

1550-4794/09 $26.00 © 2009 IEEE
DOI 10.1109/HOTI.2009.16

52

17th IEEE Symposium on High Performance Interconnects

1550-4794/09 $26.00 © 2009 IEEE
DOI 10.1109/HOTI.2009.16

52

17th IEEE Symposium on High Performance Interconnects

1550-4794/09 $26.00 © 2009 IEEE
DOI 10.1109/HOTI.2009.16

52

 Besides confirming the simulator-based finding above,
through a detailed performance characterization, we also
unexpectedly observe that the INIC significantly affects the
behaviors of the OS scheduler and CPU caches. We notice
that the INIC reduces context switches by 40% in comparison
with the DNIC. Our in-depth analysis shows that more cross-
calls (or inter-processor interrupts) are incurred by the OS
scheduler, and correspondingly result in more frequent context
switches in the DNIC. Additionally, the longer packet
processing latency in the DNIC directly translates to longer
residential life cycles of packets in caches. It could result in
cache pollution and thus incur higher cache miss rates. With
the combination of influence of more context switches on
caches, our evaluation shows that the INIC has 25% lower L1
data cache and 7.6% lower L2 cache miss rates.

 In our experiments, we observe that the smaller latency of
accessing I/O registers itself does not help processing by a
large extent. The different behaviors of the OS scheduler and
CPU caches incurred by the smaller latency mainly contribute
to the performance gain. It is in contrary to the previous
observation that the reduced driver overhead can lead to the
performance improvement up to 58% [2]. To satisfy the
processing requirement introduced by higher network traffic
rates, more aggressive INIC designs like the new CPU/NIC
interaction mechanism should be considered.

 The remainder of this paper is organized as follows. Section
2 describes the background knowledge about the integration of
NICs. Section 3 presents the experimental methodology.
Section 4 and 5 show our performance evaluation and detailed
characterization. Finally, we conclude our paper in section 6.

II. BACKGROUND

A. Integration of NICs
 It is well known that TCP/IP over Ethernet is a dominant
overhead for commercial web and data servers [19, 20].
Researchers gradually realized that a comprehensive solution
across hardware platforms and software stacks is necessary to
eliminate the overhead [1, 2]. Existing work for improving
TCP/IP performance falls into two categories: TOE [5] and the
integration of NICs [1, 2]. Although TOE reduces the
communication overhead between processors and NICs, it
lacks scalability due to the limited processing and memory
capacity. It also requires extensive modification of OS and
development of firmware in NICs. Recently, a counter-TOE
approach is to integrate NICs onto CPUs. It is envisioned as
the next generational network infrastructure. It not only
reduces the latency of accessing I/O registers, but also
leverages extensive resources in multi-core CPUs.

 Binkert [1, 2] made a first attempt to couple a simple NIC
with a CPU for high bandwidth networks. They claimed that
the device driver is one of the dominant overheads for
processing high speed networks and an integrated NIC can
eliminate the overhead. Additionally, they also go further to
redesign the integrated NIC to eliminate the overheads of
DMA descriptor management and data copy. Evaluation on

their full system simulator M5 [2, 3] showed the driver
overhead is reduced up to 80% even without any redesign,
thus improving performance up to 58%.

 The Joint Network Interface Controller (JNIC) [14], a
collaborative research project between HP and Intel, also
attempted to explore high performance in-data-center
communications over Ethernet by integrating a NIC. They built
a system prototype by attaching a 1GbE NIC on the front side
bus to mimic the integration. Apparently, the integration is
drawing more and more attention to eliminating the disparity
between host computation capacity and high speed networks.

B. Sun Niagara 2
 The Niagara 2 processor is the industry's first "system on a
chip," packing the most small underpowered cores and
threads, and integrating all the key functions of a server on a
single chip: computing, networking, security and I/O [15].

 As shown in Figure 1, it has two 10 GbE NICs (NIU in the
figure) with a few features. All the data is sourced from and
destined to memory, DMA in the parlance. This means a core
sets up the transfer and gets out of the way. The path to
memory goes from the Ethernet unit (NIU), to the system
interface unit (SIU), directly into the L2 or the crossbar. The
CPU sets up DMA for packet transfers from the NIC to
memory.

 Niagara 2, known for its massive amount of parallelism,
contains eight small SPARC physical processor cores and each
core has full hardware support for eight hardware threads.
There are total 64 hardware threads or CPUs from the OS
perspective. Additionally, each core has a 64-entry fully
associative ITLB, a 128-entry fully associative DTLB, a 16K
L1 I (instruction) cache and an 8K L1 D (data) cache with
associativity of the Icache upped to eight. The Dcache has
four-way associativity and is write-through, and all of the
cores share a 4MB L2 cache. This is divided into 8 banks and
each bank is 16-way associative.

Figure 1. Niagara 2 Architecture

III. EXPERIMENT METHODOLOGY

A. Testbed Setup
 Our experimental testbed consists of a Sun T5120 server
connected to an Intel® Quad Core DP Xeon® server, which

535353

functions as a System Under Test (SUT) and a stressor
respectively. The Sun server has a Niagara 2 processor, which
has 64 hardware threads and each hardware thread is operating
at 1.2GHz. The Intel server is a two-processor platform based
on the quad-core Intel® Xeon® processor 5300 series with 8
MB of L2 cache per processor [8]. Both of the machines are
equipped with 16GB DRAM.

TABLE I. INIC VS DNIC

 In order to compare the integrated NIC with the discrete
NIC, we used two 10GbE network adapters in the SUN server:
a discrete Sun 10GbE PCI-E NIC (a.k.a Neptune) [16] and an
on-chip 10GbE Network Interface Unit (a.k.a NIU) [15]. The
on-chip NIU has the same physical design as Neptune except
it has half less DMA transmit channels. More information is
shown in Table 1. They use the same device driver, and trigger
an interrupt after the number of received packets reaches 32 or
8 NIC hardware clocks have elapsed since the last packet was
received. We also installed two Intel 10GbE Server Adapters
(a.k.a Oplin) [9] in the stressor system to connect two network
adapters in the Sun server. All of discrete NICs connect to
hosts through PCI-E x8, a 16+16 Gigabit/s full-duplex I/O
fabric that is fast enough to keep up with the 10+10 Gigabit/s
full-duplex network port.

B. Server Software
 The SUT runs the Solaris 10 Operating System while the
stressor runs Vanilla Linux kernel 2.6.22. In Solaris 10, a
STREAMS-based network stack is replaced by a new
architecture named FireEngine [6] which provided better
connection affinity to CPUs, greatly reducing the connection
setup cost and the cost of per-packet processing. It merges all
protocol layers into one STREAMS module that is fully
multithreaded.

 In order to optimize network processing with the 10GbE
network, we use 16 soft rings per 10GbE NIC by setting the
parameter ip_soft_rings_cnt for the driver. Soft rings are
kernel threads that offload processing of received packets from
the interrupt CPU, thus preventing the interrupt CPU from
becoming the bottleneck. We also set ddi_msix_alloc_limit to
8 so that received interrupts can target 8 different CPUs.
Besides, we retain the default settings in the device driver
without specific performance tuning on interrupt coalescing,
write combining etc. All protocol and system relevant settings
are at default.

 Micro-benchmarks were used in our experiments to easily
identify the performance benefits and avoid system noises
from commercial applications [7, 11], We selected Iperf [10]
and NetPIPE [13] as micro-benchmarks for measuring
bandwidth and ping-pong latency respectively. Because peak
bandwidth can be achieved by more than 16 connections,
Iperf is run with 32 parallel connections on 64 CPUs for 60
seconds in all our experiments, unless otherwise stated.

 In our experiments, the utility vmstat is used for capturing
the corresponding CPU utilization. We ran profiling tools
er_kernel and er_print to collect and analyze the system
functions overhead. Meanwhile, tools busstat and cpustat were
chosen to obtain memory traffic and hardware performance
counter statistical information while running the benchmark.

IV. PERFORMANCE EVALUATION

 In Figure 2, we show how the INIC and the DNIC perform
with various I/O sizes while receiving packets. The bar in the
figure represents achievable network bandwidth, and the line
stands for the corresponding CPU utilization. It can be
observed that the INIC can achieve 8.97 Gbps bandwidth
while consuming 27% CPU utilization with large I/O sizes.
Correspondingly, 8.31 Gbps bandwidth is obtained by the
DNIC with 35% CPU utilization. The INIC obtains 7.5%
higher bandwidth and saves 20% relative CPU utilization on
average for large I/O sizes (>1KB). The efficiency of the INIC
is close to the DNIC with small packets. All of the results
reveal that the integration improves network efficiency in the
receive side only with large I/O sizes.

INIC vs DNIC (RX with 32 Connections)

0
1
2
3
4
5
6
7
8
9

10

64 128 256 512 1K 2K 4K 8K 16K 32K 64K

I/O Size

Ba
nd

w
id

th
 (G

bp
s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

CP
U

Ut
ili

za
tio

n

INIC (BW) DNIC (BW) INIC (CPU Util) DNIC (CPU Util)

Figure 2. Bandwidth & CPU Utilization (RX)

 We studied the performance comparison of the DNIC and
the INIC while transmitting packets in Figure 3. Because less
time is required in the driver for the INIC to transmit packets,
it is expected that the higher transmitting bandwidth could be
obtained by the INIC than the DNIC. However, the INIC does
not show noticeable benefits to the application in terms of
network efficiency. It is possibly because: first, the number of
transmit DMA channels in NIU is half less than that in the
Neptune 10GbE card (8 TX DMA channels in the INIC and 12
TX DMA channels in the DINC). Fewer channels could
reduce the capacity of transmitting packets. Second, the

545454

transmit side is much less latency-sensitive than the receive
side [12, 19, 20].

DNIC vs INIC (TX 32 connections)

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1K 2K 4K 8K 16K 32K 64K
I/O Size

Ba
nd

w
id

th
 (G

bp
s)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

CP
U

Ut
ili

za
tio

n

INIC(BW) DNIC(BW) INIC(CPU Util) DNIC(CPU Util)

Figure 3. Bandwidth & CPU Utilization (TX)

DNIC vs INIC with Different Connections

0
1
2
3
4
5
6
7
8
9

10

1 4 8 16 32 64

Connections

Ba
nd

w
id

th
 (G

bp
s)

0%

5%

10%

15%

20%

25%

30%

35%

40%
C

PU
 U

til
iz

at
io

n

DNIC(BW) INIC(BW) DNIC(CPU Util) INIC(CPU Util)

Figure 4. Performance with Various Connections

 To ease and expedite our analysis of the above observation
in receive side, we conducted experiments for comparing the
INIC with the DNIC by running Iperf with varying number of
connections rather than 32 connections. Figure 4 illustrates the
comparison from one single connection to 64 connections with
64KB messages. The following observations can be made
from the figure: 1) greater than 16 connections are required for
both the INIC and the DNIC to achieve peak bandwidth. It is
due to low performance of a single hardware thread in Niagara
2; 2) differing from the INIC, the DNIC with 64 connections
downgrades 10% bandwidth compared to 32 connections; 3)
the INIC improves network efficiency only with greater than
or equal to 32 connections.

 Similarly, we also studied the performance comparison by
running 32 connections with varying number of CPUs or
hardware threads in Figure 5. We observe from the figure that
the benefits only come when more than 16 CPUs are used in
our experiments. With the combination of Figure 4, we can
draw two conclusions: 1) the integration could affect the
system behaviors with a large number of connections, and
different system behaviors mainly cause the performance
difference, and 2) the benefits can only be achieved with large
number of CPUs, and thus are tied to the highly threaded Sun
system.

Figure 5. Performance with Various CPUs

 High bandwidth and low latency are two main metrics in
modern networking servers. We also conducted experiments to
compare ping-pong latency by configuring the SUT with the
INIC or the DNIC while retaining the same configuration in
the stressor. The micro-benchmark NetPIPE was used to
measure the latency. Since large I/Os are segmented into small
packets less than MTU (Maximum Transfer Unit, 1.5KB by
default), we focus on packets less than MTU for the ping-pong
latency test. Our results in Figure 6 show that the INIC can
achieve a lower latency by saving 6 s. It is due to the smaller
latency of accessing I/O registers and eliminating PCI-E bus
latency.

DNIC vs INIC (Latency)

90

95

100

105

110

115

120

64 128 256 512 1K 1.5K
I/O Size(Bytes)

La
te

nc
y

(u
s)

INIC DNIC

Figure 6. Ping-Pong Latency

V. DETAILED PERFORMANCE CHARACTERIZATION

 To further understand the benefits of the INIC, we profiled
the system for both the kernel and application function calls as
well as the assembly code. We used the test case with a 64KB
I/O size and 32 concurrent connections in Figure 2. The data
gathered was grouped into the following components to
determine their impacts on performance: device driver, socket,
buffer management, network stack, kernel, data copy and user
application Iperf.

 CPU overhead breakdown per packet is calculated and
presented in Figure 7. We observe that 28 s and 20 s are
required for processing one received packet in the DNIC and
the INIC respectively.

555555

DNIC vs INIC (CPU's Breakdown)

0

5

10

15

20

25

30

DNIC INIC

C
PU

's
 B

re
ak

do
w

n
pe

r P
ac

ke
t (

us
)

Kernel

Iperf

Copy

Stack

Driver

Socket

Buffer

Figure 7. CPU Overhead Breakdown

 The comparison in the figure reveals that the CPU overhead
on the driver is reduced from 4.7 s to 2.6 s by the
integration. Our profiled result shows that the overhead on the
interrupt handler nxge_rx_intr, which frequently operates on
NIC registers, is reduced by 10X. The copy component
remains the same when we switch between the DNIC to the
INIC configuration. It is because all packets in the INIC are
sourced and destined to memory rather than caches. The data
copy from kernel to user buffers in both configurations incurs
compulsory cache misses to fetch payloads from memory into
caches. The overhead on the copy component is eliminated
only if packets are delivered to caches. Our findings so far
confirm the observations in prior work [1, 2] even though they
differ in absolute benefits.

 We also observe that the INIC also reduces the overheads
on network stack, buffer management, socket and kernel.
These unexpected improvements comprise up to 75% of the
total overhead reduction and thus mainly contribute to the
performance benefits. We found that the different behaviors of
the OS scheduler and CPU caches lead to these benefits.

A. Impacts on the OS Scheduler
 Since the benefits of the INIC over the DNIC changes as the
number of connections increases, we carefully characterize
the system behaviors with varying number of connections to
understand the benefits by the INIC.

1) Instruction Breakdown
 First, we did an architectural characterization by instruction
for packet processing along various connections. In the DNIC,
instructions are broken down into 5 types of instructions: load,
store, atomics, software count instructions and all other
instructions as shown in Figure 8 (Note that the received
packet is less than 1.5KB because large messages in the sender
side are segmented into packets smaller than MTU). As shown
in Figure 8, about 3500 instructions are required to process a
packet with less than 32 connections, but increase to 4500
instructions for 32 and 64 connections. The instruction
breakdown shows that the instruction types of load, store and
other instructions, increase proportionally. Figure 9 shows the
similar behavior for the INIC, but contrary to the DNIC,
increased connections do not significantly increase

instructions per packet. The higher instructions per packet
directly translate to the higher CPU utilization of the DNIC
with a large number of connections.

DNIC (Instructions Breakdown)

0

1000

2000

3000

4000

5000

1 4 8 16 32 64

Connections

In
st

ru
ct

io
ns

 p
er

 P
ac

ke
t

atomic
inst_sw
inst_other
store
load

Figure 8. Instruction Breakdown (DNIC)

INIC(Instuctions Breakdown)

0
500

1000
1500
2000
2500
3000
3500
4000

1 4 8 16 32 64
Connections

In
st

ru
ct

io
ns

 p
er

 P
ac

ke
t

atomic
inst_sw
inst_other
store
load

Figure 9. Instruction Breakdown (INIC)

2) Context Switch Rate
 Because the same device driver and network stack are used,
the INIC and the DNIC have the same code path while
processing packets. The increased instructions are incurred by
other components in the OS. The increased load and store
operations reveal that more context switches could be required
by the DNIC. Hence, we studied the OS scheduler’s behaviors
while processing packets along various connections. Average
context switches per second are presented in Figure 10. The
figure confirms our deduction that more context switches are
incurred by the DNIC with more than 16 connections.

DNIC vs INIC (Context Switch)

0.0E+00
5.0E+04
1.0E+05
1.5E+05
2.0E+05
2.5E+05
3.0E+05
3.5E+05
4.0E+05

1 4 8 16 32 64
Connections

C
on

te
xt

 S
w

itc
h

pe
r

Se
co

nd

DNIC INIC

Figure 10. Context Switches with Various Connections

3) Interrupt Rates

565656

 Since the micro-benchmark was used in our experiment, the
lightweight execution in applications does not incur system
noise and yields few context switches. Context switches are
mainly caused by system interrupts. Hence, we studied system
interrupts per second along various connections in Figure 11.
The result lines up with the observation in Figure 10. Both the
INIC and the DNIC have comparable interrupt rates with less
than 32 connections. When we come to the scenario beyond
16 connections, the DNIC largely increases the interrupt rate
but the INIC keeps the same interrupt rate. The higher
interrupt rate results in more context switches. To study the
increased interrupts, we breakdown system interrupts with 32
connections into interrupts from the NIC, cross-calls, and all
other system interrupts in Figure 12.

DNIC vs INIC (Interrupt per Second)

0.0E+00

4.0E+04

8.0E+04

1.2E+05

1.6E+05

2.0E+05

1 4 8 16 32 64
Connections

In
te

rr
up

t p
er

 S
ec

on
d

DNIC INIC

Figure 11. Interrupts per Second

DNIC vs INIC (Interrupt Breakdown)

0.0E+00

4.0E+04

8.0E+04

1.2E+05

1.6E+05

DNIC INIC

In
te

rr
up

ts
 p

er
 S

ec
on

d Others

Cross-
Call

NIC
intterrupt

Figure 12. System Interrupts Breakdown

 We notice that the INIC sent slightly more interrupts than
the DNIC because of the higher bandwidth. However, the
system with the DNIC is interrupted much more frequently
than with the INIC by cross-calls. We used the Dtrace utility
[4] to count the number of cross-calls incurred by various
system components. It shows that more than the 96% cross-
calls are from the OS scheduler. The scheduler uses cross-calls
to notify other CPUs of running tasks or threads immediately.

 We also profiled the usage for all 64 CPUs from the OS
perspective and found that more CPUs were used by the
system with the DNIC. Specifically, only 18 CPUs were free
with the DNIC, while 31 CPUs are available with the INIC.
(Note that one connection might require more than one CPU
for processing in the Sun system [6, 15]). The result reveals
that the OS scheduler with the DNIC uses the cross-calls to
distribute threads to more CPUs as compared to the INIC. It is
because the lower processing latency with the integration
makes running cores more efficient and lowers the likelihood
that packets are dispatched to other idling cores.

B. Impacts on the CPU Caches
 Since lower processing latency intuitively embeds shorter
residential life cycles of network data in caches, the
integration could also bring impacts on CPU caches. We
studied cache behaviors in the system with the INIC and with
the DNIC respectively.

 Starting from the instruction cache, we show the instruction
misses per packet in Figure 13. More context switches incur
higher miss rates beyond 16 connections. We studied the
instruction misses in L2 cache in Figure 14 to investigate the
impacts of those misses on the unified L2 cache. Their
performance is similar but misses happen very rarely in larger
L2 cache.

 We also show data behaviors in both L2 and L1 data caches.
We captured data misses per packet in L2 cache for both the
DNIC and the INIC in Figure 15. It shows they have
comparable miss rates with less than 32 connections. When it
comes to beyond 16 connections, the INIC has 7.6% reduction
of misses. The misses in the data cache behave similarly as
shown in Figure 16, but we see a much larger gap between the
DNIC and the INIC. The INIC has 180 fewer misses or 42%
reduction of misses at most.

DNIC vs INIC (Icache Miss per Packet)

0

50

100

150

200

250

1 4 8 16 32 64
Connections

IC
ac

he
 M

is
s

pe
r P

ac
ke

t

DNIC INIC

Figure 13. Icache Misses per Packet

DNIC vs INIC (Inst Miss of L2 Per Packet)

0

0.02

0.04

0.06

0.08

0.1

0.12

1 4 8 16 32 64
Connections

In
st

 M
is

s
of

 L
2

pe
r

Pa
ck

et

DNIC INIC

Figure 14. Instruction Misses per Packet in L2

DNIC vs INIC (L2 Miss per Packet)

10
12
14
16
18
20
22
24
26

1 4 8 16 32 64

Connections

L2
 C

ac
he

 M
is

s
pe

r P
ac

ke
t

DNIC INIC

Figure 15. Data Misses per Packet in L2

575757

DNIC vs INIC (DCache Miss per Packet)

0
50

100
150
200
250
300
350
400
450
500

1 4 8 16 32 64
Connections

D
C

ac
he

 M
is

s
pe

r P
ac

ke
t DNIC INIC

Figure 16. Data Cache Misses per Packet

 In our system, the L2 cache is a 4MB cache and the total
data cache size of eight cores is 64KB. They can
accommodate up to 64 and 1 64KB I/O sizes respectively. We
need control plane data structures such as TCP Control Block
(TCB) and headers, descriptors etc during packet processing.
With the increased connections, we actually need more cache
size for simultaneous control plane processing. For example,
different connections need to lookup different entries in the
TCB. Hence, the smaller access latency to I/O registers in the
INIC is beneficial. The smaller latency means that packets can
be provided for upper level processing faster than the DNIC,
correspondingly resulting in smaller processing latency.
Hence, in the same time interval, less packet footprints are left
in caches with the INIC and more cache spaces can be used for
other data. The above behavior could incur the lower miss rate
with the INIC. Two conclusions can be drawn from our
analysis: 1) the smaller latency could explain the difference
between cache misses, and 2) the difference caused by the
smaller latency is sensitive to the cache size. It explains why
the difference on data cache is much larger than that on L2
cache.

DNIC vs INIC (Memory Traffic per Packet)

0

500

1000

1500

2000

2500

3000

Memory Read Memory Write

B
yt

es
 p

er
 P

ac
ke

t

DNIC INIC

Figure 17. Memory Traffic per Packet

 Last but not least, we also captured traffic on the memory
bus. More cache misses would lead to more memory accesses
and thus increase memory read traffic. We gathered the
memory traffic for both read and write operations with the
INIC and the DNIC while running Iperf for 60 seconds. The
memory traffic, normalized to per packet in Figure 17, shows
that the DNIC incurs more memory read and write accesses.

 Although both the behaviors of the OS scheduler and CPU
caches are influenced by the integration, we believe that there

is some correlation between them. Besides the impact of
different processing latency on CPU caches, more context
switches also change the working data set in caches and thus
incur some cache misses. Unfortunately, the paper now is
unable to quantify their impacts on CPU caches.

VI. CONCLUSION AND FUTURE WORK

 The integration of NICs has been proposed for improving
the processing capacity of general purpose platforms with high
speed networks. Their performance benefits over discrete
NICs are usually verified by simulators.

 In this paper, we conducted extensive evaluations on a real
machine with integrated NICs to study their performance
benefits over discrete NICs. A detailed performance
characterization is provided to understand the benefits. We
show that the smaller latency of accessing I/O registers with
the integration positively affects the behavior of the OS
scheduler and CPU caches through fewer context switches and
cache misses. Through our thorough studies, we make the
following observations: 1) the driver overhead is largely
reduced due to the smaller latency of accessing I/O registers,
which confirms the observation from prior simulation-based
work, 2) the INIC affects the behaviors of the OS scheduler
and CPU caches, mainly resulting in the performance benefits,
which is unexpected, 3) the performance benefits of the INIC
are tied to the highly threaded Sun system. SUN Niagara 2
uses a simple Integrated NIC architecture. We believe that the
performance can be further improved by redesigning the
interaction mechanism between CPUs and NICs in the next
generation I/O infrastructure. In future, we plan to study the
performance benefits of the integrated NIC with real
workloads like NFS and web servers.

ACKNOWLEDGMENT

The research was supported by NSF grants CCF-0811834
and NEDG-0832108, and a grant from Intel. We would like to
thank Ram Huggahalli, Xia Zhu, Amit Kumar and Steve King
for providing us the Sun Niagara 2 equipment and invaluable
guidance while we were conducting experiments. We would
also like to thank my labmates Danhua Guo, Chen Tian and
Dennis Jeffery for their useful comments on this paper.

REFERENCES

[1] Nathan Binkert, Ali G. Saidi, Steven K. Reinhardt, Integrated network
interfaces for high-bandwidth TCP/IP. Proceedings of the 2006
ASPLOS Conference. December 2006.

[2] Nathan L. Binkert, Lisa R. Hsu, Ali G. Saidi et al., Performance
Analysis of System Overheads in TCP/IP Workloads. Proc. 14th Int'l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Sept. 2005.

[3] Nathan. L. Binkert, Ronaldo G. Dreslinski, Lisa R. Hsu et al., The M5
simulator: Modeling networked systems. IEEE Micro, Jul/Aug 2006.

[4] Dtrace, http://en.wikipedia.org/wiki/DTrace.
[5] Doug Freimuth, Elbert Hu, Jason LaVoie et al., Server network

scalability and TCP offload, Proceedings of the USENIX Annual
Technical Conference, Anaheim, CA. 2005.

[6] Fireengine,
http://www.sun.com/bigadmin/content/networkperf/FireEngine_WP.pdf.

585858

[7] Ram Huggahalli, Ravi Iyer, Scott Tetrick, Direct Cache Access for High
Bandwidth Network I/O, 32nd Annual International Symposium on
Computer Architecture (ISCA'05), 2005.

[8] Intel Core 2 Extreme quad-core processor,
http://www.intel.com/products/processor/core2XE/.

[9] Intel 10 Gigabit Ethernet Controllers,
http://download.intel.com/design/network/prodbrf/317796.pdf

[10] Iperf, http://dast.nlanr.net/Projects/Iperf
[11] Amit Kumar, Ram Huggahalli, Impact of Cache Coherence Protocols on

the Processing of Network Traffic. 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-40), 2007.

[12] Srihari Makineni, Ravi Iyer, Architectural characterization of TCP/IP
packet processing on the Pentium M microprocessor. 10th HPCA, 2004.

[13] Netpipe. http://www.scl.ameslab.gov/netpipe/
[14] Michael Schlansker, Nagabhushan Chitlur, Erwin Oertli et al., High-

Performance Ethernet-Based Communications for Future Multi-Core

Processors. Proceedings of the 2007 SuperComputing Conference.
November 2007.

[15] Sun Niagara 2, http://www.sun.com/processors/niagara/index.jsp.
[16] Sun 10GbE multithread Networking Cards,

http://www.sun.com/products/networking/ethernet/10gigethernet/
[17] Top500 Supercomputer List, http://www.top500.org.
[18] Worldwide Ethernet Semiconductor 2006–2011 Forecast, Research

Report # IDC204254, November 2006.
[19] Haiyong Xie, Li Zhao, Laxmi Bhuyan, Architectural Analysis and

Instruction Set Optimization for Network Protocol Processors, Proc.
IEEE ISSS+CODES, October 2003.

[20] Li Zhao, Ramesh Illikkal, Srihari Makineni, Laxmi Bhuyan, TCP/IP
Cache Characterization in Commercial Server Worloads, CAECW-7.

595959

